
CHAPTER 4

CENTRAL PROCESSING
UNIT AND CONTROL UNIT

Rolisha Sthapit

Er. Rolisha Sthapit

CONTENTS

Introduction; Register Organization; Stack Organization; Instruction
Format; Addressing Modes; Data Transfer and Manipulation; RISC and
CISC.

Er. Rolisha Sthapit

INTRODUCTION

• The part of the computer that performs the bulk
of data processing operation is called central
processing unit (CPU) which consists of ALU,
control unit and register array.

• CPU performs a variety of functions dictated by
the type of instructions that are incorporated in
the computer.

• The register set stores intermediate data used
during the execution of the instructions. The
arithmetic logic unit (ALU) performs the required
microoperations for executing the instructions.
The control (CU) unit supervises the transfer of
information among the registers and instructs the
ALU as to which operation to be performed.

Er. Rolisha Sthapit

General Register Organization

• A bus organization of seven CPU registers is shown below:

Er. Rolisha Sthapit

• All registers are connected to two multiplexers (MUX) that select the
registers for bus A and bus B. Registers selected by multiplexers are sent to
ALU. Another selector (OPR) connected to ALU selects the operation for the
ALU. Output produced by ALU is stored in some register and this
destination register for storing the result is activated by the destination
decoder (SELD).

• Example: R1 R2 + R3
– MUX selector (SELA): BUS A R2
– MUX selector (SELB): BUS B R3
– ALU operation selector (OPR): ALU to ADD
– Decoder destination selector (SELD): R1 Out Bus

Er. Rolisha Sthapit

Control word:

 Combination of all selection bits of a processing unit is called
control word. Control Word for above CPU is as below:

Er. Rolisha Sthapit

• The 14 bit control word when applied to the selection inputs specify a
particular microoperation. Encoding of the register selection fields
and ALU operations is given below:

Er. Rolisha Sthapit

Er. Rolisha Sthapit

Er. Rolisha Sthapit

Stack Organization

• This is useful last-in, first-out (LIFO) list (actually storage device)
included in most CPU’s. Stack in digital computers is essentially a
memory unit with a stack pointer (SP). SP is simply an address register
that points stack top. Two operations of a stack are the insertion
(push) and deletion (pop) of items. In a computer stack, nothing is
pushed or popped; these operations are simulated by incrementing
or decrementing the SP register.

Er. Rolisha Sthapit

Register stack

• It is the collection of finite number of registers. Stack pointer (SP)
points to the register that is currently at the top of stack.

Er. Rolisha Sthapit

Memory stack
• A portion of memory can be used as a stack with a processor register as a SP.

Figure below shows a portion of memory partitioned into 3 parts: program, data
and stack.

Er. Rolisha Sthapit

CPU Organizations/Processor Organization

There are three types of CPU organization based on the instruction
format:

1. Single accumulator organization

2. General register organization

3. Stack Organization

Er. Rolisha Sthapit

1.Single accumulator organization:
• In this type of organization all the operations are performed with an implied

accumulator register.

• Basic computer is the good example of single accumulator organization.

• The instruction of this type of organization has an address field

 where X and Y is the address of the operand

Er. Rolisha Sthapit

2. General register organization:
• When a large number of processor registers are included in the CPU, it is most efficient to

connect them through a common bus system. The registers communicate with each other
not only for direct data transfer, but also while performing various microoperations. Hence, it
is necessary to provide a common unit that can perform all the arithmetic, logic and shift
microoperations in the processor.

• In this type of organization the instruction has two or three address field

Er. Rolisha Sthapit

3. Stack organization:
• Last-in, first-out (LIFO) mechanism.

• A stack is a storage device that stores information in such a manner that the
item stored last is the first item retrieved.

• In this type of organization of CPU, all the operations are performed with
stack.

• The PUSH and POP instruction only need address field. The operation-type
instructions do not need address field.

Er. Rolisha Sthapit

This ADD instruction in the stack organization performs addition of two top of the stack element and stores
the result in the top of the stack. First pops two operands from the top of the stack; adds them and stores
the result in the top of the stack.

Instruction Formats

Most common field found in register are:

a) Mode bit: It specifies the way the operand or the effective address
is determined.

b) Op-code field: It specifies the operation to be performed.

c) Address field: It designates a memory address or a processor
register.

