Operating System
BIM IV Semester

Credits: 3
Lecture Hours:48

Er. Santosh Bhandari,
(Master Computer Science)

Unit-4

Memory Management:

' Introduction l

Definition: Method of managing primary memory.
Goal: Efficient organization of memory

-The task of subdividing the memory among different processes is
called Memory Management.

-Memory management is a method in the operating system to
manage operations between main memory and disk during
process execution.

' Introduction l

Why Memory Management is Required?

* To achieve a degree of multiprogramming and proper utilization
of memory, memory management is important.

* Allocate and de-allocate memory before and after process
execution.

* To keep track of used memory space by processes.

* To minimize fragmentation issues.

* To proper utilization of main memory.

 To maintain data integrity while executing of process.

-To achieve a degree of multiprogramming, we need to increase the

size of RAM

' Logical and Physical Address Space l

Logical Address Space:

-An address generated by the CPU is known as a “Logical Address”.
-It is also known as a Virtual address.

-Logical address space can be defined as the size of the process.
-A logical address can be changed.

Physical Address Space:

-An address seen by the memory unit (i.e. the one loaded into the
memory address register of the memory) is commonly known as a
“Physical Address”.

-A Physical address is also known as a Real address.

-The set of all physical addresses corresponding to these logical
addresses is known as Physical address space.

' Static and Dynamic Loading l

Loading a process into the main memory is done by a loader.
There are two different types of loading :

Static Loading: Static Loading is basically loading the entire
program into a fixed address. It requires more memory space.

Dynamic Loading: The entire program and all data of a process

must be in physical memory for the process to execute. So, the
size of a process is limited to the size of physical memory.

| Monoprogramming vs. Multi-programming l

Monoprogramming:

-only one program runs at a time.

-Memory contains only one program at a time
-CPU utilization is low

-Fixed-size partition is used.

E.g. Old mobile OS

| Monoprogramming vs. Multi-programming l

There are three different takes on the monoprogramming model.
Model 1 (Fig 1): The OS located at the bottom of the memory in RAM
Model 2 (Fig 2): OS located at the beginning of the memory that is

stored in ROM. N =P
. . system in ROM drivers in ROM
Model 3 (Fig 3): the device
drivers are located at the top T
. gram User
of the memory in a ROM, User Program
whereas the remaining il Sl
components of the system are Operating Operating
. system in RAM system in RAM
located below the device 0 0 0

- =
drivers in RAM). (1) (2) (3)

| Monoprogramming vs. Multi-programming l

e The first model is one that is utilized on mainframes and
minicomputers.

* The second model is implemented on a select number of
embedded systems and palmtop computers.

 The third model was the one that early personal computers like
MS-DOS used.

| Monoprogramming vs. Multi-programming l

Advantages of Monoprogramming:

Simplicity: Because they do not need to manage multiple
programs or allocate resources to different processes,
monoprogramming operating systems are relatively simple.

-The operating system has complete control over the computer's
resources because only one program runs at a time.

-This makes allocating resources and prioritizing tasks easier,
which can lead to improved performance and faster processing.
-Security: Because no other programs are running that could
interfere with the system or cause security breaches.

| Monoprogramming vs. Multi-programming l

Disadvantages of Monoprogramming:

-Monoprogramming operating systems can only run one program
at a time and have limited functionality.

-Wasted Resources: The computer's resources might not be fully
utilized because only one program is running at once.

-This may result in a waste of resources such as memory, CPU
cycles, and other resources.

Poor User Experience

| Monoprogramming vs. Multi-programming l

Multi-programming:

-The concurrent application of more than one program in the
main memory is known as multiprogramming.

-CPU is single

-The number of users is one at a time.

-The memory can hold several programs at a time.

-The resources are allocated to different programs.

Eg: Window

| Requirements of Memory Management System l

Memory management keeps track of the status of each memory
location, whether it is allocated or free.

