TRIBHUVAN UNIVERSITY
Faculty of Management
Shanker Dev Campus

A LAB REPORT

Submitted By: Submitted To:
Name: Ashesh Neupane Department of BIM
TU Exam Roll No: 16295 /23 Shanker Dev Campus

Level: Bachelor

Semester: Fourth

Verified By :

Batch: 2080

Subject: Operating System

'an:PréeﬁiﬁﬁVe'Pﬁonty Sched | : _ :
1 Slﬁ)rtest éeek Time First (SSTF) Disk Scheduling Algorithrﬁ
FIFO Page Replacement Algoriihm
~ First-Come, First-Served (FCFS) Scheduling Algorithm 19

C-SCAN (Circular SCAN) Disk Scheduling Algorithm 22
LOOK Disk Scheduling Algorithm 25
SCAN Disk Scheduling Algorithm 2

Best Fit Memory Allocation Algorithm / 30

Shortest Remaining Time First (SRTF) Algorithm

int n, pg[30], fr{10];
int count[10], i, j, k, fault, f, flag, temp, current, c, dist, max, m, cnt, p, x;
fault = 0;

k=0;
printf("Enter the total number of pages: ");
scanf("%d", &n);
printf("Enter the page reference sequence: ");
for (i= 0; i <njit++)

scanf("%d", &pgli]);
printf("Enter frame size: ");
scanf("%d", &f);
for(i=0;i<f;it+t) {

count[i] = 0;

fefi] =-1;
}
printf("\nPage\tFrames\n");
for (i=0;i<n;it+) {

flag = 0;

temp = pg[il;

for G =0;j<f;j++) {

if (temp = fr[j]) {
flag=1;
break;

}

if (flag = 0) && k<D {
fault++;
fr[k] = temp;

k++;

4 2

for (m = 0; m < f; m++
if (count[m] > max) {
max = count[m];

p=m,

}
fi[p] = temp;
}
printf("%d\t\t", pg[i]);
for (x = 0; x < f; x++) {
printf("%d\t\t", fr{x]);
}
printf{"\n");
}
printf("\nTotal number of page faults:
printf("\nName: ASHESH NEUPANE \t T.U. Exam

o%d\n", fault);

return 0;

Roll No: 16295/ 23");

@

Qutput Screen:

8 C:\Users\ashes\OneDrive\Doc X +
Enter the total number of pag 10
Enter the page reference sequence: 7 0 1 2 0 3

Enter frame size: 3

Page Frames
e

i

WNE@WDN S~
NMNNNNNONNO9 9
[oX-K-XoX-NoNoNoRoly

WEESWWH P

Total number of page faults: 7

Name: ASHESH NEUPANE T.U. Exam Roll No: 16295 / 23

Process exited after 35.81 seconds with return value 0
Press any key to continue .

[float avg_waitt, avg_tumat;

.

// Input the number of processes
printf("Total number of processes in the system: ");
scanf("%d", &proéesses);

);= pro‘cesses.; // Assign number of processes to y

// Input arrival time and burst time for each process
for(i = 0; i < processes; i++) {

printf("\nEnter the Arrival and Burst time of Process[%d]\n", i + 1);

printf(" Arrival time: ");

scanf("%d", &at[i]);

printf("Burst time: ");

-scanf("%d", &bt[i]);

temp[i] = bt[i]; # Initialize remaining burst time
} ,
// Input the time quantum

printf("Enter the Time Quantum: "

scanf("%d", &q);
// Display header for the process info
printf("\nProcess No. \tBurst Time \{TAT \t\tWaiti
// Scheduling loop
for(sum = 0, = 0;y =0;) {
if(temp[i] <= q && temp[i] > 0) {
sum = sum + templ[il;
templ(i] = 0;
cnt=1;
} else if(templi] > 0) {

templi] = temp[i] - 9

sum = sum + q;

xﬁaaﬁmssés <1){

i=0;