 The number of address fields in the instruction format depends
on the internal organization of CPU. On the basis of no. of address field
we can categorize the instruction as below:

Er. Rolisha Sthapit

1. Three-Address Instruction:

• Computer with three address instruction can use each address field
to specify either processor register or memory operand.

• Advantage –it minimize the size of program

• Disadvantage –binary coded instruction requires too many bits to
specify three address fields

 E.g. ADD R1, A, B / R1 M[A]+M[B]

Er. Rolisha Sthapit

Example

Program to evaluate the following arithmetic statement

X = (A+B) * (C+D) using three address fields instruction

 ADD R1, A, B / R1 M[A] +M[B]

 ADD R2, C, D / R2 M[C] +M[D]

 MUL X, R1, R2 / M[X] R1*R2

Er. Rolisha Sthapit

2.Two-Address Instruction:

• Computer with two address instruction can use each address field to
specify either processer register or memory operand

• Advantage –it minimize the size of instruction

• Disadvantage –the size of program is relatively larger

Er. Rolisha Sthapit

Example

Program to evaluate the following arithmetic statement

X = (A+B)*(C+D) using two address field instruction

 MOV R1, A / R1 M[A]

 ADD R1, B / R1 R1+M[B]

 MOV R2, C / R2 M[C]

 ADD R2, D / R2 R2 +M[D]

 MUL R1, R2 / R1 R1*R2

 MOV X, R1 / M[X] R1

Er. Rolisha Sthapit

3.One-Address Instruction:

• Execution of one address field instruction use an implied accumulator
register for all data manipulation

• Advantage –relatively small instruction size

• Disadvantage –relatively large program size

Er. Rolisha Sthapit

Example

Program to evaluate the following arithmetic statement

X = (A+B)*(C+D) using one address field instruction

 LOAD A / AC M[A]

 ADD B / AC AC+M[B]

 STORE T / M[T] AC

 LOAD C / AC M[C]

 ADD D / AC AC+M[D]

 MUL T / AC AC*M[T]

 STORE X / M[X] AC

Er. Rolisha Sthapit

4.Zero-Address Instruction:

• This type of instruction is used in stack organization computer. There
is no address field in this type of instruction except PUSH and POP.

• Advantage –small instruction size

• Disadvantages –large the program size

Er. Rolisha Sthapit

Example

Program to evaluate the following arithmetic statement

X = (A+B)*(C+D) using zero address field instruction

 PUSH A / TOS←M[A]

 PUSH B / TOS←M[B]

 ADD / TOS← (A+B)

 PUSH C / TOS←M[C]

 PUSH D / TOS←M[D]

 ADD / TOS←(C+D)

 MUL / TOS← (A+B)*(C+D)

 POP X / M[X] ←TOS

Er. Rolisha Sthapit

X=A-B+C+(D/E)

Three Address Two Address One Address Zero Address

DIV R1,D,E
ADD R2,R1,C
ADD R3,R2,A
SUB X,R3,B

MOV R1,D
DIV R1,E
ADD R1,C
ADD R1,A
SUB R1,B
MOV X,R1

LOAD D
DIV E
ADD C
ADD A
SUB B
STORE X

PUSH D
PUSH E
DIV
PUSH C
ADD
PUSH A
ADD
PUSH B
SUB
POP X

Y=A+B(CD+EF-G/H)
Three address Two address One address Zero address

DIV R1,G,H
MUL R2,E,F
MUL R3,C,D
ADD R4,R2,R3
SUB Y,R4,R1
MUL Y,Y,B
ADD Y,Y,A

MOV R1,G
DIV R1,H
MOV R2,E
MUL R2,F
MOV R3,C
MUL R3,D
ADD R2,R3
SUB R2,R1
MUL R2,B
ADD R2,A
MOV Y,R2

LOAD G
DIV H
STORE T
LOAD E
MUL F
SUB T
STORE T
LOAD C
MUL D
ADD T
MUL B
ADD A
STORE Y

PUSH G
PUSH H
DIV
PUSH E
PUSH F
MUL
SUB
PUSH C
PUSH D
MUL
ADD
PUSH B
MUL
PUSH A
ADD
POP Y

Addressing Modes

The method of calculating or finding the effective address of the
operand in the instruction is called addressing mode. The way operands
(data) are chosen during program execution depends on the addressing
mode of the instruction. So, addressing mode specifies a rule for interpreting
or modifying the address field of the instruction before the operand is
actually referenced.

