
CHAPTER 7
INPUT AND OUTPUT

ORGANIZATION

Er. Rolisha Sthapit

CONTENTS

Input-Output Interface: Why IO Interface?, I/O Bus and Interface
Modules, I/O vs Memory Bus, Isolated vs Memory Mapped I/O
Asynchronous Data Transfer: Strobe, Handshaking

Modes of Transfer: Programmed I/O, Interrupt-Initiated I/O, Direct
memory Access

Priority Interrupt: Polling, Daisy-Chaining, Parallel Priority Interrupt

DMA and IOP: Direct Memory Access, Input-Output Processor, DMA vs
IOP, Serial Communication

Er. Rolisha Sthapit

I/O subsystem
• The input-output subsystem (also referred as I/O) proves an efficient mode of

communication between the central system and outside environment. Data and programs
must be entered into the computer memory for processing and result of processing must
be recorded or displayed for the user.

 Peripheral Devices

• A peripheral device is any device attached to a computer in order to expand its
functionality.

• Basically input and output devices together are known as peripherals.

• Input devices are keyboard, optical input devices like bar code reader, screen input
devices like touch screen and light pen.

• Output devices may be monitor, printer , speakers, etc

Er. Rolisha Sthapit

Input Output Interface

Input output interface provides a method for transferring information
between internal storage and external I/O devices. Peripherals connected
to a computer need communication links for interfacing them with CPU.
The purpose of communication link is to resolve the differences that
exist between the computer and each peripheral. The major differences
are:

1. Peripherals are electromechanical and electromagnetic devices and
their manner of operation is different from the operation of CPU and
memory, which are electronic devices.

2. Data transfer rate of peripherals is slower than that of CPU so some
synchronization mechanism may be needed.

Er. Rolisha Sthapit

3. Data codes and formats in peripherals differ from that of the word
format in CPU and memory.

4. Operating modes of peripherals are different from each other and
each must be controlled so as not to disturb others.

 To resolve these differences, computer system usually include
special hardware unit between CPU and peripherals to supervise and
synchronize I/O transfers, which are called interface units since they
interface processor bus and peripherals.

Er. Rolisha Sthapit

I/O Bus and Interface Modules
A typical communication link between the processor and several
peripherals is shown in the figure.

Er. Rolisha Sthapit

The I/O bus consists of data lines, address lines

and control lines. Different peripherals are

connected to it. Each peripheral has an interface

module associated with it.

Functions of interface are:

• Decodes the device address.

• Decodes the I/O command in control lines.

• Provides signal for the peripheral controller.

• Synchronizes the data flow

• Supervises the transfer rate between

peripheral and CPU or memory.

The I/O bus from the processor is attached to all peripheral interfaces.
To communicate with a particular device, the processor places a device
address on the address lines. Each interface attached to the I/O bus
contains an address decoder that monitors the address line. When the
interface detects its own address, then it activates the path between the
bus lines and the device that it controls. All the peripherals whose
addresses don’t correspond to the address in the address bus are disabled
by their interface.

At the same time, the address is made available in the address line; the
processor provides a function code in the control line which is also
called I/O command. The interface selected responds to the function
code and proceeds to execute it.

Er. Rolisha Sthapit

• There are four types of I/O command:
• Control command:

The control command is issued to activate and inform the peripheral devices
what they have to do. Eg: magnetic tape may be instructed to rewind the tape.

• Status command:

It is used to test the various status condition of interface and peripherals. Eg: a
computer may wish to check the status of the peripheral before a transfer is
initiated.

• Output data command:

It is issued to transfer data from system bus to one of storage register.

• Input data command:

It causes the interface to read the data from the peripheral and places it into the
interface buffer.