, } else iffatfi + 1] <= sum) {

}

// Calculate average waiting time and turnaround time

avg_waitt = wt * 1.0 / processes;

avg turnat=tat* 1.0/ ‘processes;

printf("\nAverage Turnaround Time: %f", avg_turnat);

printf("\nAverage Waiting Time: %f", avg_waitt);

printf("\nName: ASHESH NEUPANE \t T.U. Exam Roll No: 16295 / 23");

©)

Output Screen:

C:\Users\ashes\OneDrive\Dox
B Total number of processes in the

Enter the Arrival and Burst time of Process[1]
f Arrival time: © .
ll Burst time

Enter the Arrival and Burst time of Process[2]
rival time: 1 ’
st time: 3

Enter the Arrival and Burst time of Pro
Arrival time: 2

Burst time: 1

Enter the Time Quantum: 2

| Process No Burst Time TAT Waiting Time

process No[3] 1 3 2
Process No[2] 3 7 4
process No[1]l & 9 iy
Average Turnaround Time: 6.333333

Average Waiting Time: 3.333333
| Name: ASHESH NEUPANE T.U. Exam Roll No: 16295 / 23

£ Process exited after 43.06 seconds with return value @
f Press any key to continue .

(6)

minimum = ﬁm‘éti];

pos =1i;

"

}
return pos;
)
| int main()
{

int no_of_frames, no_of_pages, frames[10], pages[30], counter = 0, time[10], flagl, flag2, i, j, pos, faults = 0;

printf("Enter number of frames: ");
scanf("%d", &no_of_frames);
printf("Enter number of pages: ");
scanf("%d", &no_of pages);
printf("Enter reference string: ");
for(i = 0; i <no_of_pages; T+i){
scanf("%d", &pages[i]);

}
for(i=0;i< no_of frames; ++i) {
frames[i] = -1;

;

for(i = 0; i <no_of pages; ++i){

flagl = flag2 = 0;
for(j=0;]j < no_of frames; ++j) {
if(frames(j] = pages[iD{
countert+;

time[j] = counter;

frames[j] = pages[i);

time(j] = counter,

1 flag2 =1;
break;
}
}
}
if(flag2 = 0){
pos = findLRU(time, no_of frames);
countert++;
‘l faults++;
frames[pos] = pages|i];
time[pos] = counter;
}
printf("\n");

for(j = 0; j < no_of_frames; ++j){
printf("%d\t", frames(j]); e
H

}
printf("\n\nTotal Page Faults = %d", faults);
printf("\nName: ASHESH NEUPANE \t T.U. Exam Roll No: 16295 /23");

) C\Users\ashes\OneDrive\Doc
| Enter number of frames: 3
| Enter number of pages: 7
| Enter reference string: 1

=1

!‘Total Page Faults =
‘iName: ASHESH NEUPANE

T.U. Exam Roll No: 16295 / 23

Process exited after 39.4 seconds with return value 0
press any key to continue .

€))

| int allocation[processes];

13

}

{

for(int i=0;i<processes;i++)allocation[i]=-1;
for(int i=0;i<pmcé‘sses;i4+){ :
* int indexPlaced=1;
for(int j=0;j<blocks;j++){
if(blockSize[j]>=processSize[i]){
if(indexPlaced=-1)indexPlaced=j;

else if(blockSize[indexPlaced]<blockSize[j])indexPlaced=j;

}
if(indexPlaced!=-1){
allocation[i]=indexPlaced;

blockSize[indexPlaced]-=processSize[i];

}
printf("\nProcess No.\tProcess Size\tBlock No.\n");

for(int i=0;i<processes;i++){
printf("%d\t\t%d\t\t",i+1 ,processSize[i]);
if(allocation[i]!=-1)printf("%d\n",allocation[i]"' 1);
else printf("Not Allocated\n");

int main()

int blockSize[]={500,100,60};
int processSize[]={50,80,100};

int blocks=sizeof(blockSize)/sizeof(blockSize[O]);

int processes=sizeof(processSize)/sizeof(processSize[O]);

: : ; 9);
imp]emcmwo,sﬂ:it(blockSme,blocks,processStze,processe)

(10)

printf("\“Name: ASHESH NEUPANE \t T.U. Exam Roll No: 16295 / 23",

return 0;

Qutput Screen:
@ C:\Users\ashes\OneDrive\Doc X

process No. Process Size Block No.
50 1
80 1
1ee 1

Name: ASHESH NEUPANE T.U. Exam Roll No: 16295 / 23

process exited after 0.1752 seconds with return value 0
Press any key to continue .

