
BIM 3rd

CHAPTER 5

PIPELINING (LH-4)
Rolisha Sthapit

Er.Rolisha Sthapit

CONETNTS

Parallel Processing, Flynn’s Classification of Computers

Pipelining

Arithmetic Pipeline

Instruction Pipeline

Er.Rolisha Sthapit

Parallel Processing, Flynn’s Classification of
Computers
Parallel Processing:

• Parallel processing is a term used to denote a large class of techniques that are used to
provide simultaneously data processing task for the purpose of increasing the
computational speed of computer system. It is also used to speed up the computer
processing capability and increase its throughput (the amount of task those are
completed during given interval of time). It is called parallel computing. The system
may have two or more ALUs and be able to execute two or more instructions at the same
time. It can be viewed from various levels of complexity. At the lowest level, we
distinguish between parallel and serial operations by the type of registers used. At higher
level, it can be achieved by having multiple functional unit that perform identical or
different operations simultaneously.

There are variety of ways that parallel processing can be classified:

1. Internal organization of the processor

2. Interconnection structure between processors

3. The flow of information through the system.

Er.Rolisha Sthapit

Er.Rolisha Sthapit

Flynn’s Classification of Computers:

• There are four groups of computers according to the M.J.Flynn’s classification based on
the number of concurrent instruction and data streams manipulated by the computer
system.

• The normal operation of a computer is to fetch instructions from memory and execute
them in processor.

• The sequence of instructions read from memory constitutes an instruction stream.

• The operations performed on the data in the processor constitute a data stream.

• Parallel processing may occur in the instruction stream, in the data stream, or in both.

• The Flynn’s classification of computer are:
• single instruction stream, single data stream (SISD)
• single instruction stream, multiple data stream (SIMD)
• multiple instruction stream, single data stream (MISD)
• multiple instruction stream, multiple data stream (MIMD)

Er.Rolisha Sthapit

1. Single instruction stream, single data stream
(SISD):

• Represents the organization of a single computer
containing a control unit, processor unit and a
memory unit.

• Instructions are executed sequentially and the
system may or may not have internal parallel
processing capabilities.

• Parallel processing may be achieved by means of
multiple functional units or by pipeline
processing.

Er.Rolisha Sthapit

2. Single instruction stream, multiple data stream
(SIMD):

• Represents the organization that includes many
processing units under the supervision of a
common control unit.

• All processors receives the same instruction
from the control unit but operate on different
items of a data.

• The shared memory unit must contain multiple
modules so that it can communicate with all the
processors simultaneously.

• Application of SIMD is vector and array
processing.

Er.Rolisha Sthapit

3. Multiple instruction stream, single
data stream (MISD):

• MISD has many functional units which
perform different operations on the
same data. It is a theoretical model of
computer since no practical system has
been constructed using this
organization.

4. Multiple instruction stream, multiple
data stream (MIMD):

• MIMD refers to a computer system
capable of processing several
programs at the same time. Eg:
multiprocessor and multicomputer
system.

Er.Rolisha Sthapit

Pipelining

• Pipelining is a technique of decomposing a sequential process into
sub operations, with each sub process being executed in a special
dedicated segment that operates concurrently with all other
segments.

• Each segment performs partial processing dictated by the way the
task partitioned.

• The result obtained from the computation in each segment is
transferred to the next segment in the pipeline. The final result is
obtained after the data have passed through all segments.

• It is characteristic of pipelines that several computations can be in
progress in distinct segments at the same time.

Er.Rolisha Sthapit

Example

Suppose we want to perform the combined multiply and add
operations with a stream of numbers.

Eg: Ai*Bi + Ci for i=1,2,…..7

Each suboperation is to be implemented in a segment with a pipeline

 R1 Ai, R2 Bi Input Ai and Bi

 R3 R1*R2, R4 Ci Multiply and input Ci

 R5 R3+R4 Add Ci to product

Er.Rolisha Sthapit

Er.Rolisha Sthapit

General Considerations:

 Any operation that can be decomposed into a sequence of
suboperations of about the same complexity can be implemented by a
pipeline processor. The technique is efficient for those applications
that need to repeat the same task many times with different sets of
data. The general structure of a 4 segment pipeline is given below:

Er.Rolisha Sthapit

The operands pass through all four segments in a fixed sequence. Each
sequence consists of a combination circuit Si that performs a
suboperation over the data stream flowing through the pipe. The
segments are separated by register Ri that hold the intermediate
results between the stages.