Er. Rolisha Sthapit

I/O and Memory Bus
In addition to communicating with I/O, processor also has to work with memory unit. Like
I/O bus, memory bus contains data, address and read/write control lines. There are 3
physical organizations that the computer buses can be used to communicate with memory
and I/O.

a) Uses two separate buses, one for memory and other for the I/O: Computer has
independent sets of data, address and control buses, one for accessing memory and
other for I/O. It is usually employed in a computer that has separate Input Output
processor (IOP).

b) Use one common bus for both memory and I/O having separate control lines.

c) Use one common bus for memory and I/O with common control lines.

Note:

• Memory bus is for information transfers between the CPU and main memory.

• I/O bus is for information transfers between CPU and I/O devices through their I/O
interface.

Er. Rolisha Sthapit

Isolated I/O versus Memory mapped I/O

Isolated I/O:

In isolated I/O configuration, separate read and write lines are used to
distinguish the memory and I/O operations. CPU places the address
information on the address bus. It then enables one of the two possible
read/write lines (memory r/w or I/O r/w)to specify the operation and
then specified device will be activated. Distinct input and output
instructions are available. Each is associated with the address of an
interface because of small number of I/O devices. The program size is
reduced and the decoding speed is increased.

Extra cost for the separate sets r/w buses. Address space of the I/O
modules is isolated from the memory address space.

Er. Rolisha Sthapit

Advantage:

• Same address can be used for either memory and I/O transfer, only
control line identifies whether the transfer is I/O or memory.

Disadvantage:

• Needed separate input-output read/write and memory read/write
instructions for I/O and memory transfer.

Er. Rolisha Sthapit

Er. Rolisha Sthapit

Memory mapped I/O:

The I/O in which one common bus is used for memory and I/O bus with
common control lines is called memory mapped I/O. It uses common
read/write instruction for memory and I/O operation. It uses same
address space for both memory and I/O and treats interface register as a
part of memory. The addresses used by interface register cannot be used
for memory space. So, if CPU places the register addresses and data on
common bus, the memory system ignores the operation. So, I/O
operation is performed.

Er. Rolisha Sthapit

Advantage:

• Same instructions are used for memory and I/O.

• No need of separate control lines for I/O and memory operation.

Disadvantage:

• No full memory address can be used.

Er. Rolisha Sthapit

Er. Rolisha Sthapit

Difference between Isolated I/O and memory
mapped I/O

Isolated Memory mapped
1. Separate I/O read/write control lines I addition
to the memory read/write control lines.

1. Single set of read/write control lines.

2. Separate I/O and memory address spaces. 2. I/O and memory share common address space.

3. Distinct I/O instruction. 3. Same instruction for memory and I/O

Er. Rolisha Sthapit

Interface Unit

Er. Rolisha Sthapit

Er. Rolisha Sthapit

• Interface communicates with the CPU through the data bus. The chip
select and register select inputs determine the address assigned to the
interface. Control lines I/O read and write are used to specify the input
and output respectively. Bidirectional lines represent both data in and
out from the CPU. Information in each port can be assigned a meaning
depending on the mode of operation of the I/O device: Port A = Data;
Port B =Command; Port C = Status. CPU initializes (loads) each port
by transferring a byte to the Control Register. CPU can define the
mode of operation of each port.

Er. Rolisha Sthapit

Asynchronous Data Transfer

• Asynchronous data transfer between two independent units requires
that control signal be transmitted between the communicating units to
indicate the time at which data is being transmitted.

• One way of achieving this is by a means of strobe pulse applied by
one of the units to indicate to the other unit when the transfer has to
occur.

• Another method commonly used is to accompany each data item being
transferred with a control signal that indicates the presence of data in
the bus. The unit receiving the data item responds with another control
signal to acknowledge receipt of the data. This type of agreement
between two independent units is referred to as handshaking.

Er. Rolisha Sthapit

Strobe Control
It is an asynchronous data transfer method that uses a single control line
to time each transfer. The strobe may be activated by either the source or
the destination unit. The strobe is a single line that informs the
destination unit when a valid data word is available in the bus.

a) Source initiated Data Transfer:

- The source unit first places the data on the data bus. After a brief delay
to ensure that the data settle to a steady value, the source activates the
strobe pulse. The information on the data bus and the strobe signal
remain in the active state for the sufficient time period to allow the
destination to receive the data.