Why Addressing modes?

• To give programming versatility to the user (by providing facilities as:
pointers to memory, counters for loop control, indexing of data and
program relocation)

• To use the bits in the address field of the instruction efficiently

Er. Rolisha Sthapit

Types of Addressing Modes

The various addressing modes are:

i. Implied Mode

ii. Immediate Mode

iii. Register Mode

iv. Register Indirect Mode

v. Auto increment or Auto decrement Mode

vi. Direct Address Mode

vii. Indirect Address Mode

viii. Relative Address Mode

ix. Indexed Addressing Mode

x. Base Register Addressing Mode

Er. Rolisha Sthapit

i. Implied Mode:

• In this type of addressing mode, operands specified implicitly in the
definition of instruction.

• All the register reference instructions that use an accumulator and
zero-address instruction in a stack organized computer are implied
mode instruction.

• No need to specify the address in the instruction.

• E.g. CMA (complement accumulator), CLA, CME, etc.

Er. Rolisha Sthapit

ii. Immediate Mode:

• In this addressing mode, the operand is specified in the instruction
itself i.e. there is no any address field to represent the operand

• Immediate mode instructions are useful for initializing register to a
constant value.

• Instead of specifying the address of the operand, operand itself is
specified in the instruction.

 E.g. LDA #NBR / AC NBR

Er. Rolisha Sthapit

iii. Register Mode:

• In this type of addressing mode, the operands are in the register
which is within the CPU .

• Faster to acquire an operand than the memory addressing

 AC R1

Er. Rolisha Sthapit

iv. Register Indirect Mode:

• In this addressing mode, the content of register present in the
instruction specifies the effective address of operand.

• The advantage of this addressing mode is that the address field of the
instruction uses fewer bits to select a register.

• EA = content of R

 AC M[R1]

Er. Rolisha Sthapit

v. Auto Increment or Auto decrement mode:

• In auto increment mode, the content of CPU register is incremented
by 1, which gives the effective address of the operand in memory.

 AC M[R1], R1 R1 + 1

• In auto decrement mode, the content of CPU register is decremented
by 1, which gives the effective address of the operand in memory.

 AC M[R1 - 1]

Er. Rolisha Sthapit

vi. Direct Address Mode
 In this addressing mode, the address field of an instruction gives
the effective address of operand.

 AC M[ADR]

vii. Indirect Address Mode

 In this addressing mode, the address field of the instruction gives
the address of effective address.

 AC M[M[ADR]]

Er. Rolisha Sthapit

viii. Relative Address Mode:

 In this addressing mode, the content of program counter is
added to the address part of the instruction which gives the effective
address of the operand.

 AC M[PC + ADR]

ix. Indexed Addressing Mode:

 In this addressing mode, the content of index register is added to
the address field of the instruction which gives the effective address of
operand.

 AC M[ADR + XR]

Er. Rolisha Sthapit

x. Base Register Addressing Mode:

 In this addressing mode, the content of the base register is
added to the address part of the instruction which gives the effective
address of the operand.

 AC M[ADR + BR]

Er. Rolisha Sthapit

Numerical Example

Er. Rolisha Sthapit

Calculate the value of EA and AC using all
addressing modes.

Load to AC

Address= 600

Next Instruction

101

400

800

900

350

850

Er. Rolisha Sthapit

400

401

407

501

550

600

706

708

1007

MemoryAddress

PC = 150

R1 = 500

XR=107

BR=106

Addressing Modes Effective Address Content of AC

Immediate 401 600

Register - 500

Register Indirect 500 -

Auto Increment 500 - ,500+1=501

Auto Decrement 499 -

Direct 600 800

Indirect 800 -

Relative Addressing 1007 850

Indexed Register 707 -

Base Register 706 900
Er. Rolisha Sthapit

Er. Rolisha Sthapit

Er. Rolisha Sthapit

Er. Rolisha Sthapit

Er. Rolisha Sthapit

Solution:

a) Indirect : 432

b)Register Indirect: 511

c) Immediate : 250

d) Direct : 511

Data Transfer and Manipulation

• Computers give extensive set of instructions to give the user the
flexibility to carryout various computational tasks. The actual
operations in the instruction set are not very different from one
computer to another although binary encodings and symbol name
(operation) may vary. So, most computer instructions can be classified
into 3 categories:

1. Data transfer instructions

2. Data manipulation instructions

3. Program control instructions

Er. Rolisha Sthapit

Data Transfer Instructions:

 Data transfer instructions causes transfer of data from one
location to another without modifying the binary information content.
The most common transfers are:

• between memory and processor registers

• between processor registers and I/O

• between processor register themselves

Example: Load, store, exchange, move, push, pop, etc

Er. Rolisha Sthapit

Er. Rolisha Sthapit

• Instructions described above are often associated with the variety of
addressing modes. Assembly language uses special character to
designate the addressing mode. E.g. # sign placed before the operand
to recognize the immediate mode. (Some other assembly languages
modify the mnemonics symbol to denote various addressing modes,
e.g. for load immediate: LDI). Example: consider load to accumulator
instruction when used with 8 different addressing modes:

Er. Rolisha Sthapit

Er. Rolisha Sthapit

Data manipulation Instructions:

 Data manipulation Instructions perform operations on data and
provide the computational capabilities for the computer. These
instructions perform arithmetic, logic and shift operations.

 Example: increment, decrement, add, subtract, add with carry,
subtract with borrow, 2’s complement.

Er. Rolisha Sthapit

Arithmetic instructions:

• Typical arithmetic instructions are listed below:

Er. Rolisha Sthapit

Logical and bit manipulation instructions :

• Logical instructions perform binary operations on strings of bits stored in registers
and are useful for manipulating individual or group of bits representing binary coded
information. Logical instructions each bit of the operand separately and treat it as a
Boolean variable.

Er. Rolisha Sthapit

Shift instructions

• Instructions to shift the content of an operand are quite useful and
are often provided in several variations (bit shifted at the end of word
determine the variation of shift). Shift instructions may specify 3
different shifts:

❑Logical shifts

❑Arithmetic shifts

❑Rotate-type operations

Er. Rolisha Sthapit

Er. Rolisha Sthapit

5.3 RISC and CISC characteristics

RISC (reduced instruction set computer) characteristics

➢Relatively few instructions

➢Relatively few addressing modes

➢Memory access limited to load and store instructions

➢All operations done within the registers of the CPU

➢Fixed-length, easily decoded instruction format

➢Single-cycle instruction execution

➢The control unit is hardwired rather than micro programmed

➢Relatively large number of registers in the processor unit

➢Efficient instruction pipeline

 The main concept of RISC is to reduce execution time by simplifying the instruction set of
the computer. Example: MIPS(Microprocessor without Interlocked Pipeline Stages), ARM
(Advanced RISC Machine)

Er. Rolisha Sthapit

• CISC (complex instruction set computer) characteristics

➢A large number of instructions - typically from 100 to 250 instructions

➢Some instructions that perform specialized tasks and are used
infrequently

➢A large variety of addressing modes – typically from 5 to 20 different
modes

➢Variable-length instruction format

➢Uses memory to load and store instruction and operand as well

➢Instructions that manipulate operands in memory

Er. Rolisha Sthapit

• Principle of CISC:

 To provide single machine instruction for each statement that is
written in a higher level language. One reason to provide a complex
instruction set is to simplify the compilation and improve the overall
computer performance.

Example: IBM computer, desktop computer, Digital equipment
corporation.

Assignment: Write any 8 differences between RISC and CISC.

Er. Rolisha Sthapit

Reverse Polish Notation

A+B – Infix Notation

+AB – Prefix or Polish Notation

AB+ - Postfix or Reverse Polish Notation

Infix Notation:

 the notation where the operator is in between the operands.

Prefix Notation:

 the notation where the operator lies before the operand.

Postfix Notation:

 the notation where the operator lies after the operand.

Er. Rolisha Sthapit

• Example:

 A*B+C*D

RPN- AB*CD*+

PN- +*AB*CD

 (A+B)*[C*(D+E)+F]

RPN- AB+CDE+*F+*

Er. Rolisha Sthapit

Program control instructions

• Instructions are always stored in successive memory locations and are
executed accordingly. But sometimes it is necessary to condition the
data processing instructions which change the PC value accidently
causing a break in the instruction execution and branching to
different program segments.