(11

s — AU VR Y

int n;
printf("Enter Number of Processes: ");
cf("%d",&n);
int burst{n],priority[n],index(n];
for(int i=0;i<n;i++)
{
printf("Enter Burst Time and Priority Value for Process %d: ",i+1);
scanf("%d %d",&burst[i],&priority[i]);
index[i]=it1;
}
for(int i=0;i<n;i++)
{
int temp=priority[i],m=i;
for(int j=i;j<n;j++)
{
if(priority[j]>temp)
{
temp=priorityj];

m=j;

}
swap(&priority[i],&priority[(m]);
swap(&burst[i],&burst[m]);

(12)

- prind("0);
printf("Process Id\tBurst Time\tWait Time\tTurnaround Time\n");
int wait_time=0;

| int total_wait_time=0;

int total_turnaround=0;

’ for(int i=0;i<n;i++)

1

int turnaround=wait_time-+burst[i];

printf("P%d\t\t%d\t\t%d\t\t%d\n" index[i],burst[i],wait_time,turnaround);

total wait_time+=wait_time;
total_turnaround+=turnaround;
wait_time+=burst(i];

}

float avg_wait_time=(ﬂoat)total_wait_time/n;

float avg_tumaround=(ﬂoat)total_tumaround/n;

printf("Average waiting time is %f\n" avg_wait_time);
%f\n",avg_turnaround);
m Roll No: 16295 /23");

printf(" Average TurnAround Time is

printf("\nName: ASHESH NEUPANE \t T.U. Exa

return 0;

BE

a8 c-\U>crs\ushc>\0ncDrivo\Doc

r of Proces
;lul ﬁriority Value for P

nd Priorit . 4

and p:ﬁ.ox ity Value for Dl e
an }omty Value for e
xecution is = Frocess 34

. Numbe

st Time
. Bul‘St Time
. purst Time
. of proccss

d from @ to 8
d from 8 to 13
d from 13 to 16

. execute
execute
cxccutc

Burst Time :
3 galt Time T
urnar 5
g 8 8 round Time
aiting time is 7,00000013 }2

e W
wrnAround Time is 12.333333
- 2

P2
Averagd
pverage T

ASHE
ANE T.U. Exam Roll No: 16295
NEUP / 23

process €X

press any key to continue

(14)

soanf("%d", &n);
printf("Enter the Requests sequence\n");
‘ for(i=0; i <m; i) {
scanf{("%d", &RQ[i]);
visited[i] = 0; // initialize visited array
} RN
printf{"Enter initial head position\n");
scanf("%d", &initial);
printf("Disk Service Sequence: ");
while(count !=n) {
int min = 1000000, index = -1;
for(i=0; 1 <n; i++) {
if(Ivisited[i]) {
int distance = abs(RQ[i] - initial);
if(distance < min) {
min = distance;

index = i;

visited[index] = 1; #/ mark as visited
TotalHeadMovement += min; ‘
Printf("%d -> *, RQ[index]);

initial = RQ[index];

count++;

(15)

prinfUBndn):
I,ﬂ‘mﬂ"‘Tnuanl head movement is %d\n", TotalHeadMovement);

prinfU"\iName: ASHESH NEUPANE \t T.U. Exam Roll No: 16295 /23
e %

seturn 0

bl——-—-"""""""""

Quiput Screen:

cAUsers\ashes\OneDrive\Doc

.+ the number of Requests
the Requests sequence
p 43 1u0 24

initial head position

niek Service Sequence: 43 -> 24 -> 82 -> 140 -
D %Al head movement is 172 0 -> 170 -> End

Name: ASHESH NEUPANE T.U. Exam Roll No: 16295 / 23

ter 20.14 seconds with return value ©

cess exited af
press any key to continue .