Er. Rolisha Sthapit

- Then the strobe signal is disabled which indicates that the data bus
does not contain the valid data. New valid data will be available only
after the strobe is enabled again.

Er. Rolisha Sthapit

b) Destination Initiated Data
Transfer:

- In this case the destination activates
the strobe pulse, informing the source
to provide the data. The source unit
responds by placing the requested
binary information on the data bus.
The data must be valid and remain in
the bus long enough for the
destination unit to accept it.

- The destination unit then disables the
strobe. The source removes the data
from the bus after a pre determined
time interval.

Er. Rolisha Sthapit

• The disadvantage of the strobe method is that the source unit that
initiates the transfer has no way of knowing whether the destination
unit has received the data or not. Similarly, a destination unit that
initiates the transfer has no way of knowing whether the source unit
has actually placed the data on the bus. This difficulty is solved by
using handshaking method of data transfer.

Er. Rolisha Sthapit

Handshaking

The handshake method solves this problem by introducing a second
control signal that provides a reply to the unit that initiates the transfer.
The basic principle of the two wire handshaking method of data transfer
is as follows: One control line is in the same direction as the data flow
in the bus from the source to the destination to inform whether there are
valid data in the bus or not. The other control line is in the other
direction from the destination to the source that is used by the
destination unit to inform the source whether it can accept data or not.

Er. Rolisha Sthapit

Source-initiated transfer using handshaking:

EXPLAIN THIS
FROM BOOK

Er. Rolisha Sthapit

Destination -initiated transfer using
handshaking:

Er. Rolisha Sthapit

Asynchronous Serial Transfer
- The transfer of data between two units may be done in parallel or serial. In parallel

data transmission, total message is transmitted at the same time. In serial data
transmission, each bit in the message is sent in sequence once at a time. In
asynchronous transmission, binary information is sent only when it is available
and the line remains idle when there is no information to be transmitted.

Asynchronous serial transmission is character oriented. Each character

transmitter consists of a start bit, character bits and stop bits. The first bit is

called start bit. It is always 0 and is used to indicate the beginning of the

character. The last bit is called the stop bit is always set to 1.

Er. Rolisha Sthapit

Modes of Transfer

There are three different ways by which the data can be transferred:

a) Programmed I/O

b) Interrupt Initiated I/O

c) Direct Memory Access (DMA)

Er. Rolisha Sthapit

a) Programmed I/O

• In this method of data transfer, the I/O instructions are written in the
form of computer program. The instruction written in the program
basically involves the data transfer to and from a CPU register and
input output peripheral devices. It requires that all I/O operations
executed under the direct control of the CPU i.e every data transfer
operation involve in an I/O devices requires the execution of an
instruction by the CPU. In programmed I/O mode, the CPU stays in
the programmed loop until the I/O indicates that it is ready for data
transfer. This is time consuming process and keeps the processor busy.
This mode is useful in small and low speed systems where hardware
cost must be minimized.

Er. Rolisha Sthapit

Er. Rolisha Sthapit

Er. Rolisha Sthapit

In general Programmed I/O:

- Continuous CPU involvement

- CPU slowed down to I/O speed

- Simple

- Least hardware

Er. Rolisha Sthapit

b) Interrupt Initiated I/O

In this mode of transfer the CPU concentrates on some other program.
This method uses interrupt signal to inform the CPU that the data are
available from the peripheral device and the input output flag is set to
1. When the flag is set, CPU deviates from what it is doing to take care
of the input output transfer. After the transfer has been completed, the
CPU returns to continue the previous program. When the interrupt
signal is generated, the CPU responds to it by storing the return
address from program counter into the memory stack and the control
branches to a service routine that processes the required I/O transfer.

