
CHAPTER 6
COMPUTER ARITHMETIC

BIM 3rd semester

LH-5

Er. Rolisha Sthapit1

Addition and Subtraction with Signed Magnitude Data,

Addition and Subtraction with Signed 2’s Complement Data

Multiplication of Signed Magnitude Data, Booth

Multiplication,

Division of Signed magnitude Data: Restoring and Non-

Restoring

Er. Rolisha Sthapit2

INTRODUCTION

 Computer Arithmetic includes the arithmetic operation

like addition, subtraction, multiplication and division.

 These operations are performed usually in signed 2’s

complement.

 However, the processing can be preceded with signed

magnitude, signed 1’s complement and signed 2’s

complement.

 For every process, we design a hardware and analyze the

corresponding algorithm used.

Er. Rolisha Sthapit3

ADDITION AND SUBTRACTION WITH SIGNED

MAGNITUDE DATA

 In this process, we designate the magnitude of two

numbers by A and B.

 When two signed numbers A and B are added and

subtracted, we find 8 different conditions to consider as

described in following table:

Er. Rolisha Sthapit4

Er. Rolisha Sthapit5

 Hardware Implementation

Er. Rolisha Sthapit6

 To implement the two arithmetic operations with

hardware, we have to store numbers into two register A

and B.

 Let As and Bs be two flip-flops that holds corresponding

signs.

 The result is transferred to A and As. A and As together

form a accumulator.

Er. Rolisha Sthapit7

Block Diagram Description:

 Hardware above consists of registers A and B and sign flip-

flops As and Bs.

 Subtraction is done by adding A to the 2’s complement of B.

 Output carry is transferred to flip-flop E, where it can be

checked to determine the relative magnitude of two numbers.

 Add-overflow flip-flop AVF holds overflow bit when A and B

are added. Addition of A and B is done through the parallel

adder.

 The sum (S) output of adder is applied to A again.

 The complementer provides an output of B or B’ depending on

mode input M.

Er. Rolisha Sthapit8

 When M = 0, the output of B is transferred to the adder,

the input carry is 0 and thus output of adder is A+B.

 When M=1, 1’s complement of B is applied to the adder,

input carry is 1 and output is S = A+B’+1 (i.e. A-B).

Er. Rolisha Sthapit9

Er. Rolisha Sthapit10

Hardware

 Algorithm

 The flowchart for the hardware algorithm is shown above.

 The two signs A, and B, are compared by an exclusive-OR
gate. If the output of the gate is 0, the signs are identical;
if it is 1, the signs are different.

 For an add operation, identical signs dictate that the
magnitudes be added.

 For a subtract operation, different signs dictate that the
magnitudes be added. The magnitudes are added with a
microoperation E A A + B, where EA is a register that
com-bines E and A.

 The carry in E after the addition constitutes an overflow if
it is equal to 1.

Er. Rolisha Sthapit11

 The value of E is transferred into the add-overflow flip-flop

AVF.

 The two magnitudes are subtracted if the signs are different for

an add operation or identical for a subtract operation.

 The magnitudes are subtracted by adding A to the 2's

complement of B .

 No overflow can occur if the numbers are subtracted so AVF is

cleared to 0.

 A 1in E indicates that A ≥ B and the number in A is the correct

result.

 If this number is zero, the sign A must be made positive to

avoid a negative zero. A 0 in E indicates that A < B.

Er. Rolisha Sthapit12

 For this case it is necessary to take the 2's complement of the
value in A. This operation can be done with one microoperation
A A’ + 1.

 However, we assume that the A register has circuits for
microoperations complement and increment, so the 2's
complement is obtained from these two microoperations.

 In other paths of the flowchart, the sign of the result is the same
as the sign of A, so no change in A, is required. However, when
A < B, the sign of the result is the complement of the original
sign of A . It is then necessary to complement A, to obtain the
correct sign. The final result is found in register A and its sign
in As. The value in AVF provides an overflow indication. The
final value of E is immaterial.