-It allocates the memory dynamically to the programs at their
request and frees it for reuse when it is no longer needed.
Requirement for memory management:

1. Relocation

2. Protection

3. Sharing

4. Logical Organization

5. Physical organization

| Requirements of Memory Management System l

Relocation:

* The term program relocatability refers to the ability to load
and execute a given program into memory.

* Memory management technique in which the system stores
and retrieves data from secondary storage for use in main
memory is called paging.

* |n reality, the program may be loaded at different memory
locations, which are called physical addresses.

* Relocation is way to map virtual addresses into physical
addresses.

| Requirements of Memory Management System l

Types of relocation:

There are two types of relocation in memory management.

1. Static Relocation

Static relocation is performed before or during the loading of the
program into main memory, by a relocating linker/ loader.

2. Dynamic Relocation

-Mapping from the virtual address space to the physical address
space is performed at run-time.

-This runtime mapping from virtual address to physical address is
performed by a hardware device known as a memory management
unit.

| Requirements of Memory Management System l

Protection:

-Memory protection is a hardware mechanism that separates
different parts of memory and ensures that each process can only
access its own memory space.

-This prevents one process from accessing or modifying the
memory of another process, thereby protecting the system from
malware and other malicious attacks.

-The primary goal of safeguarding memory is to avert an
application from accessing RAM without permission.

| Requirements of Memory Management System l

Different Ways of Memory Protection

1. Segmentation

Memory is segmented into sections, every single one which can
have a separate set of access rights. An OS kernel segment, for
instance, might be read-only, whereas a user data segment could
have been designated as read-write.

2. Paged Virtual Memory
Memory is divided into pages in paged virtual memory, and each
page can be saved to its own place in physical memory.

| Requirements of Memory Management System l

3. Protection keys
Each RAM page has a set of bits called encryption keys.
Accessibility to the page can be controlled using these bits.

l Swapping l

-To increase CPU utilization in multiprogramming, a memory
management scheme known as swapping can be used.

-Swapping is the process of bringing a process into memory and
then temporarily copying it to the disc after it has run for a while.

-The purpose of swapping in an operating system is to access data
on a hard disc and move it to RAM

Swapping

Two types:

Swap-out: is a technique for
moving a process from RAM to the
hard disc.

Swap-in: is a method of
transferring a program from a hard
disc to main memory, or RAM.

|
bunesado

0RAS 138N

C wararum XaTi:,
sWappea Out

> [Drocess 1]

wapped In

[Process 2J

| Swapping l

Advantages

1. If there is low main memory so some processes may has to
wait for much long but by using swapping process do not have
to wait long for execution on CPU.

2. It utilize the main memory.

3. Using only single main memory, multiple process can be run by
CPU using swap partition.

4. The concept of virtual memory start from here and it utilize it
in better way.

5. This concept can be useful in priority based scheduling to
optimize the swapping process.

I Free space mcmagement |

Free space management is a critical aspect of operating systems as
it involves managing the available storage space on the hard disk
or other secondary storage devices.

OS uses various free space management techniques:

1. Bit-MAP
2. Linked List

I Bit-MAP I

* |tis data structure used in memory AN, o
allocation | ﬂj ﬂ\}?’ W’L}W.ﬂ_ i \l_”_& 92118
 With bitmap, memory is divided into T \ (i W\\ A\ \ (lei \ \ _
allocation units. | \k \ | . \\ \\ \\\ _\ \\ =
* Corresponding to each allocation unit there | | \ | \ \ i \\ \\ '
is a bit in a bitmap. Rk R
* Bitis Oif the unitis free (hole). | | \ \’\\‘ A \\ L
e Bitis 1if unitis occupied (process). “L@ 0 JlTL .&TQ 21001 \‘-\ I\

* |f a new process arrives, it searches for a
sequence of holes in a data structure.

* |fany process is completed then the process
becomes hole.

