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Addition and Subtraction with Signed Magnitude Data, 

Addition and Subtraction with Signed 2’s Complement Data

Multiplication of Signed Magnitude Data, Booth 

Multiplication, 

Division of Signed magnitude Data: Restoring and Non-

Restoring

Er. Rolisha Sthapit2



INTRODUCTION

 Computer Arithmetic includes the arithmetic operation 

like addition, subtraction, multiplication and division. 

 These operations are performed usually in signed 2’s 

complement.

 However, the processing can be preceded with signed 

magnitude, signed 1’s complement and signed 2’s 

complement.

 For every process, we design a hardware and analyze the 

corresponding algorithm used.
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ADDITION AND SUBTRACTION WITH SIGNED 

MAGNITUDE DATA

 In this process, we designate the magnitude of two 

numbers by A and B.

 When two signed numbers A and B are added and 

subtracted, we find 8 different conditions to consider as 

described in following table: 
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 Hardware Implementation
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 To implement the two arithmetic operations with 

hardware, we have to store numbers into two register A 

and B. 

 Let As and Bs be two flip-flops that holds corresponding 

signs. 

 The result is transferred to A and As. A and As together 

form a accumulator.
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Block Diagram Description: 

 Hardware above consists of registers A and B and sign flip-

flops As  and Bs.

 Subtraction is done by adding A to the 2’s complement of B. 

 Output carry is transferred to flip-flop E, where it can be 

checked to determine the relative magnitude of two numbers.

  Add-overflow flip-flop AVF holds overflow bit when A and B 

are added. Addition of A and B is done through the parallel 

adder.

 The sum (S) output of adder is applied to A again. 

 The complementer provides an output of B or B’ depending on 

mode input M. 
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 When M = 0, the output of B is transferred to the adder, 

the input carry is 0 and thus output of adder is A+B. 

 When M=1, 1’s complement of B is applied to the adder, 

input carry is 1 and output is S = A+B’+1 (i.e. A-B).
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Hardware 

 Algorithm



 The flowchart for the hardware algorithm is shown above. 

 The two signs A, and B, are compared by an exclusive-OR 
gate. If the output of the gate is 0, the signs are identical; 
if it is 1, the signs are different. 

 For an add operation, identical signs dictate that the 
magnitudes be added. 

 For a subtract operation, different signs dictate that the 
magnitudes be added. The magnitudes are added with a 
microoperation E A     A + B, where EA is a register that 
com-bines E and A. 

 The carry in E after the addition constitutes an overflow if 
it is equal to 1.
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 The value of E is transferred into the add-overflow flip-flop 

AVF. 

 The two magnitudes are subtracted if the signs are different for 

an add operation or identical for a subtract operation. 

 The magnitudes are subtracted by adding A to the 2's 

complement of B .

 No overflow can occur if the numbers are subtracted so AVF is 

cleared to 0.

  A 1in E indicates that A ≥ B and the number in A is the correct 

result. 

 If this number is zero, the sign A must be made positive to 

avoid a negative zero. A 0 in E indicates that A < B. 
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 For this case it is necessary to take the 2's complement of the 
value in A. This operation can be done with one microoperation 
A     A’ + 1. 

 However, we assume that the A register has circuits for 
microoperations complement and increment, so the 2's 
complement is obtained from these two microoperations.

 In other paths of the flowchart, the sign of the result is the same 
as the sign of A, so no change in A, is required. However, when 
A < B, the sign of the result is the complement of the original 
sign of A . It is then necessary to complement A, to obtain the 
correct sign. The final result is found in register A and its sign 
in As. The value in AVF provides an overflow indication. The 
final value of E is immaterial.
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EXAMPLE

Perform 45 + (-23) 

 Operation is add 

 45 = 00101101 

 -23 = 10010111 

 As = 0 A=0101101 

 Bs = 1 B=0010111 

 As      Bs =1 

 EA=A + B’ + 1 = 0101101 + 1101000 +1 = 10010110 

 AVF=0 

 => E=1 A= 0010110 

 Result is AsA= 0 0010110 
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Exercise 

Perform 

 (-65) + (50)

 (-30) + (-12)

 (20) + (34)

 (40) – (60)

 (-20) – (50) 
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Addition and Subtraction with Signed 2’s 

Complement Data

 The addition of two numbers in signed 2’s complement 

form consists of adding the numbers with signed bit 

treated the same as the other bits of numbers.