Pro

(16)

int ref[20), int reflen,
firstin = 0, found, phi

forj = 03 < fum;)
- frame[j] =-1;
‘ ‘rintf("\nPage Trace:\n");

\% fori=0; | <reflen; i-4) {

found = 0;
~ for(j = 0; j < fum; j++) {
if(ref[i] = frame(j]) {
found = 1;
phit++;

break;

7
if{found = 0) {
pfault++;
frame[firstin] = ref[i];
firstin = (firstin + 1) % foum;
}
for(k = 0; k < foum; k++) {
if(framefk] !=-1)
printf("%d\t", frame[Kk]);
}
printf("\n");
}
printf("\nPage Hits: %deage Faults: %d\n", phit, pfault);

}
int main() {

int i, reflen, foum, refstr[20]; .
¢ of frames: ")}

: ; be
Printf("Enter reference string length & numm

(17)

1|

PRSI

(R RL RO I)

scanﬂ"%d 9pd", &reflen, &fiam);

pri tf("Enter pages of reference string: ");

fori=0:1< reflen; i++)
scanf("%d", &refstr{iD);
fifo(refstt, reflen, fhum);

pﬁntf("\“Nme: ASHESH NEUPANE \t T.U. Exam Roll No: 16295 / 23");

return 0

x b o v

B8 c\Usm\ashes\Ons-Drive\ooz

ce string length & number of frames: 12 3

Enter referen h
Enter pages of reference string: 123412512345

page Trace:

WL W e RN
EENNNNNWWW

§ Page Hits: 3
 Page Faults: 9

Name: ASHESH NEUPANE

b process exited after 33.41 secon!

Press any key to continue .- -

write a program in C to implement the First-Come, First-Served (FCFS) Scheduling
Algoﬂthm.

s“rce Code:

pinclude <stdio.h>
gtruct Process {
int pid; /# Process ID
int arrival_time; / Arrival time
int burst_time; // Burst time
int completion_time; // Completion time
int waiting_time; // Waiting time :
int turnaround_time; / Turnaround time
b
void findCompletionTime(struct Process proc[], int n) {
int current_time = 0;
for (inti=0; 1 <n;i++) {
if (current_time < proc[i].arrival_time) {
current_time = procfi].arrival_time;
}
current _time += proc[i].burst_time;

\
proc[i].completion_time = current_time; \\J/

}
void findTurnaround Time(struct Process proc(], int n) {
for (inti=0;i<n;it++) {

procf[i].turnaround_time = proc[i].completion_time - proc[i].arrival_time;

H
void findWaiting Time(struct Process proc[], int n) {
for (int i = 0; i < n; i++) {

procfi].waiting_time = proc[i].tumaround_time - proc[i].burst_time;

}

void printProcessTable(struct Process pr oc[], int n) {

printf("PID\t\t Arrival Time \t\tBurst Time \tWCompletion Time\t\WTwnaround Time \(\t Waiting Time \n");

(19)

r the number of pfoces.v.es: iy

4d, &n);

uct Process proc[n];

printf("Enter arrival time and burst time for process %d: ", i + 1); -
proc[i].pid=i+1;
scanf("%d%d", &proc[i].arrival_time, &procl[i].burst_time);
}
// Sort processes by arrival time
for(inti=0;i<n-1;i++) {
for(intj=0;j<n-i-1;j++) {
if (proc[j].arrival_time > proc[j + 1].arrival_time) {
struct Process temp = proc[jl;
proc[j] = proc[j + 1];

proc[j + 1] = temp;