Er. Rolisha Sthapit13

EXAMPLE

Perform 45 + (-23)

 Operation is add

 45 = 00101101

 -23 = 10010111

 As = 0 A=0101101

 Bs = 1 B=0010111

 As Bs =1

 EA=A + B’ + 1 = 0101101 + 1101000 +1 = 10010110

 AVF=0

 => E=1 A= 0010110

 Result is AsA= 0 0010110

Er. Rolisha Sthapit14

Exercise

Perform

 (-65) + (50)

 (-30) + (-12)

 (20) + (34)

 (40) – (60)

 (-20) – (50)

Er. Rolisha Sthapit15

Addition and Subtraction with Signed 2’s

Complement Data

 The addition of two numbers in signed 2’s complement

form consists of adding the numbers with signed bit

treated the same as the other bits of numbers.

 A carry out of the sign bits position is discarded. The

subtraction consists of the first taking the 2’s complement

of the subtrahend and then adding it to minuend.

Er. Rolisha Sthapit16

 Hardware Implementation

Er. Rolisha Sthapit17

 Hardware Algorithm

Er. Rolisha Sthapit18

Er. Rolisha Sthapit19

Example:

 Perform 33 + (-35)

 AC = 33 = 00100001

 BR = -35 = 2’s complement of 35 = 11011101

 AC + BR = 11111110 = -2 which is the result

 Comparing this algorithm with its signed magnitude

counterpart, it is much easier to add and subtract numbers.

For this reason most computers adopt this representation

over the more familiar signed-magnitude.

Er. Rolisha Sthapit20

Exercise

Perform

 (-65) + (50)

 (-30) + (-12)

 (20) + (34)

 (40) – (60)

 (-20) – (50)

Er. Rolisha Sthapit21

Multiplication Algorithms

Er. Rolisha Sthapit22

 Multiplication of two fixed-point binary numbers in

signed-magnitude representation is done with paper and

pencil by a process of successive shift and adds

operations.

 This process is best illustrated with a numerical example.

 The process consists of looking at successive bits of the

multiplier, least significant bit first. If the multiplier bit is

a 1, the multiplicand is copied down; otherwise, zeros are

copied down.

 The numbers copied down in successive lines are shifted

one position to the left from the previous number. Finally,

the numbers are added and their sum forms the product.

Er. Rolisha Sthapit23

MULTIPLICATION USING SIGNED MAGNITUDE

DATA

 Hardware Implementation

Er. Rolisha Sthapit24

 The hardware for multiplication consists of the equipment

shown in Fig. As and Bs stores sign bit and these registers

together with registers A and B are shown in Fig.

 The multiplier is stored in the Q register and its sign in Qs.

The sequence counter SC is initially set to a number equal

to the number of bits in the multiplier. The counter is

decremented by 1 after forming each partial product.

When the content of the counter reaches zero, the product

is formed and the process stops.

Er. Rolisha Sthapit25

 Hardware Algorithm

Er. Rolisha Sthapit26

 Figure above is a flowchart of the hardware multiply
algorithm. Initially, the multiplicand is in B and the
multiplier in Q. Their corresponding signs are in Bs and
Qs, respectively. The signs are compared, and both A and
Q are set to correspond to the sign of the product since a
double-length product will be stored in registers A and Q.
Registers A and E are cleared and the sequence counter SC
is set to a number equal to the number of bits of the
multiplier. We are assuming here that operands are
transferred to registers from a memory unit that has words
of n bits. Since an operand must be stored with its sign,
one bit of the word will be occupied by the sign and the
magnitude will consist of n - 1 bits.

Er. Rolisha Sthapit27

 After the initialization, the low-order bit of the multiplier
in Qn is tested. If it is a 1, the multiplicand in B is added to
the present partial product in A. If it is a 0, nothing is
done. Register EAQ is then shifted once to the right to
form the new partial product. The sequence counter is
decremented by 1 and its new value checked. If it is not
equal to zero, the process is repeated and a new partial
product is formed. The process stops when SC = 0. Note
that the partial product formed in A is shifted into Q one
bit at a time and eventually replaces the multiplier. The
final product is available in both A and Q, with A holding
the most significant bits and Q holding the least
significant bits.