 A carry out of the sign bits position is discarded. The 

subtraction consists of the first taking the 2’s complement 

of the subtrahend and then adding it to minuend.
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 Hardware Implementation
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 Hardware Algorithm
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Example: 

  Perform 33 + (-35) 

 AC = 33 = 00100001 

 BR = -35 = 2’s complement of 35  = 11011101 

 AC + BR = 11111110 = -2 which is the result 

 Comparing this algorithm with its signed magnitude 

counterpart, it is much easier to add and subtract numbers. 

For this reason most computers adopt this representation 

over the more familiar signed-magnitude.
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Exercise 

Perform 

 (-65) + (50)

 (-30) + (-12)

 (20) + (34)

 (40) – (60)

 (-20) – (50) 
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Multiplication Algorithms
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 Multiplication of two fixed-point binary numbers in 

signed-magnitude representation is done with paper and 

pencil by a process of successive shift and adds 

operations. 

 This process is best illustrated with a numerical example.



 The process consists of looking at successive bits of the 

multiplier, least significant bit first. If the multiplier bit is 

a 1, the multiplicand is copied down; otherwise, zeros are 

copied down. 

 The numbers copied down in successive lines are shifted 

one position to the left from the previous number. Finally, 

the numbers are added and their sum forms the product.
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MULTIPLICATION USING SIGNED MAGNITUDE 

DATA

 Hardware Implementation
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 The hardware for multiplication consists of the equipment 

shown in Fig. As and Bs stores sign bit and these registers 

together with registers A and B are shown in Fig. 

 The multiplier is stored in the Q register and its sign in Qs. 

The sequence counter SC is initially set to a number equal 

to the number of bits in the multiplier. The counter is 

decremented by 1 after forming each partial product. 

When the content of the counter reaches zero, the product 

is formed and the process stops.
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 Hardware Algorithm
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 Figure above is a flowchart of the hardware multiply 
algorithm. Initially, the multiplicand is in B and the 
multiplier in Q. Their corresponding signs are in Bs and 
Qs, respectively. The signs are compared, and both A and 
Q are set to correspond to the sign of the product since a 
double-length product will be stored in registers A and Q. 
Registers A and E are cleared and the sequence counter SC 
is set to a number equal to the number of bits of the 
multiplier. We are assuming here that operands are 
transferred to registers from a memory unit that has words 
of n bits. Since an operand must be stored with its sign, 
one bit of the word will be occupied by the sign and the 
magnitude will consist of n - 1 bits.
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 After the initialization, the low-order bit of the multiplier 
in Qn is tested. If it is a 1, the multiplicand in B is added to 
the present partial product in A. If it is a 0, nothing is 
done. Register EAQ is then shifted once to the right to 
form the new partial product. The sequence counter is 
decremented by 1 and its new value checked. If it is not 
equal to zero, the process is repeated and a new partial 
product is formed. The process stops when SC = 0. Note 
that the partial product formed in A is shifted into Q one 
bit at a time and eventually replaces the multiplier. The 
final product is available in both A and Q, with A holding 
the most significant bits and Q holding the least 
significant bits.
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EXAMPLE MULTIPLY 23*19 B=23 Q=19
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ASSIGNMENT

USING SIGNED MAGNITUDE MULTIPLICATION, 

MULTIPLY THE FOLLOWING

 17*-13

 -13*10

 22*25

 10*-20
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MULTIPLICATION USING SIGNED 2’S 

COMPLEMENT DATA (BOOTH’S ALGORITHM)

 This algorithm gives a method for multiplying binary 

integers in signed 2’s complement representation. As in 

other algorithm, Booth algorithm requires examination of 

the multiplier bits and shifting of the partial product. 

Before shifting, the multiplicand may be added to the 

partial product, subtracted from the partial product or left 

unchanged according to the following rules:

1. The multiplicand is subtracted from the partial product 

upon encountering the first least significant are in a string of 

1’s in a multiplier.
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2. The multiplicand is added to the partial product upon 

encountering the first zero (provided that there was a 

previous 1) in a string of 0’s in the multiplier.

3. The partial product doesn’t change when the multiplier bit 

is identical to the previous multiplier bit.
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 Hardware Implementation
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 For hardware implementation it requires the configuration 

as shown in figure. It consists o AC, BR and QR register 

to store partial product, multiplicand and multiplier 

respectively. Qn  designates LSB of multiplier in register 

QR.