Er. Rolisha Sthapit

Er. Rolisha Sthapit

Er. Rolisha Sthapit

Er. Rolisha Sthapit

Subroutine Call and Return

Er. Rolisha Sthapit

Er. Rolisha Sthapit

Er. Rolisha Sthapit

Program Interrupt

• The concept of program interrupt is to handle a variety of problems
that arise out of normal program sequence.

• Program interrupt refers to the transfer of program control from a
currently running program to another service program as a result of
an external or internal generated request. Control returns to the
original program after the service program is executed.

• After a program has been interrupted and the service routine has
been executed, the CPU must return to exactly the same state that it
was when the interrupt occurred.

Er. Rolisha Sthapit

• The state of the CPU at the end of the execute cycle (when the
interrupt is recognised) is determined from:

 1. The content of program counter

 2. The content of all processor registers

 3. The content of certain status conditions

Er. Rolisha Sthapit

Types of Interrupt

Er. Rolisha Sthapit

1. External Interrupt

Er. Rolisha Sthapit

2. Internal Interrupt

Er. Rolisha Sthapit

3. Software Interrupt

Er. Rolisha Sthapit

Er. Rolisha Sthapit

Er. Rolisha Sthapit

Timing and Control Unit

Control Unit

Control unit (CU) of a processor translates from machine instructions to the control
signals for the microoperations that implement them. There are two types of control
organization:

a) Hardwired Control

b) Microprogrammed Control

a) Hardwired Control

➢CU is made up of sequential and combinational circuits to generate the control
signals.

➢If logic is changed, we need to change the whole circuit.

➢Expensive

➢Fast

Er.Rolisha Sthapit

b) Microprogrammed Control

➢A control memory on the processor contains microprograms that
activate the necessary control signals.

➢If logic is changed, we only need to change the microprogram.

➢Cheap

➢Slow

Er.Rolisha Sthapit

Control Unit of a Basic Computer (Hardwired
Control)
The block diagram of a hardwired control unit is shown below. It
consists of two decoders, a sequence counter, and a number of control
logic gates.

Er.Rolisha Sthapit

Timing Signal

• Generated by 4-bit
sequence counter and 4x16
decoder.

• The SC can be incremented
or cleared.

• Example: T0, T1, T2, T3, T4, T0,
T1 . . .

• Assume: At time T4, SC is
cleared to 0 if decoder
output D3 is active:

• D3T4: SC 0

Er.Rolisha Sthapit

Er. Rolisha Sthapit

• The function of the control unit in a digital computer is to initiate sequences
of microoperations. The number of different types of microoperations that
are available in a given system is finite. The complexity of the digital
system is derived from the number of sequences of microoperations that are
performed. Two techniques used for implementing control unit are
hardwired and microprogrammed.

• Hardwired Control:

When the control signals are generated by hardware using conventional logic
design techniques, the control unit is said to be hardwired.

• Microprogrammed Control:

Microprogramming is a second alternative for designing the control unit of a
digital computer which uses microoperations sequences.

 A computer that employs a microprogrammed control unit will have
two separate memories: a main memory and a control memory.

Er. Rolisha Sthapit

Control Memory

• Control Memory (Control Storage: CS): Storage in the
microprogrammed control unit to store the microprogram.

• Control word: It is a string of control variables (0’s and 1’s)
occupying a word in control memory.

• Microprogram:

➢Program stored in control memory that generates all the control
signals required to execute the instruction set correctly

➢Consists of microinstructions

Er. Rolisha Sthapit

• Microinstruction:

➢Contains a control word and a sequencing word

➢Control Word – contains all the control information required for one clock cycle

➢Sequencing Word - Contains information needed to decide the next
microinstruction address

• Microoperation:

➢A microinstruction contains one or more microoperations to be completed.

• Writable Control Memory (Writable Control Storage: WCS):

CS whose contents can be modified:

➢Microprogram can be changed

➢Instruction set can be changed or modified

Er. Rolisha Sthapit

A computer that employs a microprogrammed control unit will have two
separate memories: main memory and a control memory. The user’s
program in main memory consists of machine instructions and data
whereas control memory holds a fixed microprogram that cannot be
altered by the user. Each machine instruction initiates a series of
microinstructions in control memory.