Er. Rolisha Sthapit

There are 2 methods to choose the branch address of the service routine.
One is called vectored interrupt and the other is called non-vectored
interrupt. In vectored interrupt, the source that interrupt gives the
branch information to the computer and this interrupt is known as
interrupt vector. In non vectored interrupt, the branch address is
assigned to a fixed location in memory.

Note: Transfer of data under programmed I/O is between CPU and
peripherals.

Er. Rolisha Sthapit

In general Interrupt Initiated I/O:

-Polling takes valuable CPU time

- Open communication only when some data has to be passed ->
Interrupt.

- I/O interface, instead of the CPU, monitors the I/O device

- When the interface determines that the I/O device is ready for data
transfer, it generates an Interrupt Request to the CPU

- - Upon detecting an interrupt, CPU stops momentarily the task it is
doing, branches to the service routine to process the data transfer, and
then returns to the task it was performing

Er. Rolisha Sthapit

c) Direct Memory Access (DMA)

In this mode , the interface transfers between data into and out of the
memory unit through memory bus. The CPU initiates the transfer by
supplying the interface with the starting address and the number of
words needed to be transferred and then proceeds to execute another
task. When the transfer is made, the DMA requests memory cycles
through the memory bus. When the request is granted by the memory
controller, the DMA transfers the data directly into memory.

 The CPU merely delays in memory access operation to allow the
direct memory I/O transfer.

Er. Rolisha Sthapit

Priority Interrupt

Interrupt

• When a Process is executed by the CPU and when a user Request for
another Process, then this will create disturbance for the Running Process.
This is also called as the Interrupt.

• Interrupts can be generated by User, Some Error Conditions and also by
Software’s and the hardware’s.

Types of Interrupts

Generally there are three types o Interrupts those are occurred. For Example

1. Internal Interrupt

2. Software Interrupt.

3. External Interrupt

Er. Rolisha Sthapit

• The Internal Interrupts are those which are occurred due to some problem
in the execution. For example, when a user performing any operation which
contains any type of error so that internal interrupts are those which are
occurred by some operations or by some instructions and the operations
those are not possible but a user is trying for that operation.

• The software interrupts are those which are made some call to the system.
For example, while we are processing some instructions and when we want
to execute one more application programs.

• The External Interrupt occurs when any input and output devices request
for any operation and the CPU will execute those instructions first. For
example, when a program is executed and when we move the mouse on the
screen, then the CPU will handle this external interrupt first and after that he
will resume with his operation.

Er. Rolisha Sthapit

Priority Interrupt:

A priority interrupt is a system that establishes a priority over the
various sources to determine which condition is to be serviced first
when two or more request arrive simultaneously. Devices with high
speed transfer such as magnetic disks are given high priority and slow
devices such as keyboards receive low priority. Priority can be
established by hardware or software.

1) Software-polling

2) Hardware- Daisy chaining method, parallel priority interrupt.

Er. Rolisha Sthapit

Polling:

A polling procedure is used to identify the highest priority source by
software means. In this method, there is one common branch address
for all interrupts. The program that take cases of interrupt begins at the
branch address and polls the interrupt sources in sequence. The order
in which they are tested determines the priority of each interrupt. The
highest priority source is tested first and if its interrupt signal is on,
control branches to a service routine for this source. Otherwise, the
next lower priority source is tested and so on.

Er. Rolisha Sthapit

Daisy Chaining Priority (Serial method)(IMP)
The daisy chaining method of establishing priority consists of a serial connection of

all devices that request an interrupt. The device with the highest priority interrupt
is placed in the first position followed by a lower priority which is placed last in
the chain.

Er. Rolisha Sthapit

• The CPU responds to an interrupt request by enabling the interrupt
acknowledge line. This signal is received by device 1 at its PI (Priority
in) input. The acknowledged signal passes onto the next device
through the PO (Priority out) output only if device 1 is not requesting
an interrupt. If device 1 has a pending interrupt, it blocks the
acknowledged signal from the next device by placing a 0 in the PO
output. It then proceeds to insert its own interrupt vector
address(VAD) into the data bus for the CPU to use during the interrupt
cycle.