Linked List

—_—

-It is a non-contiguous /A Stest | End

allocation [P {100 |1ag j——-?\i"* e sl
-In this approach, the i L
free disk blocks are ~ heod e |2 00\3“;

linked together i.e. a
free block contains a
pointer to the next
free block.

Advantages:
-File size can increase

Disadvantage:
-Large seek time
-Direct access difficult

Linked List

free list head
Block Blocks» E-Im:kﬁh

g‘ Block?|, Block8 |Block9

Blockl0| Blockll BlocklZ2

Blockl3 Blockld»EBlockls

Blocklg

Figure - 2

| Memory management techniques l

1. Contiguous Memory Allocation
» Static portioning/Fix-size Partitioning Method
* Dynamic portioning/Variable Partitioning/Flexible Partitioning

2. Non-contiguous memory allocation
* Paging (Multilevel paging, inverted paging)
* Segmentation (Segmented paging)

Fixed-size partitioning:

-In fixed partitioning, the memory is divided into
fixed-size partitions, and each partition is
assigned to a process.

-Number of partitions are fixed

-Size of each partition may or may not be same
-Each process in this method of contiguous
memory allocation is given a fixed size
continuous block in the main memaory.

-In contiguous memory allocation spanning is not
allowed.

Spanning: divide the process into small parts and
store them in different memory partitions.

OS

L MG

DM8

BB

|6M8

0§

Fixed-size partitioning:

-If process P1 arrives and its size is 3 MB.
It fits into the first partition which size is 5
MB. Now 2 MB is a waste. Which is
internal fragmentation

-If the process size is larger than the
memory partition, then we can’t
accommodate it.

-If number of processes are greater than
the number of memory partitions, then
the process can’t accommodate.

Operating System

{

Fixed size
partition

N

lll

Process 1
(Size 3MB)

Process 2
(Size 1MB)

Process 3
(Size 4MB)

Main Memory

Input

Process Queue

Fixed-size partitioning:

Advantages

* This strategy is easy to employ because each block is the same
size.

* |tissimple to keep track of how many memory blocks are still
available, which determines how many further processes can be
allocated memory.

* This approach can be used in a system that requires
multiprogramming since numerous processes can be maintained
In memory at once.

Fixed-size partitioning:

Disadvantages:

* Internal fragmentation

* We won't be able to allocate space to a
process whose size exceeds the block
since the size of the blocks is fixed. gragmentation

* External Fragmentation: if we add all \
waste space (2+2+2), the total
available space will be 6MB in this
example. If new process arrives which
size is 6MB but we can’t store this
process. Which is external
fragmentation.

Operating System

Process 1(3MB)

Process 1(3MB)

Process 1(3MB)

Main Memory

on

on

n

S
W W

fixedsize
partitions

Dynamic or Variable or Flexible Partitioning

-It is a part of the Contiguous allocation technique.

-It is used to alleviate the problem faced by Fixed Partitioning.

Features:

* Initially, RAM is empty and partitions are made during the run-time
according to the process’s need instead of partitioning during
system configuration.

* The size of the partition will be equal to the incoming process.

* The partition size varies according to the need of the process.

* The number of partitions in RAM is not fixed and depends on the
number of incoming processes and the Main Memory’s size.

Dynamic or Variable or Flexible Partitioning

Advantages:

-There will be no unused space left in the partition.
-A process can be loaded until the memory is
empty.

-No Limitation on the size of the Process

-No internal fragmentation

Disadvantage:

-Difficult Implementation, since memory allocation
Is performed during run time.

-External fragmentation

Dynamic partitioning

Operating system

P1=2MB

P2=7MB

P3=1MB

P4=5MB

Empty space of RAM

Partition size = process size

Block size =2 MB

Block size =7 MB

Block size =1 MB

Block size =5 MB

S0, no internal Fragmentation

Dynamic or Variable or Flexible Partitioning

Disadvantage:

-External fragmentation: consider three
processes P1 (1 MB), P2 (3 MB) and P3 (1
MB) are being loaded in the respective
partitions of the main memory.