 A task is defined as the total operation performed going through
all the segments in the pipeline. The behavior of a pipeline can be
illustrated with a space-time diagram. It shows the segment utilization
as a function of time. The space-time diagram of a 4 segment pipeline
is given below:

Er.Rolisha Sthapit

Figure: Space time diagram of 4 segment and
6 tasks

Er.Rolisha Sthapit

Assignment:
Draw the space time diagram for a 6 segment pipeline showing the time it takes to process 8 tasks.

Speedup Equation:

• Consider a K-segment pipeline with a clock cycle time tp to execute n tasks.
The first task T1 require time Ktp to complete. The remaining (n-1) tasks
finish at the rate of one task per clock cycle and will be completed after
time (n-1) tp. Therefore, to complete n task, using a K-segment pipeline
requires K+(n-1) clock cycles. The total time to complete the n task is [Ktp +
(n - 1) tp] = (K + n - 1) tp.

Example:

Segment (K) = 4

Task (n) = 6

Then, total clock cycle = K+(n-1)= 4+(6-1) = 9

Er.Rolisha Sthapit

• Consider a non–pipeline unit that performs the same operation and
takes tn time to complete each task. The total time required for n
tasks would be ntn.

 The speedup of pipeline processing over an equivalent non–
pipeline processing is defined by the ratio:

Speedup (S)=
𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑏𝑦 𝑛𝑜𝑛−𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑛 𝑡𝑎𝑘𝑠

𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑏𝑦 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑛 𝑡𝑎𝑘𝑠

 S =
ntn

(K + n − 1) tp

Er.Rolisha Sthapit

As number of tasks increases, n becomes much larger than K - 1, the
Speedup becomes:

 S =
tn

tp

If we assume that the time it takes to process a task is same in the
pipeline and non-pipeline circuits then tn = Ktp Then the speed up
reduces to

 S =
Ktp

tp
= K

This shows that the theoretical maximum speed that a pipeline can
provide is K where K is the number of the segments in the pipeline.

Er.Rolisha Sthapit

Numerical

1. A non-pipeline system has 50 nanosecond time to process a task. The same task
can be processed in a 6 segment pipeline with a clock cycle of 10 nanosecond.
Determine the speed ratio of the pipeline for 100 task. What is the maximum
speed that can be achieved.

Solution:

tn = 50 ns

Segment (K) = 6

tp = 10 ns

Task (n)= 100

S =
𝑛𝑡𝑛

𝐾+𝑛−1 𝑡𝑝
 =

100∗50

6+100−1 ∗10
 = 4.76

For maximum speed up

S =
Ktp

tp
 = K = 6

Er.Rolisha Sthapit

2. Calculate pipeline speedup if time taken to complete a task in
conventional machine is 25 ns. In the pipeline machine, one task is
divided into 5 segments and each sub operation tasks take 4 ns.
Number of tasks to be completed is 100. [Ans: 6.01]

3. Calculate the speed up rate of 5-segment pipeline with a clock cycle
time 25ns to execute 100 tasks. [Ans=4.8] [tn=Ktp = 5*25 = 125]

4. Consider a 5 segment pipeline where each segment takes three clock
cycle and the clock cycle time is 5 ns. If 100 jobs are to be executed
then calculate the pipeline speed up.

Solution: K=5 , tp=3*5=15

tn= Ktp= 5*15= 75

n = 100

Er.Rolisha Sthapit

5. A non–pipeline system takes 100 ns to process a task. The same task can be
processed in a six-segment pipeline with time delay of each segment in the pipeline
is as follows; 20 ns, 25 ns, 30 ns. Determine the speed of ratio of pipeline for 100
tasks. [Ans:3.17]

Solution,

tn = 100 ns

K = 6

tp = 30 ns

n = 100

S =
𝑛𝑡𝑛

𝐾+𝑛−1 𝑡𝑝

Er.Rolisha Sthapit

6. Suppose that time delays of four segments are t1 = 60ns, t2 = 70 ns, t3 = 100 ns,
t4 = 80 ns and interface register have a delay of 10 ns. Determine the speed up ratio.