 The general configuration of a microprogrammed control unit is
demonstrated in the following block diagram:

Er. Rolisha Sthapit

Er. Rolisha Sthapit

Dynamic Microprogramming

➢A more advanced development that permits a microprogram to be loaded
initially from an auxiliary memory such as magnetic disk.

➢Computer system whose control unit is implemented with a microprogram
in WCS.

➢Microprogram can be changed by a systems programmer or a user.

• Sequencer: The device or program that generates address of next
microinstruction to be executed is called sequencer. While the
microoperations are being executed, the next address is computed in the
next address generator circuit and then transferred into the control address
register to read the next microinstruction.

Er. Rolisha Sthapit

• Control Address Register: CAR contains address of
microinstruction.

• Control Data Register: CDR contains microinstruction read from
memory. The microinstruction contains a control word that specifies
one or more microoperations. The data register is sometimes called a
pipeline register.

 It allows the execution of the microoperations specified by the
control word simultaneously with the generation of the next
microinstruction. This configuration requires a two-phase clock, with
one clock applied to the address register and the other to the data
register.

Er. Rolisha Sthapit

Address Sequencing

Each computer instruction has its own microprogram routine in control
memory to generate the microoperations that execute the instruction. Process
of finding address of next microinstruction to be executed is called address
sequencing. The address sequencing capabilities required in a control
memory are:

a) Incrementing of the control address register.

b) Unconditional branch or conditional branch, depending on status bit
conditions.

c) A mapping process from the bits of the instruction to an address for
control memory.

d) A facility for subroutine call and return.

Following is the block diagram for control memory and the associated
hardware needed for selecting the next microinstruction address.

Er. Rolisha Sthapit

Er. Rolisha Sthapit

The diagram shows four different paths from which the control address register (CAR)
receives the address. The incrementer increments the content of the control address register
by one, to select the next microinstruction in sequence. Branching is achieved by specifying
the branch address in one of the fields of the microinstruction. Conditional branching is
obtained by using part of the microinstruction to select a specific status bit in order to
determine its condition. An external address is transferred into control memory via a
mapping logic circuit. The return address for a subroutine is stored in a special register
whose value is then used when the microprogram wishes to return from the subroutine.

 Control address register receives address of next microinstruction from different
sources.

a) Incrementer simply increments the address by one

b) In case of branching, branch address is specified in one of the field of microinstruction.

c) In case of subroutine call, return address is stored in the register SBR which is used
when returning from called subroutine.

d) A mapping process from the bits of the instruction to an address for control memory.

Er. Rolisha Sthapit

• Conditional Branch:

 Simplest way of implementing branch logic hardware is to test the specified
condition and branch to the indicated address if condition is met otherwise address register
is simply incremented. If Condition is true, hardware set the appropriate field of status
register to 1. Conditions are tested for O (overflow), N (negative), Z (zero), C (carry), etc.

• Unconditional Branch:

 Fix the value of one status bit at the input of the multiplexer to 1. So that, branching
can always be done.

• Mapping

 Assuming operation code of 4-bits which can specify 16 (24) distinct instructions.
Assume further and control memory has 128 words, requiring an address of 7-bits. Now we
have to map 4-bit operation code into 7-bit control memory address. Thus, we have to map
Op-code of an instruction to the address of the Microinstruction which is the starting
microinstruction of its subroutine in memory.

Er. Rolisha Sthapit

• Approach of direct mapping:

 Transfer Op-code bits to use it as an address of control memory.
In this mapping, one 0 is placed in the MSB and two 0s in the LSB as
shown in figure:

Er. Rolisha Sthapit

• Subroutines:

 Subroutines are programs that are used by another program to
accomplish a particular task. Microinstructions can be saved by
employing subroutines that use common sections of micro code.
Example: the sequence of microoperations needed to generate the
effective address is common to all memory reference instructions. Thus,
this sequence could be a subroutine that is called from within many
other routines to execute the effective address computation.

 Subroutine register is used to save a return address during a
subroutine call which is organized in LIFO (last in, first out) stack.

Er. Rolisha Sthapit

Microprogram Example

Once the configuration of a computer and its microprogrammed
control unit is established, the designer’s task is to generate the
microcode for the control memory. This code generation is called
microprogramming and is a process similar to conventional machine
language programming.