After some time P1 and P3 got completed
and their assigned space is freed.

Now there are two unused partitions (1 MB
and 1 MB) available but they cannot be
used to load a 2 MB process in the memory
since they are not contiguously located.

2 MB

4 MB

Operating
System

Process P2

5 MB Free

.| Process P2

(2 MB)

Process P4

3 MB Free

o Process P4

(4 MB)

partition for OS5

partition 1

partition 2

partition 3

partition 4

PS can't be loaded into memory
even though there is 8 MB space
available but not contiguous.

External Fragmentation in
Dynamic Partitioning

Process P1

Completed

Process P3

Completed

Process P5
(8 MB)

X

l Compaction technique l

-To remove this external fragmentation

we use the compaction technique. Hole process1
-Compaction is a technique to collect all

the free space together and all occupied Process1 om— Process?
space together. Free memory can be used :

to run other processes. s Hole
BUT.... Process2 Hole

This technique is not efficient, because we
need to stop the running process to bring
it together.

Contiguous memory allocation techniques: Algorithms

First-Fit: Allocate the first hole that is big

enough
Next fit: Same as first fit but start search always

from last allocated hole.

Best Fit: Allocate the smallest hole that is big
enough

Worst Fit: Allocate the largest hole.

> G P .
! .R\ - ’
.,.‘\
¥ x Y

‘ Lok

\r\‘\‘.n ~=1
RaROOBIOOSEXTE |

WOUK

Non Contiguous memory: Virtual memory

Paging:

. e ey P ., o
-In paging, process is divide in to equally (i7" g dmm
size block called pages and memory is . ;%2 Ml Sp-l68
divided into fixed-size blocks called B e Lome Sing= 28
frames, and pages are stored in to the Procoms Sp= Gig 48 9 | Noof frams- 168

Pliae L 2B

frame. & i ? "1 : S

.. : : S e
-We divide process in equal page size - 5u/@6‘28=® i LA

. . 28

and feet into to frame of the main M|
memory.

-Page size == frame size (Page size and
frame size must be the same)
-Each page is of the same size, and the size is a power of 2, such as 4KB or 8KB.

Non Contiguous memory: Virtual memory

-Paging removes External fragmentation:

e) T e

®

Ry
A i
[P [\
I = P)
= ")
d |

+— o >l

3N\
15,

Mapping

-The CPU always accesses the processes
through their logical addresses.
However, the main memory recognizes
physical addresses only.

-To map the CUP address (logical) and
main memory (physical address) it is
required to convert a logical address to a
physical address. Which is done by
MMU.

-Memory Management Unit (MMU),
maintains a page table

P(ﬁllﬂo v %405 %1,‘1“ :
é ?ﬂj B 0 NON\NOES VA
ENANERAN \EEJ
L”"—% j /| 1 I 2 \% 2 (\S‘{b\,g \ : . <‘—‘j’f> O/',
g NCEONN
MHO chNe N\ 1 N\
f')
I5R tat ¢ P Gl
O f2 +| 1y |5 |
\
| 1, M|

| Memory Management Unit (MMU) l

-CPU generates logical address 5t Memony Myt Usit Fraam.
-Logical address contains two fields B i C’;[J//r‘;’ '
[page no | page offset] e Tq 4 7®
-offset= size of page ‘ A ' - :PP'
-Actual data is stored in Main memory (CPU 2 K\/\ %”"’?'z-
which have different addresses. (T

|
-MMU converts logical address to) \
physical address so that CPU can k
access process in main memaory.
-MMU use page table to convert the
address.

Page table

-Page table contains frame
number. Which represents

where this page is present (" b s fe

. , \LT U 0 0D L& | ;0NN\ N SN

in the main memory. — RN N 1y - (68

-Every process will haveits =3 |+ ° s) . 28
\\L%L—J@ ® L ANVANN e

page table. L Procos Sig= 48 (7) Vo of P - 168

- i > (Puge Size= 2B SNV i

Page Table is a data gt 7 MLD B S - 3 fwe

structure used by the et N"@f’“é‘“/()l"ifg:@ N e

. 28 |

virtual memory system to | Ay M

store the mapping between
logical addresses and
physical addresses.