Er. Rolisha Sthapit28

EXAMPLE MULTIPLY 23*19 B=23 Q=19

Er. Rolisha Sthapit29

ASSIGNMENT

USING SIGNED MAGNITUDE MULTIPLICATION,

MULTIPLY THE FOLLOWING

 17*-13

 -13*10

 22*25

 10*-20

Er. Rolisha Sthapit30

MULTIPLICATION USING SIGNED 2’S

COMPLEMENT DATA (BOOTH’S ALGORITHM)

 This algorithm gives a method for multiplying binary

integers in signed 2’s complement representation. As in

other algorithm, Booth algorithm requires examination of

the multiplier bits and shifting of the partial product.

Before shifting, the multiplicand may be added to the

partial product, subtracted from the partial product or left

unchanged according to the following rules:

1. The multiplicand is subtracted from the partial product

upon encountering the first least significant are in a string of

1’s in a multiplier.

Er. Rolisha Sthapit31

2. The multiplicand is added to the partial product upon

encountering the first zero (provided that there was a

previous 1) in a string of 0’s in the multiplier.

3. The partial product doesn’t change when the multiplier bit

is identical to the previous multiplier bit.

Er. Rolisha Sthapit32

 Hardware Implementation

Er. Rolisha Sthapit33

 For hardware implementation it requires the configuration

as shown in figure. It consists o AC, BR and QR register

to store partial product, multiplicand and multiplier

respectively. Qn designates LSB of multiplier in register

QR.

 An extra flipflop Qn+1 is appended to QR to facilitate the

storage of previous LSB.

Er. Rolisha Sthapit34

 Hardware Algorithm

Er. Rolisha Sthapit35

 Multiplicand is in BR and multiplier is in QR. AC and the

appended bit Qn+1 are initially cleared to zero and the SC

is set to a number equal to a number of bits in the

multiplier. The two bits in the multiplier Qn Qn+1 are

determined. This is arithmetic shift right which shifts AC

and QR to the right and leaves the sign bit in AC

unchanged. The final product appears in AC and QR. The

final value of Qn+1 is the original sign bit of the multiplier

and shouldn’t be taken as part of the product.

Er. Rolisha Sthapit36

MULTIPLY -9*-13 using BOOTH Algorithm

Er. Rolisha Sthapit37

EXERCISE

Multiply following using Booth Algorithm:

 -7*19

 -100*200

 -25*-24

Er. Rolisha Sthapit38

Division of Signed magnitude Data

 Division of two fixed-point binary numbers in signed-

magnitude representation is done with paper and pencil by

a process of successive compare, shift, and subtract

operations.

 Binary division is simpler than decimal division because

the quotient digits are either 0 or 1 and there is no need to

estimate how many times the dividend or partial

remainder fits into the divisor. The division process is

illustrated by a numerical example in Fig.

Er. Rolisha Sthapit39

Er. Rolisha Sthapit40

 The divisor B consists of five bits and the dividend A, of ten
bits. The five most significant bits of the dividend are
compared with the divisor.

 Since the 5-bit number is smaller than B, we try again by
taking the six most significant bits of A and compare this
number with B. The 6-bit number is greater than B, so we place
a 1 for the quotient bit in the sixth position above the dividend.
The divisor is then shifted once to the right and subtracted from
the dividend.

 The difference is called a partial remainder because the
division could have stopped here to obtain a quotient of 1 and a
remainder equal to the partial remainder. The process is
continued by comparing a partial remainder with the divisor. If
the partial remainder is greater than or equal to the divisor, the
quotient bit is equal to 1.

Er. Rolisha Sthapit41

 The divisor is then shifted right and subtracted from the

partial remainder. If the partial remainder is smaller than

the divisor, the quotient bit is 0 and no subtraction is

needed. The divisor is shifted once to the right in any case.

Note that the result gives both a quotient and a remainder.

Er. Rolisha Sthapit42

Er. Rolisha Sthapit43

Hardware Implementation for Signed-Magnitude Data

 When the division is implemented in a digital computer, it is
convenient to change the process slightly. Instead of shifting
the divisor to the right, the dividend, or partial remainder, is
shifted to the left, thus leaving the two numbers in the required
relative position.