}

findCompletionTime(proc, n);
findTurnaround Time(proc, n);
findWaiting Time(proc, n);
printProcessTable(proc, n);

printf("\nName: ASHESH NEUPANE \t T.U. Exam Roll No: 16295 /23");

return 0;

(20)

\\ ashes\Of yoDiive\Dot

me

h pumber of processes: a

the ,

crival time

rival rime and burst time for

rrive

rriva

‘\m\'.ﬂ time
Arrival Time

Time

T.U. Exam Roll No:

process

press an

and burst time for

process

* process 2:
1 time and burst time for
and burst time for

8
16
22

16295 / 23

exited after 21.82 seconds with return value ©
y key to continue

21

Completion Time

Turnaround

T

{me

write program in C to implement the C-SCAN

Source Code:
e ude <stdio.h>

(Circular SCAN) Disk Scheduling

#inclu

#include <stdlib.h>

it mainQ) {

nt n, head, max, seek = 0;
printf("Enter the maximum range of the disk: ");
scanf("%d", &max);
prinrf("Enter the initial head position: ");
scanf("%d", &head);
pxintf("Enter the number of requests: ");
scanf("%d", &n);
‘int requests[n], queuel[n], queue2[n];
int templ = 0, temp2 = 0;
printf("Enter the disk request queue: ");
for (inti=0; i <n; i++) { \.///
scanf("%d", &requestsfi]);
if (requests[i] >= head)
queuel [temp1++] = requests[i];
else
queue2[temp2++] = requests[i];
}
// Sort queuel and queue? in ascending order
for (inti=0; i < temp1 - 1; i++) {
for (intj =i + 1; j < templ; j++) {
if (queuel[i] > queuel[j]) {
int temp = queuel[i];
queuel[i] = quevel[j];

queuel[j] = temp;

}

for (int i = 0; i < temp2 - 15 i+) {

et total_requests = templ + temp2 + 2; // including max and 0

¥ :nwaenoe[total_requests];
] int index =03
‘ chce[index-i—f] = head;

JAdd fequests greater than or equal to head

fm(inti=0; i< templ; i+)
sequencc[indexH—] = queuel[i];

sequence[index++] = max; / move to end

sequence[index++] =0; //jump to start

// Add remaining requests

for (inti=0; 1< temp?2; i++)
sequence[indext+] = queue2(i];

printf("Disk Service Sequence: "Y;

for (int i = 0; i < total_requests - lagsanlit

int diff = abs(sequcnce[i +1]- sequenceli]);
seek += diff;
printf("%d -> ", sequenceli]);

J

printf("%d\n", sequence[total_requests -1

printf("Total seek time: %d\n"s seek);
printf(" Average seek time: %.2f\n", (float)seek /n);

printf("\nName: ASHESH NE

Roll No: 16295 /23");

UPANE \t T.U. Exam

Teturn 0;

B 0 . e

(23)

: X t v
<\aih\~s\0nn0"\’°\um
A causer

; . e of the disk: 200
m3¥i22T Lz:ngosition: 50
e Uubcr of requests: 8 ’
- the B request queue: 95 180 34 119 11 123 63 gy
r ﬂm.diQSQqucnce: 50 -> 62 -> 64 -> 95 _, 119 -> 173
SerV: Ceine: 361

-> 180
. 45,13

T.U. Exam Roll No: 16295 / 23

ited after 25.56 seconds with retup
i

n value 0
0 inue . . .
proc key to contir
i any
j press

24)

> 200

j, n, TotalHeadMoment = 0, initial

cnter the number of Requests\n");

&(“Entei‘ the Requests sequence\n");
r(i=0; i<n;itt)
scanf("%d", &RQ[i]); ’
| ‘pﬁnfﬁ"Enter initial head position\n");
scanf("%d", &initial);
printﬂ“Enter total disk size\n");
scanf("%d", &size);
// Sort the request array
for (i=0; i <n; i++)
for(j=0;j<n-i-1;jtt)
if RQ[]>RQG + 1D {
int temp = RQ[;
RQ[j] =RQL + 11;
RQJj + 1] = temp;
}
// Find the index of initial head position
int index;
for (i=0;i<n; it++) {
if (initial < RQ[i]) {
index = i;

break;