Er. Rolisha Sthapit

• A device with a 0 in its PI input generates a 0 in PO output to inform
the next lower priority device that the acknowledged signal has been
blocked. A device that is requesting an interrupt and has a 1 in its PI
will intercept (stop) the acknowledge the signal by placing a 0 in its
PO. If the device doesnot have pending interrupt, it transmits the
acknowledge signal to the next device by placing a 1 in its PO. The
device with PI=1 and PO=0 is the one with the highest priority that is
requesting an interrupt and this device places its VAD on the data bus.

Er. Rolisha Sthapit

Parallel Priority Interrupt

The parallel priority interrupt hardware is shown in figure. It has an
interrupt register whose bits are connected to the interrupt request lines
of different devices in the system. It also has a mask register whose bits
can be used to control the status of each interrupt request. The mask
register can be programmed to disable lower priority interrupt while a
higher priority device is been serviced.

The mask register has the same number of bits as the interrupt register.
By means of program instruction it is possible to set or reset any bit in
the mask register. Each interrupt bit and its corresponding mask bit are
applied to an AND gate.

Er. Rolisha Sthapit

Er. Rolisha Sthapit

This produces the four inputs to a priority encoder. The priority encoder
generates two bits of the vector address. An interrupt is recognized only
if its corresponding mask bit is set to 1 by the program. This is
transferred to the CPU. Another output from the encoder sets an
interrupt status flip flop IST (Interrupt Status FlipFlop). The outputs of
interrupt enable flip-flop IEN and IST are applied to an AND gate. The
outputs of this AND gate provide a common interrupt signal for the
CPU. The interrupt acknowledge INTACK signal from the CPU enables
the bus buffers in the output register and a vector address VAD is placed
into the data bus.

Er. Rolisha Sthapit

Priority Encoder

The priority encoder is a circuit that implements the priority function.
The logic of the priority encoder is such that if two or more inputs arrive
at the same time, the input having the highest priority will take
precedence. The truth table of a four-input priority encoder is given
below.

Er. Rolisha Sthapit

To solve the value
of x, y and IST use
K-map

The X's in the table designate don't care conditions. Input I0 has the
highest priority. When I0 input is 1, the output generates an output
xy=00. I1 has the next priority level. The output is 01 if I1=1 and I0=0.
The output for I2 is generated only if higher priority inputs are 0 and so
on. The interrupt status IST is set only when one or more inputs are
equal to 1. If all inputs are 0, IST is cleared to 0 and the other outputs of
the encoder are not used, so they are marked with don't care conditions.

Er. Rolisha Sthapit

• To solve x:

• X= I0’I1’

• To solve y

• Y= I0 ‘I1 + I0 ‘I2’

• IST-use OR gate

Er. Rolisha Sthapit

Direct Memory Access (DMA)(IMP)

DMA is a sophisticated I/O technique in which a DMA controller
replaces the CPU and takes care of the access of both, the I/O device
and memory, for fast data transfers. To transfer large block of data at
high speed, between external devices and main memory, DMA approach
is often used.

DMA controller allows data transfer directly between I/O device and
Memory, with minimal intervention of processor.

Er. Rolisha Sthapit

Momentum behind DMA:

Interrupt-driven and Programmed I/O require active CPU intervention
(All data must pass through CPU). Transfer rate is limited by
processor’s ability to service the device and hence CPU is tied up
managing I/O transfer. Removing CPU from the path and letting the
peripheral device manage the memory buses directly would improve the
speed of transfer.