Page table Working

CRYED

31"5\(i’C|

(Poge ro=2

l./

-

7

_qk

Q) D -—

| Fyom

e L

| F yame B

T yam

c4 | —

Frame 5

Frame i

Tramg 3

Tyome &

tag

e Taole

(B

resess

| Page fault l

-If the CPU is demanding a specific page for execution. But this page
Is not available in the main memory, this is called a page fault.

-If the frame number is absent in the page table, this is called a trap.
-The page fault primarily causes an exception, which is used to
notify the operating system to retrieve the "pages" from virtual
memory to continue operation.

-Once all of the data has been placed into physical memory, the
program resumes normal operation.

-The Page fault process occurs in the background, and thus the user
IS unaware of it.

Handling Page fault

6 steps: By pacis one
1. Firstly, an internal table for this D_ E—
process to assess whether the opersin
reference was valid or invalid - o
memory access. ﬁ Eh. —_—

instruction

2. If the reference becomes invalid,
the system process would be
terminated. And it generates error
(trap) and sends to OS.

3. After that, the free-frame list finds
the free frame in the system.

bring in
missing page

physical memory

| Handling Page fault l

4. Now, the disk operation would be

: backing stare
scheduled to get the required page D_
from the disk. Operaing

5. When the I/O operation is o
completed, the process's page table
will be updated with a new frame
number, and the invalid bit will be
changed. Now, it is a valid page reset page
reference.

6. If any page fault is found, restart
these steps from starting.

| Page Fault Terminology l

There are various page fault terminologies in the operating system.

1. Page Hit: When the CPU attempts to obtain a needed page from main
memory and the page exists in main memory (RAM), it is referred to as a
"PAGE HIT".

2. Page Miss: If the needed page does not exist in the main memory (RAM),
it is known as "PAGE MISS".

3. Page Fault Time: The time it takes to get a page from secondary memory
and recover it from the main memory after loading the required page is
known as "PAGE FAULT TIME".

| Page Fault Terminology l

4. Hard Page Fault: If a required page exists in the hard disk's page file, it
is referred to as a "HARD PAGE FAULT".

5. Soft Page Fault: If a required page is not located on the hard disk but is
found somewhere else in memory, it is referred to as a "SOFT PAGE
FAULT".

| TLB (Translation Lookaside Buffer) l

Drawbacks of Paging:
1. Size of Page table can be very big and therefore it wastes main

memory.
2. CPU will take more time to read a single word from the main memory.

To solve this problem we use TBL

| TLB (Translation Lookaside Buffer) l

Translation look aside buffer (TLB)

-A Translation look aside buffer can be defined as a memory cache which
can be used to reduce the time taken to access the page table again and
again.

-It is a memory cache which is closer to the CPU and the time taken by
CPU to access TLB is lesser then that taken to access main memory.

-TLB is faster and smaller than the main memory but cheaper and bigger
than the register.

TLB (Translation Lookaside Buffer)

How TLB works:
-TLB contains page table entries tha
have been most recently used.

real address is formed.
-If a page table entry is not found in

the TLB (TLB miss), the page number|
is used as an index while processing

the page table.

t
=

-the processor examines the TLB if a
page table entry is present (TLB hit),
the frame number is retrieved and th

TLB Hit
.

>

Key

Accessing Main Memory

»

Page Table

N

Tag

TLB

TLE Miss

Page Table

Main Memory

TLB (Translation Lookaside Buffer)

TLB hit is a condition where the

desired entry is found in TLB. If this
happens then the CPU simply acces@

the actual location in the main
memory.

However, if the entry is not found in
TLB (TLB miss) then CPU has to acces:

TLB Hit
.