 An extra flipflop Qn+1 is appended to QR to facilitate the 

storage of previous LSB.
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 Hardware Algorithm
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 Multiplicand is in BR and multiplier is in QR. AC and the 

appended bit Qn+1 are initially cleared to zero and the SC 

is set to a number equal to a number of bits in the 

multiplier. The two bits in the multiplier Qn Qn+1 are 

determined. This is arithmetic shift right which shifts AC 

and QR to the right and leaves the sign bit in AC 

unchanged. The final product appears in AC and QR. The 

final value of Qn+1 is the original sign bit of the multiplier 

and shouldn’t be taken as part of the product.
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MULTIPLY -9*-13 using BOOTH Algorithm
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EXERCISE

Multiply following using Booth Algorithm:

 -7*19

 -100*200

 -25*-24
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Division of Signed magnitude Data

 Division of two fixed-point binary numbers in signed-

magnitude representation is done with paper and pencil by 

a process of successive compare, shift, and subtract 

operations. 

 Binary division is simpler than decimal division because 

the quotient digits are either 0 or 1 and there is no need to 

estimate how many times the dividend or partial 

remainder fits into the divisor. The division process is 

illustrated by a numerical example in Fig.
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 The divisor B consists of five bits and the dividend A, of ten 
bits. The five most significant bits of the dividend are 
compared with the divisor. 

 Since the 5-bit number is smaller than B, we try again by 
taking the six most significant bits of A and compare this 
number with B. The 6-bit number is greater than B, so we place 
a 1 for the quotient bit in the sixth position above the dividend. 
The divisor is then shifted once to the right and subtracted from 
the dividend. 

 The difference is called a partial remainder because the 
division could have stopped here to obtain a quotient of 1 and a 
remainder equal to the partial remainder. The process is 
continued by comparing a partial remainder with the divisor. If 
the partial remainder is greater than or equal to the divisor, the 
quotient bit is equal to 1. 
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 The divisor is then shifted right and subtracted from the 

partial remainder. If the partial remainder is smaller than 

the divisor, the quotient bit is 0 and no subtraction is 

needed. The divisor is shifted once to the right in any case. 

Note that the result gives both a quotient and a remainder.
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Hardware Implementation for Signed-Magnitude Data

 When the division is implemented in a digital computer, it is 
convenient to change the process slightly. Instead of shifting 
the divisor to the right, the dividend, or partial remainder, is 
shifted to the left, thus leaving the two numbers in the required 
relative position. 

 Subtraction may be achieved by adding A to the 2's 
complement of B. The information about the relative 
magnitudes is then available from the end-carry. The hardware 
for implementing the division operation is identical to that 
required for multiplication. Register EAQ is now shifted to the 
left with 0 inserted into Qn and the previous value of E lost. 
The numerical example is repeated in Fig. to clarify the 
proposed division process.
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Restoring Method

 The hardware method just described is called the restoring 

method. The reason for this name is that the partial 

remainder is restored by adding the divisor to the negative 

difference.
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Note:

A<0 means to check the 

MSB 1 or 0.

MSB 1 represents negative 

number.

Ie. If MSB of A is 1 then yes 

condition

If MSB is 0 then No 

condition



Divide 10 by 3 i.e. Dividend(Q)=10 and Divisor 

(B)=3
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Note A register and 

Divisor is always n+1 ie 

no. bits in Q+1



Non- Restoring Method
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Divide 10 by 3 i.e. Dividend(Q)=11 and Divisor 

(B/M)=3
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Comparison and Non-Restoring Method

 Two other methods are available for dividing numbers, the 

comparison method (restoring method) and the non-restoring 

method. In the comparison method A and B are compared prior 

to the subtraction operation. 

 Then if A ≥ B, B is subtracted from A. If A < B nothing is done. 

The partial remainder is shifted left and the numbers are 

compared again. 

 The comparison can be determined prior to the subtraction by 

inspecting the end-carry out of the parallel-adder prior to its 

transfer to register E. In the non-restoring method, B is not 

added if the difference is negative but instead, the negative 

difference is shifted left and then B is added.
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 In restoring the operations performed are A - B + B; that 

is, B is subtracted and then added to restore A. The next 

time around the loop, this number is shifted left (or 

multiplied by 2) and B subtracted again. This gives 2(A - 

B + B) - B = 2A - B. 

 This result is obtained in the non-restoring method by 

leaving A - B as is. The next time around the loop, the 

number is shifted left and B added to give 2(A - B) + B = 

2A - B, which is the same as before.
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 Thus, in the non-restoring method, B is subtracted if the 

previous value of Qn was a 1, but B is added if the 

previous value of Qn was a 0 and no restoring of the 

partial remainder is required. 

 This process saves the step of adding the divisor if A is 

less than B, but it requires special control logic to 

remember the previous result. The first time the dividend 

is shifted, B must be subtracted. Also, if the last bit of the 

quotient is 0, the partial remainder must be restored to 

obtain the correct final remainder.
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