Er. Rolisha Sthapit

Extensively used method to capture buses is through special control signals:

• Bus Request (BR): It is used by DMA controller to request the CPU for
buses. When this input is active, CPU terminates the execution of the
current instruction and places the address bus; data bus and read & write
lines into high impedance state. The high impedance state behaves like an
open circuit i.e. output is disconnected.

• Bus Grant (BG): CPU activates BG output to inform DMA that buses are
available (in high impedance state). DMA now take control over buses to
conduct memory transfers without processor intervention. When DMA
terminates the transfer, it disables the BR line and CPU disables BG and
returns to normal operation

Er. Rolisha Sthapit

Er. Rolisha Sthapit

When DMA takes control of bus system, the transfer with memory can
be made in the following ways:

• Burst transfer mode: A block sequence consisting of a number of
memory words us transferred in continuous burst. Needed for fast
devices such as magnetic disks where data transmission can not be
stopped or slower down until whole block is transferred.

• Cycle stealing: This allows DMA controller to transfer one data word
at a time, after which it must return control of the buses to the CPU.
The CPU merely delays its operation for one memory cycle to allow
DMA to steal one memory cycle.

Er. Rolisha Sthapit

DMA Controller

Er. Rolisha Sthapit

The DMA controller needs an usual circuit of an interface to
communicate with the CPU and I/O device. In addition, it needs an
address register, a word count register and a set of address lines. The
address register and address lines are used for direct communication
with the memory. The word count register specifies the number of
words that must be transferred.

 The unit communicates with CPU through the data bus and
control lines. The registers in the DMA are selected by the CPU through
the address bus by enabling the DS (DMA select) and RS(Register
select) inputs. The RD (read) and WR (write) inputs are bidirectional.

Er. Rolisha Sthapit

When BG(bus grant) input is 0, the CPU can communicate with
the DMA registers through the data bus to read from or write to the
DMA registers. When BG=1, the CPU releases the bus and DMA can
directly communicate with the memory by specifying an address in the
address bus and activating the RD or WR control. The DMA
communicates with the external peripheral through the request and
acknowledged lines by using a prescribed handshaking method.

 The registers in DMA controller are:

a) Address register: It contains an address to specify the desired location
in memory. The address register is incremented after each word that is
transferred to memory.

Er. Rolisha Sthapit

b) Word count register: It holds the number of words to be transferred. This register
is decremented by 1 after each word transfer and internally tested for 0.

c) Control register: It specifies the mode of transfer.

 The DMA is first initialized by the CPU. After that, the DMA starts and
continues to transfer data between memory and peripheral unit until the entire block
is transferred. The CPU initializes the DMA by sending the following information
through the data bus.

1. The starting address of the memory block where data are available for read or
where data are to be stored for write.

2. The word count which is the number of words in the memory block.

3. Control to specify the mode of transfer such as read or write.

4. A control to start the DMA transfer.

Er. Rolisha Sthapit

DMA Transfer

Er. Rolisha Sthapit

The CPU communicates with the DMA through the address and data
bus. The DMA has its own address which activates the DS(DMA select)
and RS (Register Select) lines. The CPU initializes the DMA through
the data bus. Once the DMA receives the start control command, it can
start the transfer between the peripheral device and the memory.

 When the peripheral devices sends a DMA request, the DMA
controller activates the BR line informing the CPU to release the buses.
The CPU responds with the BG line informing the DMA that its buses
are disabled. The DMA then puts the current value of its address register
into the address bus, initiates the RD or WR signal and sends a DMA
acknowledge to the peripheral device.

Er. Rolisha Sthapit

The RD and WR lines in the DMA controller are bidirectional.
The direction of transfer depends on the status of BG line. When BG=0,
the RD and WR are input lines allowing the CPU to communicate with
the internal DMA registers. When BG=1, RD and WR are output lines
from the DMA controller to the RAM to specify the read or write
operation for the data.

 When the peripheral device receives a DMA acknowledge, it puts
a word in the data bus for write or receives a word from the data bus for
read. The DMA controls the read or write operations and supplies the
address for the memory. The peripheral unit can then communicate with
memory through the data bus for direct transfer between the two units
while the CPU is momentarily disabled.