Key

Accessing Main Memory

page table in the main memory and |

then access the actual frame in the
main memory.

>

Tag
TLB

»

Page Table

N

TLE Miss

Page Table

Main Memory

1.
2.
3.

TLB (Translation Lookaside Buffer)
Steps in TLB hit

CPU generates a virtual (logical) address.

It is checked in TLB (present).

The corresponding frame number is retrieved, which now tells where the main
memory page lies.

Steps in TLB miss

1.
2.
3.
4. The corresponding frame number is retrieved, which now tells where the main

CPU generates a virtual (logical) address.
It is checked in TLB (not present).
Now the page number is matched to the page table residing in the main memory

memory page lies.
The TLB is updated with new PTE (if space is not there, one of the replacement
techniques comes into the picture i.e. either FIFO, LRU or MFU etc).

| TLB (Translation Lookaside Buffer) l

If the probability of TLB hit is P% (TLB hit rate) then the probability of TLB
miss (TLB miss rate) will be (1-P) %.

Therefore, the effective access time can be defined as;
EAT=P(t+m)+(1-p)(t+k.m+m)

Where, p - TLB hit rate, t - time taken to access TLB, m - time taken to
access main memory k = 1, if the single level paging has been implemented.

| TLB (Translation Lookaside Buffer) l

Numerical:
Consider a paging hardware with a TLB. Assume that the entire page table

and all the pages are in the physical memory. It takes 10 milliseconds to
search the TLB and 80 milliseconds to access the physical memory. If the TLB
hit ratio is 0.6, calculate the effective memory access time (in milliseconds).

Solution:

TLB hit ratio (p) = 0.6

Therefore, TLB miss ratio (1-p) =(1-0.6)= 0.4

Time taken to access TLB (t) = 10 ms

Time taken to access main memory (m) = 80 ms
EAT=P(t+m)+(1-p)(t+k.m+m)

Effective Access Time (EAT)=0.6(10+80)+0.4(10+1* 80+ 80)
=90 X0.6+0.4X170=122 (ms)

Page replacement algorithm

-A page replacement algorithm is needed to decide which page needs to be
replaced when a new page comes in.

-Page replacement becomes necessary when a page fault occurs and there
are no free page frames in memory.

There are three types of Page Replacement Algorithms.

1. Optimal Page Replacement Algorithm

2. First In First Out Page Replacement Algorithm

3. Least Recently Used (LRU) Page Replacement Algorithm

' FirstIn First Out (FIFO) l

In this algorithm, the operating system keeps track of all pages in the
memory in a queue, the oldest page is in the front of the queue. When a
page needs to be replaced page in the front of the queue is selected for

removal.

' FirstIn First Out (FIFO) l

Example 1: Consider page reference string 7,0, 1,2,0, 3, 0, 4, 2,3,0,3,1,2,0
with 3-page frames.

Find

a. Number of page faults

b. Number of page hits.

c. Hit ratio

d. Page fault ratio

Hit ratio = number of hit/total references*100
Page fault ratio = number fault/total references*100

' First In First Out (FIFO) l

A3 LI ke o |Z|3]|3]|318 |2z
2| |o|o|o |7 (2 |3 Z (2|2 |11]
e lFFF]2]2|2[Z]y [4[#o]e [O]o |0
TR X % T S X %X X ¥ % L kX)

/,0,1,2,0,3,0,4,2,3,0,3,1,2,0

a. Number of page faults = 12

b. Number of page hits. = 3

c. Hit ratio = (3/15)*100% = 20%

d. Page fault ratio = (12/15)*100% = 80%

Belady’s anomaly: First In First Out (FIFO)

Since we have increased the number of frames for the same reference. But
the number of page faults has increased. Which is not expected. This is
Blady’s anomaly. FIFO is suffering from this algorithm.

| Optimal Page Replacement Algorithm l

In this algorithm, pages are replaced that would not be used for the longest
duration of time in the future.