Er. Rolisha Sthapit

Computer Configuration:

➢ It consists of two memory units: a main memory for storing instructions and data, and a control
memory for storing the microprogram

➢Four registers are associated with the processor unit and two with the control unit. The processor
registers are PC, AR, DR and AC.

➢The control unit has control address register CAR and subroutine register SBR.

➢The transfer of information among the registers in processor is done through multiplexer rather
than a common bus. DR can receive information from AC, PC or memory. AR can receive
information from PC or DR. PC can receive information only from AR.

➢The arithmetic, logic and shift unit performs microoperations with data from AC and DR and
places the result in AC. Note that memory receives its address from AR. Input data written to
memory come from DR, and data read from memory can go only to DR.

➢The computer instruction format has three fields: a 1-bit field for indirect addressing symbolized
by I, a 4-bit operation code (op-code), and an 11-bit address field. The figure below lists four of the
16 possible memory reference instructions.

Er. Rolisha Sthapit

Er. Rolisha Sthapit

Microinstruction Format and Description

We know the computer instruction format (explained in previous chapter) for
different set of instruction in main memory. Similarly, microinstruction in control
memory has 20-bit format divided into 4 functional parts as shown below.

Er. Rolisha Sthapit

CD (condition) field consists of two bits representing 4 status bits and BR (branch)

field (2-bits) used together with address field AD, to choose the address of the next

microinstruction.

Er. Rolisha Sthapit

Er. Rolisha Sthapit

Here, microoperations are subdivided into three fields of 3-bits each. These 3 bits are used to

encode 7 different microoperations. No more than 3 microoperations can be chosen for a

microinstruction, one for each field. If fewer than 3 microoperations are used, one or more

fields will contain 000 for no operation.

Symbolic Microinstructions

Symbols are used in microinstructions as in assembly language. A symbolic microprogram
can be translated into its binary equivalent by a microprogram assembler.

Format of Microinstruction:

Contains five fields: label; micro-ops; CD; BR; AD

Label: may be empty or may specify a symbolic address terminated with a colon

 Micro-ops: consists of one, two, or three symbols separated by commas

CD: one of {U, I, S, Z},

Where

U: Unconditional Branch S: Sign of AC

I: Indirect address bit Z: Zero value in AC

 BR: one of {JMP, CALL, RET, MAP}

AD: one of {Symbolic address, NEXT, empty (in case of MAP and RET)}

Er. Rolisha Sthapit

Er. Rolisha Sthapit

	Slide 1: CHAPTER 4
	Slide 2: CONTENTS
	Slide 3: INTRODUCTION
	Slide 4: General Register Organization
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Stack Organization
	Slide 11: Register stack
	Slide 12: Memory stack
	Slide 13: CPU Organizations/Processor Organization
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Instruction Formats
	Slide 18
	Slide 19: Example
	Slide 20
	Slide 21: Example
	Slide 22
	Slide 23: Example
	Slide 24
	Slide 25: Example
	Slide 26: X=A-B+C+(D/E)
	Slide 27: Y=A+B(CD+EF-G/H)
	Slide 28: Addressing Modes
	Slide 29: Types of Addressing Modes
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Numerical Example
	Slide 39: Calculate the value of EA and AC using all addressing modes.
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Data Transfer and Manipulation
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55: 5.3 RISC and CISC characteristics
	Slide 56
	Slide 57
	Slide 58: Reverse Polish Notation
	Slide 59
	Slide 60: Program control instructions
	Slide 61
	Slide 62
	Slide 63
	Slide 64: Subroutine Call and Return
	Slide 65
	Slide 66
	Slide 67: Program Interrupt
	Slide 68
	Slide 69: Types of Interrupt
	Slide 70: 1. External Interrupt
	Slide 71: 2. Internal Interrupt
	Slide 72: 3. Software Interrupt
	Slide 73
	Slide 74
	Slide 75: Timing and Control Unit
	Slide 76
	Slide 77: Control Unit of a Basic Computer (Hardwired Control)
	Slide 78: Timing Signal
	Slide 79
	Slide 80
	Slide 81: Control Memory
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87: Address Sequencing
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93: Microprogram Example
	Slide 94
	Slide 95
	Slide 96: Microinstruction Format and Description
	Slide 97
	Slide 98
	Slide 99: Symbolic Microinstructions
	Slide 100