Solution: Here,

tp = 100 + 10 = 110 ns

tn = t1 + t2 + t3 + t4 +tr=60+70+100+80+10 = 320 ns

S=
𝑡𝑛

𝑡𝑝
 = 320/110 = 2.9

Er.Rolisha Sthapit

Arithmetic Pipeline

Pipeline arithmetic units are usually found in very high speed
computers. They are used to implement floating point operations,
multiplication of fixed point numbers, and similar computations encountered
in scientific problems.

 We will now show an example of a pipeline unit for floating point
addition and subtraction. The inputs to the floating point adder pipeline are
two normalized floating point binary numbers.

 X=A x 2a

 Y=B x 2b

 The floating point addition and subtraction can be performed in four
segments, as shown in figure. The registers labeled R are placed between the
segments to store intermediate results.

Er.Rolisha Sthapit

The suboperations that are performed in the four segments are:

i. Compare the exponents.

ii. Align the mantissas.

iii. Add or subtract the mantissas.

iv. Normalize the result.

• Procedure: The exponents are compared by subtracting them to determine their difference. The
larger exponent is chosen as the exponent of the result. The exponent difference determines how
many times the mantissa associated with the smaller exponent must be shifted to the right. This
produces an alignment of the two mantissas. It should be noted that the shift must be designed as a
combinational circuit to reduce the shift time. The two mantissas are added or subtracted in
segment 3. The result is normalized in segment 4. When an overflow occurs, the mantissa of the
sum or difference is shifted right and the exponent incremented by one. If an underflow occurs, the
number of leading zeros in the mantissa determines the number of left shifts in the mantissa and the
number that must be subtracted from the exponent.

Er.Rolisha Sthapit

For simplicity, we use decimal numbers, the two normalized floating-point
numbers:

 X = 0.9504 x 103

 Y = 0.8200 x 102

 The two exponents are subtracted in the first segment to obtain 3-2 = 1. The
larger exponent 3 is chosen as the exponent of the result. The next segment shifts
the mantissa of Y to the right to obtain

 X = 0.9504 x 103

 Y = 0.0820 x 103

 This aligns the two mantissas under the same exponent. The addition of the
two mantissas in segment 3 produces the sum

 Z = 1.0324 x 103

Er.Rolisha Sthapit

Er.Rolisha Sthapit

Instruction Pipeline

• Pipeline processing can not only occur in the data stream but in the
instruction stream as well.

• An instruction pipeline reads consecutive instructions from memory while
previous instructions are being executed in other segments. This causes the
instruction fetch and execute phases to overlap and perform simultaneous
operations. This technique is called instruction pipelining.

• Consider a computer with an instruction fetch unit and instruction execution
unit designed to provide 2 segment pipeline. The instruction fetch segment
can be implemented by a means of a first-in, first out(FIFO) buffer. This is
a type of unit that forms a queue rather than a stack.

Er.Rolisha Sthapit

• Computers with complex instructions require other phases in addition to the fetch
and execute to process an instruction completely. In the most general case, the
computer needs to process each instruction with the following sequence of steps:

i. Fetch the instruction from memory.

ii. Decode the instruction.

iii. Calculate the effective address.

iv. Fetch the operands from memory.

v. Execute the instruction.

vi. Store the result in the proper place.

There are certain difficulties that will prevent the instruction pipeline from
operating at its maximum rate. Different segments take different time to
operate on the incoming information.

Er.Rolisha Sthapit

• There are certain difficulties that will prevent the instruction pipeline from
operating at its maximum rate. Different segments may take different times to
operate on the incoming information. Some segments are skipped for certain
operations. For example, a register mode instruction does not need an effective
address calculation. Two or more segments may require memory access at the
same time, causing one segment to wait until another is finished with the memory.

Er.Rolisha Sthapit

Example: Four-segment Instruction Pipeline

Er.Rolisha Sthapit

• Assume that the decoding of the instruction can be contained with the calculation
of the effective address into 1 segment and the instruction execution and storing of
the result can be combined into 1 segment. Figure shows how the instruction
cycle on the CPU can be processed with a four segment pipeline. Therefore, upto
four sub operations in the instruction cycle can overlap and upto 4 different
instructions can be in progress of being processed at the same time.

• An instruction in the sequence may cause a branch out of normal sequence. In that
case, the pending operations in the last two segments are completed and all
information stored in the instruction buffer is deleted. The pipeline then restarts
from the new address stored in the program counter. Similarly, an interrupt request
will cause the pipeline to empty and start again from new address value.