Key: Which is not used in the longest dimension in the future

Example:

Consider the page references 7,0, 1, 2,0, 3,0,4, 2,3,0,3,2,1,2,0,1,7,0,1
with 4-page frame. Find

1. Number of page faults,

2. Number of page hits,

3. Page fault rate,

4. Page fault probability.

| Optimal Page Replacement Algorithm l

Consider the page references 7,0, 1, 2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1
with 4-page frame.

1. Number of page faults,
2. Number of page hits,
3. Page fault rate,

4. Page fault probability.

I a |~ | —Talslol”
f,_' b2 2 |4 | 2 g e g |2 ?\,/\\nygll?iz—z&
{ 1 W T R e B QQWH}('(;!lflvr}/
3 \
{2, o lolo o |lofo |0 |o |O|ojo |o|2(0]0|° |90]°
ol F (717 (217133 [3 31333 [3[3[3[3[2F]]*
% X % ¥ AF X Pt % Wt PH Rk BE o % HE R X HeE R
—)
) : \§
‘?.S-fm -7; O
2 / y, l/ 2/,O/§/ (3/(:'\/3/ = g/jﬂg/%/;/ ;\/ 9,4‘\/3’/ /{|ﬂ

| Least Recently Used (LRU) Algorithm l

In this algorithm, the page will be replaced which is least recently used.
Key: page will be replaced which is least recently used.

Example-3: Consider the page reference string 7,0, 1, 2,0, 3,0, 4, 2, 3, 0, 3,
2,1,2,0,1,7,0,1 with 4-page frames. Find.

Number of page faults,
Number of page hits,
Page fault rate,

Page fault probability.

= W

Example-3: Consider the page reference string 7,0, 1, 2,0, 3,0, 4, 2, 3,0, 3,
2,1,2,0,1,7,0,1 with 4 page frames.
1. Number of page faults,

Least Recently Used (LRU) Algorithm

2. Number of page hits,
3. Page fault rate,
4. Page fault probability.
IR o 2 (2 (2 (2|22 (2|2
: o e L A ¢ L O O
. ODOOOOODDDOOOOWCiOOOO
77‘417533333333333&?74
¥ 3 * % R4 ¥ H x M+ H+ HE HE g o2 R R We ¥ HE W
V.Qvij—y'_-,:’-lo/ I <0 0472 303 2,\,2/0,, 3,0,
& ST B AN

—

| Second Change Page Replacement(SCP) l

* Second chance Page Replacement Algorithm is a modification of
FIFO algorithm.

* In this algorithm, a variable counter called the Reference bit (R) is
introduced

| Second Change Page Replacement(SCP) l

Consider the reference string:23215245325 2. With no. of
frames given as 3, find the no. of page faults and the page fault rate.

Page Fault Rate = Total Page fault / No. of pages in reference string (7/12)

SN |2 3 2 1 5 2 4 5 3 2 5 2
F3 1 1 1 4 4 4 2 2 2(1)
F2 3 3 3 5 5 5 5(1) |5(1) |5(0) ([5(1) [5(1)
F1 2 2 2(1) 12(1) [2(0) (2(1) |2(0) |2(0) |3 3 3 3
Page |F F H(sc) |F F H(sc) |F H(sc) |F F H(sc) |H(sc)
F/H

Total pf=7

Second Change Page Replacement(SCP)

Consider the reference string:23215245325 2. With no. of
frames given as 3, find the no. of page faults and the page fault rate.

-~ N b T 2 L5 2 <&

| Clock Page Replacement(SCP) l

Consider the reference string:1,2,3,4,3,1,2,1,5,1. With no. of frames
given as 3, find the no. of page faults and the page fault rate.

Clock Page Replacement(SCP)

Consider the reference string:0,4,1,4,2,4,3,4,2,4,0,4,1,4,2,4,3,4. With
no. of frames given as 3, find the no. of page faults and the page hit

rate. | Page sequence:041424342404142434

WS Clock Page Replacement(SCP)

Insert 2204 in the appropriate location in the following diagram.