.
printf("Disk Movement Sequence: ");
/ Calculate total head movement and sho¥

for (i = index; i < n; i++) {

disk movement sequence

(25)

(%> " initial);

rin

i all eadl\/ioment += abs(RQ[i] - initial);
0

}
for (=1
printf("%d > ", lnltlal),

ndex - 1;1>= 05 1) {

TotalHeadMoment += abs(RQ[i] - initial);

initial = RQULL
}
pdntf("%d\n"’ initial); // Print the last disk process
pr.inﬂ»'(“Total head movement is %d", TotalHeadMoment);
printf("\nName: ASHESH NEUPANE \t T.U. Exam Roll No: 16295 / 23");

return 0;

.

Output Screen:

C:\Users\ashes\OneDrive\Doc

Enter the number of Requi
8 Lorgr)
Enter the Requests sequer
95 180 34 119 11 123 62

Enter total disk size

‘ 200 ;
Disk Movement Sequence: 50,720
Total head movement is 299

liame: ASHESH NEUPANE .U Exam Roll No: 16295 / 23

PR g5 > 119 —> 123 —> 186 > 34 > 11

e e e e e e e e e e e e e e 0

Process exited after 27.87 seconds with return value 0
Press any key to continue - :

(26)

void *a, const void *b) {

t*)a - *(int*)b);

tAN(iﬂt arr[], int n, int head, int disk_size, char direction) {

ot [eR100); right[100];
: seek_scqucnce[ZO()];
int seek_count = 0, index = 0;
| tlsize = 0, rsize = 0;
? //add requests to left and right
; for(inti=0;i<m; i++) {

if (arfi] < head)

lefi[lsize++] = arr{i];

else
right[rsize++] = arr[i];

}
//add 0 or disk end depending on direction
if (direction ="1')

lefi[lsize++] = 0;
else if (direction = 'r')

right[rsize++] = disk_size - 1;
//sort both sides
gsort(left, Isize, sizeof(int), comp);
gsort(right, rsize, sizeof(int), comp);

/ move in SCAN direction

trun = 2; // two runs: initial direction + reverse

Wwhile (mn-_) {
if (direction =) {

for (int i = Isize - 1;i>= 0; i=-) {

seck_sequence[index++] = left[i);

seek_count += abs(head - left[i]);

27

Wk_'sﬂqﬂence[indexﬁ] = ﬂﬁmﬁ]i i
seck_count += abs(head - righti);
head = right[i];

printf(" Total head movement = %d\n", seek_count);
printf{"Seek Sequence: ");
for (inti=0; i < index; i++) {
printf("%d", seek_sequence[i]);
if (i != index - 1) printf(" -> ");
}
printf("\n");

}

int main() {

int n, head, disk_size;
char direction;
printf("Enter total disk size: ");
scanf("%d", &disk_size);
printf("Enter number of requests: ");
scanf("%d", &n);

int arr{n];

printf("Enter the request sequence: ");
for (int i = 0; i < n; i++)

scanf("%d", &arrfi]);
printf("Enter initial head position: ")

scanf("%d", &head);

left, r for right): it

printf("Enter direction (1 for

(28)

anfl" %c", &direction);
SCAN(E; P> head, disk_size, direction);
priﬂtf("\”Name: ASHESH NEUPANE \t T.U. Exam Roll No: 16295 / 23")

returm 0;

[}//__’_,’_

\Uwrs\ashcs\Onol)rivn\Dm X Y

- total disk size: 200
o -~ number of requests: 8
| cnter the request sequence: 95 18! .
:Enter initial head position: 50 6 3% 119 IT 123 b2 i
| Enter direction (U for left, r for right): r
- Total head movement = 337 :
| Seek Sequence: 62 -> 64 -> 95 —> 119 -> 123 -> 180 -> 199 -> -