Er. Rolisha Sthapit

CPU executes instruction to

• Load Memory Address Register

• Load Word Counter

• Load Function(Read or Write) to be performed

• Issue a GO (BG) command

Upon receiving a GO Command DMA performs I/O operation as
follows independently from CPU

Er. Rolisha Sthapit

Input

– Send read control signal to Input Device

– DMA controller collects the input from input device byte by bye and
assembles the byte into a word until word is full

– Send write control signal to memory

– Increment address register (Address Reg <- Address Reg +1)

– Decrement word count (WC <- WC – 1)

– If WC = 0, then Interrupt to acknowledge done, else repeat same
process

Er. Rolisha Sthapit

Output

– Send read control signal to memory

– Read data from memory

– Increment address register (Address Reg <- Address Reg +1)

– Decrement word count (WC <- WC – 1)

– Disassemble the word

– Transfer data to the output device byte by byte

– If WC = 0, then Interrupt to acknowledge done, else repeat same
process

Er. Rolisha Sthapit

I/O Processor (IOP)

I/O processor is a processor with DMA capability that communicates
with I/O devices. In this configuration, the computer system can be
divided into a memory unit, and a number of processors comprised of
CPU and one or more IOPs.

IOP is similar to CPU expect that it is designed to handle the details of
I/O processing. Unlike DMA controller which is set up by the CPU, IOP
can fetch and execute its own instructions. IOP instructions are designed
specifically to facilitate I/O transfers. In addition, IOP can perform other
processing tasks such as arithmetic, logic, branching and code
translation.

Er. Rolisha Sthapit

The block diagram of a computer with two processor is
shown in figure. The memory unit occupies a central
position and can communicate with each processor by
means of direct memory access. The CPU is responsible
for processing data needed in the solution of the
computational tasks. The IOP provides a path for transfer
of data between various peripheral devices and the
memory unit. The CPU is usually assigned the task of
initiating the I/O program. From then, the IOP operates
independent of the CPU and continues to transfer data
from external devices and memory.

The data formats of peripheral devices differ from
memory and CPU data formats. Communication between
IOP and devices attached to it is similar to program
control method of transfer. Communication with the
memory is similar to direct memory access method.

Er. Rolisha Sthapit

CPU-IOP communication

• Communication
between the CPU
and IOP, may take
different forms
depending on the
particular computer
used. Mostly,
memory unit acts as
a memory center
where each processor
leaves information
for the other.

Er. Rolisha Sthapit

CPU operations IOP operations

Send instruction
to test IOP path

Transfer status word
to memory location

If status OK. , send
start I/O instruction

to IOP
Access memory for

IOP program

CPU continues with
another program

Conduct I/O transfer
using DMA ; prepare

status report

I/O transfer completed
interrupt CPU

Request IOP status

Transfer status word
to memory location

Check status word
for correct transfer

Continue

Mechanism:

 CPU sends an instruction to test the IOP path. The IOP responds by inserting a
status word in memory for the CPU to check. The bits of the status word indicate the
condition of IOP and I/O devices such IOP overload condition, device busy with
another transfer etc. CPU then checks status word to decide what to do next. If all is
in order, CPU sends the instruction to start the I/O transfer. The memory address
received with this instruction tells the IOP where to find its program. CPU may
continue with another program while the IOP is busy with the I/O program. When
IOP terminates the transfer (using DMA), it sends an interrupt request to CPU. The
CPU responds by issuing an instruction to read the status from the IOP, and IOP
then answers by placing the status report into specified memory location. By
inspecting the bits in the status word, CPU determines whether the I/O operation
was completed satisfactorily and the process is repeated again.

Assignment: Difference Between DMA and IOP

Er. Rolisha Sthapit

Serial and Parallel Communication

Serial Communication

• It is the process of sending data one bit at a time,
sequentially, over a communication channel or
computer bus.

