CHAPTER 4

CENTRAL PROCESSING
UNIT AND CONTROL UNIT

Rolisha Sthapit

CONTENTS

Introduction; Register Organization; Stack Organization; Instruction

Format; Addressing Modes; Data Transfer and Manipulation; RISC and
CISC.

INTRODUCTION

* The part of the computer that performs the bulk
of data processing operation is called central
processing unit (CPU) which consists of ALU,
control unit and register array.

 CPU performs a variety of functions dictated by
the type of instructions that are incorporated in
the computer.

* The register set stores intermediate data used
during the execution of the instructions. The
arithmetic logic unit (ALU) performs the required
microoperations for executing the instructions.
The control (CU) unit supervises the transfer of
information among the registers and instructs the
ALU as to which operation to be performed.

Register set

Control

Arithmetic logic
¥ unit(ALD)

F1g: Major components of CPU

General Register Organization

* A bus organization of seven CPU registers is shown below:

Chaoxc Aogpes

e

[
|
:

H

:
PSELR

OFR - Arihemetic Iogss Wit

CALG)>

il

+

Ot pux

(2) Block diagram (register organization)
Er. Rolisha Sthapit

All registers are connected to two multiplexers (MUX) that select the
registers for bus A and bus B. Registers selected by multiplexers are sent to
ALU. Another selector (OPR) connected to ALU selects the operation for the
ALU. Output produced by ALU is stored in some register and this
destination register for storing the result is activated by the destination
decoder (SELD?.

Example: R1=—R2 + R3
MUX selector (SELA): BUS A«~— R2
MUX selector (SELB): BUS B «<—R3
ALU operation selector (OPR): ALU to ADD
Decoder destination selector (SELD): R1 «— Out Bus

Control word:

Combination of all selection bits of a processing unit is called
control word. Control Word for above CPU is as below:

3 3 3 5

_SELA[SELB [SELD | OPR

Er. Rolisha Sthapit

* The 14 bit control word when applied to the selection inputs specify a
particular microoperation. Encoding of the register selection fields
and ALU operations is given below:

Binary OPR
Code SELA SELB SELD Select Operation Symbol
000 Input Input None 83%(1) ;l::nesfer ": 4 FIFNS?A
001 R1 R1 R1 e
010 R2 R2 R?2 00010 Add A + B ADD
011 R3 R3 R3 00101 Subtract A — B SUB
100 R4 R4 R4 00110 Decrement A DECA
J01 RS R5 RS 01000 AND A and B AND
ia0 Ré RE RE 01010 OR A and B OR
01100 XOR A and B XOR
111 R7 R &3 01110 Complement A COMA
10000 Shift right A SHRA
11000 Shift left A SHLA

Er. Rolisha Sthapit

Example: R1 < R2 -R3
This microoperation specifies R2 for A input of the ALU, R3 for the B input of the ALU, R1 for the
destination register and ALU operation to subtract A-B. Binary control word for this microoperation

statement Is;
Field: SELA SELB SELD OFPR

Symbol: R R3 Rl SUB
Controlword: 010 011 001 00101

Er. Rolisha Sthapit

Examples of different microoperations are shown below:

Symbolic Designation

Microoperation SELA SELB SELD OPR Control Word
R1« K2 — R3 R2 3 R1 SUB 010 011 001 00101
R4« R4/ R5 R4 R5 R4 OR 100 101 100 01010
R6«<R6 + 1 R6 — R6 INCA 110 000 110 00001
R7 «R1 R1 - R7 TSFA 001 000 111 00000
OQutput < R2 R2 - None TSFA 010 000 000 00000
Qutput «-Input Input — None TSFA 000 000 000 00000
R4 <shl R4 R4 — R4 SHLA 100 000 100 11000
R5«0 R5 R5 R5 XOR 101 101 101 01100

Er. Rolisha Sthapit

Stack Organization

e This is useful last-in, first-out (LIFO) list (actually storage device)
included in most CPU’s. Stack in digital computers is essentially a
memory unit with a stack pointer (SP). SP is simply an address register
that points stack top. Two operations of a stack are the insertion
(push) and deletion (pop) of items. In a computer stack, nothing is
pushed or popped; these operations are simulated by incrementing
or decrementing the SP register.

Register stack

* It is the collection of finite number of registers. Stack pointer (SP)
points to the register that is currently at the top of stack.

Address

y Diagram shows 64-word register stack. 6-hit address SP points stack
63 top. Currently 3 items are placed in the stack: A, B and C do that
content of SP is now 3 (actually 000011). 1-bit registers FULL and EMTY
FULL EMTY are set to 1 when the stack is full and empty respectively. DR is data
register that holds the binary data to be written into or read out of the
stack.
4
5P - C 3
;s /* Initially, SP = 0, EMPTY = 1(true), FULL = O{false) */
p | Push operation Pop operation
) SP« SP+1 DR « M [SP]
M [SP] « DR SP< SP—1
If (SP=0) then (FULL « 1) If (SP =0) then (EMPTY <« 1)
EMPTY <« 0O FULL <« 0

DR

Fig: Block diagram of a 64-word stack

Memory stack

* A portion of memory can be used as a stack with a processor register as a SP.
Figure below shows a portion of memory partitioned into 3 parts: program, data

and stack.