 Subtraction may be achieved by adding A to the 2's
complement of B. The information about the relative
magnitudes is then available from the end-carry. The hardware
for implementing the division operation is identical to that
required for multiplication. Register EAQ is now shifted to the
left with 0 inserted into Qn and the previous value of E lost.
The numerical example is repeated in Fig. to clarify the
proposed division process.

Er. Rolisha Sthapit44

Restoring Method

 The hardware method just described is called the restoring

method. The reason for this name is that the partial

remainder is restored by adding the divisor to the negative

difference.

Er. Rolisha Sthapit45

Er. Rolisha Sthapit46

Note:

A<0 means to check the

MSB 1 or 0.

MSB 1 represents negative

number.

Ie. If MSB of A is 1 then yes

condition

If MSB is 0 then No

condition

Divide 10 by 3 i.e. Dividend(Q)=10 and Divisor

(B)=3

Er. Rolisha Sthapit47

Note A register and

Divisor is always n+1 ie

no. bits in Q+1

Non- Restoring Method

Er. Rolisha Sthapit48

Divide 10 by 3 i.e. Dividend(Q)=11 and Divisor

(B/M)=3

Er. Rolisha Sthapit49

Comparison and Non-Restoring Method

 Two other methods are available for dividing numbers, the

comparison method (restoring method) and the non-restoring

method. In the comparison method A and B are compared prior

to the subtraction operation.

 Then if A ≥ B, B is subtracted from A. If A < B nothing is done.

The partial remainder is shifted left and the numbers are

compared again.

 The comparison can be determined prior to the subtraction by

inspecting the end-carry out of the parallel-adder prior to its

transfer to register E. In the non-restoring method, B is not

added if the difference is negative but instead, the negative

difference is shifted left and then B is added.

Er. Rolisha Sthapit50

 In restoring the operations performed are A - B + B; that

is, B is subtracted and then added to restore A. The next

time around the loop, this number is shifted left (or

multiplied by 2) and B subtracted again. This gives 2(A -

B + B) - B = 2A - B.

 This result is obtained in the non-restoring method by

leaving A - B as is. The next time around the loop, the

number is shifted left and B added to give 2(A - B) + B =

2A - B, which is the same as before.

Er. Rolisha Sthapit51

 Thus, in the non-restoring method, B is subtracted if the

previous value of Qn was a 1, but B is added if the

previous value of Qn was a 0 and no restoring of the

partial remainder is required.

 This process saves the step of adding the divisor if A is

less than B, but it requires special control logic to

remember the previous result. The first time the dividend

is shifted, B must be subtracted. Also, if the last bit of the

quotient is 0, the partial remainder must be restored to

obtain the correct final remainder.

Er. Rolisha Sthapit52

	Slide 1: CHAPTER 6 COMPUTER ARITHMETIC BIM 3rd semester
	Slide 2
	Slide 3: INTRODUCTION
	Slide 4: ADDITION AND SUBTRACTION WITH SIGNED MAGNITUDE DATA
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: EXAMPLE
	Slide 15: Exercise
	Slide 16: Addition and Subtraction with Signed 2’s Complement Data
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Example:
	Slide 21: Exercise
	Slide 22: Multiplication Algorithms
	Slide 23
	Slide 24: MULTIPLICATION USING SIGNED MAGNITUDE DATA
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: EXAMPLE MULTIPLY 23*19 B=23 Q=19
	Slide 30: ASSIGNMENT
	Slide 31: MULTIPLICATION USING SIGNED 2’S COMPLEMENT DATA (BOOTH’S ALGORITHM)
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: MULTIPLY -9*-13 using BOOTH Algorithm
	Slide 38: EXERCISE
	Slide 39: Division of Signed magnitude Data
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Restoring Method
	Slide 46
	Slide 47: Divide 10 by 3 i.e. Dividend(Q)=10 and Divisor (B)=3
	Slide 48: Non- Restoring Method
	Slide 49: Divide 10 by 3 i.e. Dividend(Q)=11 and Divisor (B/M)=3
	Slide 50: Comparison and Non-Restoring Method
	Slide 51
	Slide 52