- = -> 11

Name: ASHESH NEUPANE T.U. Exam Roll No: 16295 / 23

! process exited after 27.33 seconds with
ret
| Press any key to continue . urn value 8

(29)

nti=0; i <blocks; i++){

{1)

occupied[i] = 0;

~ for (int i = 0; i < proccesses; i++)
{
int indexPlaced = -1;

for (int j = 0; j < blocks; j++) {

if (blockSize[j] >= processSize[i] && !occupied[j])
, {
4 // place it at the first block fit to accomodate process
if (indexPlaced = -1)
indexPlaced = j;
else if (blockSize[j] < blockSize[indexPlaced])

indexPlaced = j;

}
If we were successfully able to find block for the process

if (indexPlaced !=-1)

{
allocation[i] = indexPlaced; / allocate block j to process p(il

occupied[indexPlaced] = 1; #/ mark occupied

}
Printf{"\nProcess No \tProcess Size\tBlock no.\n");

(30)

o,d WA\, i+ 1, processSize(i]);

prct A
f(lllocatim\[!]‘ 1
i

" ionli] + 1%;
o f("%d\D ,allocahon[n]
pn[\‘ﬂ
els€

ntf("Not Allocated\n");
pl‘

1
|

it main()

| 1= {500, 100, 60};

int processSize[] = {50, 80, 100};
sizeof(blockSize)/sizeof(blockSize[O]);

int blockSize[

int blocks =
int proccesses = sizeof(processSize)/sizeof(processSize[0]);
m

implimechstFit(blockSize, blocks, processSize, proccesses);

printf{"\nName: ASHESH NEUPANE \t T.U. Exam Roll No: 16295 /23");

return 0 ;

Output Screen:

s

& C\users\ashes\OneDrive\Doc X

Process Mo, Process Size
- 50
‘ 80
3 160

Yame: ASHESH NEUPANE T.U. Exam Roll No: 16295 / 23

Process exited after ©.2627 seconds with return value 0

‘Tess any key to continue . . -

(31

| L fscanf(u%du’&n);

- ",
: nenter arrival time\n");

for(i=0;i<n;itt)
scanf("%d",&ali]);
 printf{"enter burst time\n");
for(i=0;i<n;i++)

scanf("%d",&bl[i]);

for(i=0;i<n;i++)

| x(ilbi;
b[9}=9999;

fOT(ﬁme=0;count‘.=n;timeJ'+)
{

Smallest=9.

f°f(i=0;i<n;i-i—l-)

| ' && bli}>0)
if(a[i]<=time && b[i]<b[smallest]

Smallest=i;

}

b [Smallest] -

blsmaltesi—g)
{

count..

est];
anaavg_’_end_ a[smallest]-x[small

d_a[smallest];
g tren

}

} iting time = %lIf\n" :
; tf(n\u\nAverage waiting time = /o ,avg/n);

prip :

int(" Average Turnaround time = %lf",tt/n);
p

retum 0;

printf("\aName: ASHESH NEUPANE \t T.U. Exam Roll No: 16295 / 23");

V’_

Qutput Screen:

1] CAUsers\ashes\OneDrive\Dot % +

enter the number of Processes:

enter arrival time
012

enter burst time
741

Iverage waiting time = 2.000060
Average Turnaround time =

llame: ASHESH NEUPANE T Exan Roll ho: 16295 / 23

ads with return value 0

Press any key to continue ;i

(33)

{ "type": "Form", "isBackSide": false }

{ "type": "Form", "isBackSide": false }

{ "type": "Form", "isBackSide": false }

{ "type": "Form", "isBackSide": false }

{ "type": "Form", "isBackSide": false }

{ "type": "Form", "isBackSide": false }

{ "type": "Form", "isBackSide": false }

{ "type": "Form", "isBackSide": false }

{ "type": "Form", "isBackSide": false }

{ "type": "BusinessCard", "isBackSide": false }