• Serial communication is used for all long-haul
communication and most computer networks,
where the cost of cable and synchronization
difficulties makes parallel communication
impractical.

Parallel Communication

• It is a method of conveying multiple binary digits
(bits) simultaneously. It contrasts with serial
communication, which conveys only a single bit at
a time; this distinction is one way of
characterizing a communications link.

Er. Rolisha Sthapit

Data Communication Processor

• A data communication Processor is an I/O processor that distributes and
collects data from many remote terminals connected through telephone and
other communication lines.

• It is a specialized I/O processor designed to communicate directly with data
communication networks.

• A communication network may consist of any of a wide variety of devices,
such as printers, interactive display devices, digital sensors, or a remote
computing facility.

• With the use of a data communication processor, the computer can service
fragments of each network demand in an interspersed manner and thus have
the apparent behavior of serving many users at once. In this way the
computer is able to operate efficiently in a time-sharing environment.

Er. Rolisha Sthapit

Modes of Data Transfer

• Data can be transmitted between two points in three different modes:
simplex, half-duplex, or full-duplex.

Simplex

• A simplex line carries information in one direction only. This mode is
seldom used in data communication because the receiver cannot
communicate with the transmitter to indicate the occurrence of errors.
Examples of simplex transmission are radio and television
broadcasting.

Er. Rolisha Sthapit

Half-Duplex

• A half-duplex transmission system is one that is capable of transmitting in both
directions but data can be transmitted in only one direction at a time. A pair of
wires is needed for this mode. A common situation is for one modem to ad as the
transmitter and the other as the receiver. When transmission in one direction is
completed, the role of the modems is reversed to enable transmission in the
reverse direction. The time required to switch a half-duplex line from one
direction to the other is called the turnaround time.

Full-Duplex

• A full-duplex transmission can send and receive data in both directions
simultaneously. This can be achieved by means of a four-wire link, with a different
pair of wires dedicated to each direction of transmission. Alternatively, a two-wire
circuit can support full-duplex communication if the frequency spectrum is
subdivided into two non-overlapping frequency bands to create separate receive
and transmit channels in the same physical pair of wires.

Er. Rolisha Sthapit

	Slide 1: CHAPTER 7
	Slide 2: CONTENTS
	Slide 3: I/O subsystem
	Slide 4: Input Output Interface
	Slide 5
	Slide 6: I/O Bus and Interface Modules
	Slide 7
	Slide 8
	Slide 9: I/O and Memory Bus
	Slide 10: Isolated I/O versus Memory mapped I/O
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Difference between Isolated I/O and memory mapped I/O
	Slide 17: Interface Unit
	Slide 18
	Slide 19
	Slide 20: Asynchronous Data Transfer
	Slide 21: Strobe Control
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Handshaking
	Slide 26: Source-initiated transfer using handshaking:
	Slide 27: Destination -initiated transfer using handshaking:
	Slide 28: Asynchronous Serial Transfer
	Slide 29: Modes of Transfer
	Slide 30: a) Programmed I/O
	Slide 31
	Slide 32
	Slide 33
	Slide 34: b) Interrupt Initiated I/O
	Slide 35
	Slide 36
	Slide 37: c) Direct Memory Access (DMA)
	Slide 38: Priority Interrupt
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Daisy Chaining Priority (Serial method)(IMP)
	Slide 43
	Slide 44
	Slide 45: Parallel Priority Interrupt
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Direct Memory Access (DMA)(IMP)
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56: DMA Controller
	Slide 57
	Slide 58
	Slide 59
	Slide 60: DMA Transfer
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66: I/O Processor (IOP)
	Slide 67
	Slide 68: CPU-IOP communication
	Slide 69
	Slide 70: Serial and Parallel Communication
	Slide 71: Data Communication Processor
	Slide 72: Modes of Data Transfer
	Slide 73