Er.Rolisha Sthapit

• FI is the segment that fetches an instruction.

• DA is the segment that decodes the instruction and calculates the effective address.

• FO is the segment that fetches an operand.

• EX is the segment that executes the segment and stores the value.

Er.Rolisha Sthapit

Pipeline Hazards and its solution (Important)

In general, there are two major difficulties that cause the instruction pipeline to
deviate from its normal operation.

1. Resource Conflict (Structural Hazard): It is caused by access to memory by
two segments at the same time.

2. Data Dependency Conflict (Data Hazard): It arises when an instruction
depends on the previous instruction but the result is not yet available.

3. Branch Difficulties (Control Hazard): It arises from branch and other
instructions that changes the value of program counter.

Er.Rolisha Sthapit

Solutions:

1. Resource Conflict Solution : It can be resolved by using separate instruction
and data memory.

2. Data Dependency Solution: A collision occurred when an instruction cannot
proceed because the previous instructions did not complete certain operations. A
data dependency occurs when an instructions needs data and are not yet
available. Pipelined computers deal with such conflicts between data
dependencies in a variety of ways.

a. Hardware Interlocks: An interlock is a circuit that detects instructions whose
source operands are destinations of instructions farther up in the pipeline. This
approach maintains the program sequence by using hardware to insert the
required delays.

Er.Rolisha Sthapit

b. Operand Forwarding: It uses a special hardware to detect a conflict and then
avoid it by routing the data through special paths between pipeline segments.
This method requires additional hardware paths through multiplexer as well as
the circuit that detects the conflict.

c. Delayed Load: The compiler for such computers is designed to detect a data
conflict and reorder the instructions necessary to delay the loading of the
conflicting data by inserting no-operation instructions.

Er.Rolisha Sthapit

3. Handling of branch instructions: One of the major problem in operating an
instruction pipeline is the occurrence of branch instruction. Pipelined computers
employ various hardware techniques to minimize the performance degradation
caused by instructions branching.

a. Prefetch Target Instructions: Both the branch target instruction & the
instruction following the branch are pre fetched and are saved until the branch
instruction is executed. If branching occurs then branch target instruction is
continuous.

b. Branch target buffer (BTB): A branch target buffer is an associative memory
included in fetch segment of the pipeline. Each entry in the BTB consists of the
address of previously executed branch instructions and the target instruction of
that branch. It also stores the next few instructions after the branch target
instruction. This way, the branch instructions that have occurred previously are
readily available in the pipeline without interruption.

Er.Rolisha Sthapit

c. Loop buffer: This is a small very high speed register file maintained by the
instruction fetch segment of the pipeline. When a program loop is detected, it is
stored in the loop buffer including all the branches. The program loop can be
executed directly without having access to memory.

d. Branch prediction: A pipeline with branch prediction uses some additional
logic to guess the outcome of a conditional branch instruction before it is
executed. The pipeline then begins prefetching the instruction stream from the
predicted path.

e. Delayed Branch: In this procedure, Compiler detects the branch instructions,
and re-arranges the machine language code by inserting useful instructions that
keep the pipeline operating without interruption. It is used in RISC processor.
Example: No operation instruction.

Er.Rolisha Sthapit

Vector Processing:

There is a class of computational problems that are beyond the capabilities of a

conventional computer. These problems characterized by the fact that they require a

vast number of computations that will take a conventional computer days or even

weeks to complete. In many science and engineering applications, the problems can

be formulated in terms of vectors and matrices that lend themselves to vector

processing.

Computers with vector processing capabilities are in demand in specialized

applications. The following are representative application areas where vector

processing is of the utmost importance.

Er.Rolisha Sthapit

1. Long-range weather forecasting

2. Petroleum explorations

3. Seismic data analysis

4. Medical diagnosis

5. Aerodynamics and space flight simulations

6. Artificial intelligence and expert systems

7. Mapping the human genome

8. Image processing

To achieve the required level of high performance, it is necessary to utilize the
fastest and most reliable hardware and apply innovative procedures from vector and
parallel processing techniques.