Solution:
we replace 1213 with
2204

| Least Frequently Used (LFU) l

The following reference string: 7024314720430327
Consider the page frame size to be three.
Find the number of page faults using LFU.

String 7 O 2 4 3 1 4 I 2 0 4 3 0 3 2 I

F3 2 2 2 1 1 1 2 2 2 3 3 3 3 3
F2 0 0 0 3 3 3 7 7 0 0 0 0 0 2 7
F1 7 7 7/ 4 4 4 4 4 4 4 4 4 4 4 4 4

Miss/Hit M M M M M M H M M M H M H H M M

Least Frequently Used (LFU)

The following reference string: 7012030423032
Consider the page frame size to be three.
Find the number of page faults using LFU.

~ / \ J ' 4
N \ 7 - \ - N/
PN N/ \ 2 w, N

X T - v % A
J » / 7N f N\
// - > \\ / ' 4

b 7 &

//"\
2 5

v X
[TN Ly

| Concept of Locality of Reference l

-The locality of reference is the behavior of the processor.

-Process tries to access the same process multiple times within a
short period.

-Locality of reference refers to the tendency of the computer program
to access the same set of memory locations for a particular time

period.

Cache Operation: It is based on the principle of locality of reference.
There are two ways with which data or instruction is fetched from
main memory and get stored in cache memory.

| Concept of Locality of Reference l

1. Temporal Locality — Temporal locality means current data or
instruction that is being fetched may be needed soon. So we should
store that data or instruction in the cache memory so that we can
avoid again searching in the main memory for the same data.

(if same address is referred soon)

2. Spatial Locality — Spatial locality means instruction or data near to
the current memory location that is being fetched, may be needed
soon in the near future. This is slightly different from the temporal
locality. Here we are talking about nearly located memory locations
while in temporal locality we were talking about the actual memory
location that was being fetched.

(if nearbv address is referred soon)

I Segmentation l

Paging is closed to OS, segmentation is closed to user.
Segmentation is a memory management technique in which the
memory is divided into the variable size parts. Each part is known as a

segment which can be allocated to a process.

The details about each segment are stored in a table called a segment
table. Segment table is stored in one (or many) of the segments.

Segment table contains mainly two information about segment:

Base: It is the base address of the segment
Limit: It is the length of the seement.

SS

MAIN

EREREEE SEEEE BEEEN

Call suB1
Call SUB2

BEEFEEE SEEEER RGN

FREFREE BEREN LI L LR

Segment 0

SUB 1

Segment 1

SUB 2

Segment 2

Segmentation

el e |

i 1
1 |
.0 l
I MAIMN I
: i
] |
] |
| |
i |
i |
i 1
1 |
1 |
1 499 i
1 |
: Segment 0 :
" :
: SUB 1 : 0
i |
I —_— 1
: 2
1 |
1 |
1 |
: 199 :
! Segment 1 |
i u |
: SUB 2 :
1 |
1 1
1 |
1 |
1 99 |
: Segment 2 :

Program 1

Limit Dase

Address A
500 3000 | Executable
200 4000 | Executable
100 4800 | Executable

Segment Map Table(SMT)
for process 1

2000

3000

3500

4000

4200

4800
4500

Free

MAIN

FREE

SUB1

FREE

SUB2

FREE

Main memory

I Segmentation l

Advantages of Segmentation

* No internal fragmentation

* Average Segment Size is larger than the actual page size.

* Less overhead

* |tis easier to relocate segments than entire address space.

* The segment table is of lesser size as compared to the page table in
paging.

Disadvantages

* |t can have external fragmentation.

* jtis difficult to allocate contiguous memory to variable-sized partition.

* Costly memory management algorithmes.

Find me

9851083215

Santosh.it288@mail.com

www.phtechno.com

Kathmandu