Address
Memory unit

] 1000

Program:
e : PC: used during fetch phase to read an instruction.
AR: used during execute phase to read an operand.

G SP: used to push or pop items into or from the stack.
[

Data _
= 3 Here, initial value of SP is 4001 and stack grows with

decreasing addresses. First item is stored at 4000,
| 3000 second at 3999 and last address that can be used is
3000. No provisions are available for stack limit checks.

Sieck

3997

o PUSH: POP:
fl 1000 M[SP] < DR SP <« SP + 1
4001
OR 3

Er. Rolisha Sthapit

CPU Organizations/Processor Organization

There are three types of CPU organization based on the instruction
format:

1. Single accumulator organization
2. General register organization
3. Stack Organization

1.Single accumulator organization:

* In this type of organization all the operations are performed with an implied
accumulator register.

* Basic computer is the good example of single accumulator organization.
* The instruction of this type of organization has an address field

where X and Y is the address of the operand

Example:
ADD X // AC <« AC + M[X]
LDA Y // AC «— M[Y]

Er. Rolisha Sthapit

2. General register organization:

* When a large number of processor registers are included in the CPU, it is most efficient to
connect them through a common bus system. The registers communicate with each other
not only for direct data transfer, but also while performing various microoperations. Hence, it
is necessary to provide a common unit that can perform all the arithmetic, logic and shift
microoperations in the processor.

* In this type of organization the instruction has two or three address field

Example:

ADD R1, R2,R3 J//R1« R2 +R3
ADD R1, R2 // R1<—R1+R2
MOV R1, R2 // R1 «<— R2
ADDR1, X J// R1« R1+ M[X]

Er. Rolisha Sthapit

3. Stack organization:
 Last-in, first-out (LIFO) mechanism.

* A stack is a storage device that stores information in such a manner that the
item stored last is the first item retrieved.

* In this type of organization of CPU, all the operations are performed with
stack.

* The PUSH and POP instruction only need address field. The operation-type
instructions do not need address field.

Example:
PUSH X Ff TOS «<— MIX]
2DD SIS TOS = TOP(S) + TOP(S)

This ADD instruction in the stack organization performs addition of two top of the stack element and stores
the result in the top of the stack. First pops two operands from the top of the stack; adds them and stores
the result in the top of the stack.

Instruction Formats

Most common field found in register are:

a) Mode bit: It specifies the way the operand or the effective address
is determined.

b) Op-code field: It specifies the operation to be performed.

c) Address field: It designates a memory address or a processor
register.
The number of address fields in the instruction format depends

on the internal organization of CPU. On the basis of no. of address field
we can categorize the instruction as below:

1. Three-Address Instruction:

 Computer with three address instruction can use each address field
to specify either processor register or memory operand.

* Advantage —it minimize the size of program

* Disadvantage —binary coded instruction requires too many bits to
specify three address fields

E.g. ADDR1, A, B /R1l— M[A]+M[B]

Example

Program to evaluate the following arithmetic statement
X = (A+B) * (C+D) using three address fields instruction
ADDR1, A, B / R1— M[A] +M[B]
ADD R2, C, D / R2 ~—MI[C] +M[D]
MUL X, R1, R2 / M[X] ~—R1*R2

2.Two-Address Instruction:

 Computer with two address instruction can use each address field to
specify either processer register or memory operand

* Advantage —it minimize the size of instruction
* Disadvantage —the size of program is relatively larger

Example

Program to evaluate the following arithmetic statement
X = (A+B)*(C+D) using two address field instruction

MOV R1, A /R1— MI[A]

ADD R1,B /R —R1+MIB]

MOV R2, C /R2— MIC]

ADDR2,D /R2<— R2 +M[D]

MUL R1, R2 / R1—R1*R2

MOV X, R1 /M[X]-— R1

3.0ne-Address Instruction:

* Execution of one address field instruction use an implied accumulator
register for all data manipulation

* Advantage —relatively small instruction size
* Disadvantage —relatively large program size

Example

Program to evaluate the following arithmetic statement
X = (A+B)*(C+D) using one address field instruction

LOAD A / AC — M[A]

ADD B / AC— AC+MIB]

STORET / M[T] ~— AC

LOAD C / AC — M[C]

ADD D / AC — AC+MID]

MULT / AC+—AC*MI[T]

STORE X / M[X] ~—AC

4.7ero-Address Instruction:

* This type of instruction is used in stack organization computer. There
is no address field in this type of instruction except PUSH and POP.