Er.Rolisha Sthapit

Vector Operation:

A vector is an order set of one dimensional array of data items. A vector V of length
‘n’ is represented as a row vector by V = [V1, V2, V3,…………………….., Vn]

Operation on vector must be broken down into single computation with subscripted
variables. The element V1 of the vector V is written as V (I) and the index ‘I’ refers
to a memory address or register where the numbers are stored.

For example program for adding two vectors A and B of length 100 to produce a
vector C is represented as:

 C(1:100)=A(1:100)+B(1:100)

This vector instruction includes the initial address of the operand, the length of the
vector and the operation to be performed in one composite instruction.

Er.Rolisha Sthapit

Matrix Multiplication:

The multiplication of two n*n matrices consists of 𝑛2 inner products or 𝑛3 multiply-

add operations. The multiplication of two 3*3 matrices is represented as:

Er.Rolisha Sthapit

The total no. of multiplication or condition required to complete the matrix

product is 27 (9*3).

The inner product consists of the sum of k products in terms of

Er.Rolisha Sthapit

Memory Interleaving

Pipeline and vector processor often require simultaneous access to memory from
two or more sources. An instruction pipeline may require the fetching of an
instruction and operand at the same time from two different segments. An arithmetic
pipeline usually requires two or more operands to enter the pipeline at the same
time. Instead of using two memory buses for simultaneous access, the memory can
be partitioned into a number of modules connected to a common memory address
and data buses. A memory module is a memory array together with its own array
and data registers.

Er.Rolisha Sthapit

Er.Rolisha Sthapit

Super Computers

A commercial computers with vector instructions and pipeline floating point
arithmetic operations is referred to as a super computer. It is a computer system best
known for its high computational speed, fast and large memory system and the
extensive use of parallel processing. They are limited in their use to a number of
scientific application such as weather forecasting and space research. Eg: Cray-1

Er.Rolisha Sthapit

Array Processing:
An array processor is a processor that performs computation on large array of data.
An attached array processor is an auxiliary processor attached to a general purpose
computer. SIMD array processor is a processor that has a single instruction multiple
data organization. It manipulates vector instruction by means of multiple functional
unit responding through a common instructions.

1. Attached Array Processor:

 It is designed as a peripheral of conventional host computer and its purpose
is to enhance the performance of the computer by providing vector processing for
complex scientific application. It achieves high performance by means of parallel
processing with multiple functional units.

 Figure shows the interconnection of an attached array processor to a host
computer. The host computer is a general purpose computer and the attached
processor is a backend machine driven by the host computer. The array processor is
connected through an input-output controller to the computer and the computer
treats like an external interface.

Er.Rolisha Sthapit

The data for the attached processor are transferred from a main memory to a local
memory through a high speed bus. The general purpose computer without the
attached processor serves the user that needs conventional data processing and the
system with attached processor satisfies the need for complex arithmetic application.
The objective of the attached array processor is to provide vector manipulation
capabilities to a conventional computer.

Er.Rolisha Sthapit

2. SIMD Array Processor:

 It is a computer with multiple
processing unit operation in parallel. The
processing unit are synchronized to perform the
same operations under the control of a common
bus unit, providing SIMD organisation.

 It contains a set of identical processing
elements (PE). Each having a local memory M.
Each processing elements includes an ALU, a
floating point arithmetic unit and working
registers. The master control unit controls the
operation in the processor elements. The main
memory is used for the storage of the program.
Vector instructions are broadcasted to all PE’s
simultaneously.

Er.Rolisha Sthapit

Each PE has a flag that is set when the PE is active and reset when the PE

is inactive. This ensures that only those PE that need to participate are

active during the execution of the instruction. Eg: ILLIAC IV

Er.Rolisha Sthapit

	Slide 1: BIM 3rd CHAPTER 5
	Slide 2: CONETNTS
	Slide 3: Parallel Processing, Flynn’s Classification of Computers
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Pipelining
	Slide 10: Example
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Figure: Space time diagram of 4 segment and 6 tasks
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Numerical
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Arithmetic Pipeline
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Instruction Pipeline
	Slide 27
	Slide 28
	Slide 29: Example: Four-segment Instruction Pipeline
	Slide 30
	Slide 31
	Slide 32: Pipeline Hazards and its solution (Important)
	Slide 33: Solutions:
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Vector Processing:
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Memory Interleaving
	Slide 43
	Slide 44: Super Computers
	Slide 45: Array Processing:
	Slide 46
	Slide 47
	Slide 48