* Advantage —small instruction size
* Disadvantages —large the program size

Example

Program to evaluate the following arithmetic statement
X = (A+B)*(C+D) using zero address field instruction

PUSH A / TOS&MIA]

PUSH B / TOS&M[B]

ADD / TOS& (A+B)
PUSH C / TOS<MIC]

PUSH D / TOS&M[D]

ADD / TOS&(C+D)

MUL / TOS& (A+B)*(C+D)

POP X / M[X] < TOS

X=A-B+C+(D/E)

DIV R1,D,E MOV R1,D LOAD D PUSH D
ADD R2,R1,C DIV R1,E DIV E PUSH E
ADD R3,R2,A ADD R1,C ADD C DIV
SUB X,R3,B ADD R1,A ADD A PUSH C
SUB R1,B SUB B ADD
MOV X,R1 STORE X PUSH A
ADD
PUSH B
SUB

POP X

Y=A+B(CD+EF-G/H)

DIV R1,G,H
MUL R2,E,F
MUL R3,C,D
ADD R4,R2,R3
SUB Y,R4,R1

MULY),B
ADD Y)Y,A

MOV R1,G

DIV R1,H

MOV R2,E
MUL R2,F
MOV R3,C
MUL R3,D
ADD R2,R3
SUB R2,R1
MUL R2,B
ADD R2,A
MOV Y,R2

LOAD G
DIV H
STORET
LOAD E
MUL F
SUBT
STORET
LOAD C
MUL D
ADDT
MUL B
ADD A
STOREY

PUSH G
PUSHH
DIV
PUSH E
PUSH F
MUL
SUB
PUSH C
PUSHD
MUL
ADD
PUSH B
MUL
PUSH A
ADD
POPY

Addressing Modes

The method of calculating or finding the effective address of the
operand in the instruction is called addressing mode. The way operands
(data) are chosen during program execution depends on the addressing
mode of the instruction. So, addressing mode specifies a rule for interpreting
or modifying the address field of the instruction before the operand is
actually referenced.

Why Addressing modes?

* To give programming versatility to the user (by providing facilities as:
pointers to memory, counters for loop control, indexing of data and
program relocation)

* To use the bits in the address field of the instruction efficiently

Types of Addressing Modes

The various addressing modes are:
i. Implied Mode

ii. Immediate Mode

iii. Register Mode

iv. Register Indirect Mode

v. Auto increment or Auto decrement Mode
vi. Direct Address Mode

vii. Indirect Address Mode

viii. Relative Address Mode

iX. Indexed Addressing Mode

X. Base Register Addressing Mode

i. Implied Mode:

* In this type of addressing mode, operands specified implicitly in the
definition of instruction.

* All the register reference instructions that use an accumulator and
zero-address instruction in a stack organized computer are implied
mode instruction.

* No need to specify the address in the instruction.
e E.g. CMA (complement accumulator), CLA, CME, etc.

ii. Immediate Mode:

* In this addressing mode, the operand is specified in the instruction
itself i.e. there is no any address field to represent the operand

* Immediate mode instructions are useful for initializing register to a
constant value.

* Instead of specifying the address of the operand, operand itself is
specified in the instruction.

E.g. LDA #NBR / AC+— NBR

ili. Register Mode:

* In this type of addressing mode, the operands are in the register
which is within the CPU .

* Faster to acquire an operand than the memory addressing

AC—R1

iv. Register Indirect Mode:

* In this addressing mode, the content of register present in the
instruction specifies the effective address of operand.

* The advantage of this addressing mode is that the address field of the
instruction uses fewer bits to select a register.

e EA = content of R
AC— MI[R1]

v. Auto Increment or Auto decrement mode:

* In auto increment mode, the content of CPU register is incremented
by 1, which gives the effective address of the operand in memory.

AC—MI[R1], RI—R1 +1

* In auto decrement mode, the content of CPU register is decremented
by 1, which gives the effective address of the operand in memory.

AC —MIR1 - 1]

vi. Direct Address Mode

In this addressing mode, the address field of an instruction gives
the effective address of operand.

AC—MI[ADR]
vii. Indirect Address Mode

In this addressing mode, the address field of the instruction gives
the address of effective address.

AC— M[MI[ADR]]

viii. Relative Address Mode:

In this addressing mode, the content of program counter is
added to the address part of the instruction which gives the effective
address of the operand.

AC— M[PC + ADR]
iX. Indexed Addressing Mode:

In this addressing mode, the content of index register is added to
the address field of the instruction which gives the effective address of
operand.

AC+—MI[ADR + XR]

X. Base Register Addressing Mode:

In this addressing mode, the content of the base register is
added to the address part of the instruction which gives the effective
address of the operand.

AC-— MI[ADR + BR]

Numerical Example

Rl

%

XR =100

AC

Fig: Numerical example for addressing miodiggsha Sthapit

Address

201

8 &

702

800

Memory

Load to AC

Mode

Address = 500

Next instruction

450

325

300

Addressing Effective Content
Mode Address of AC
Direct address 500 800
Immediate operand 201 500
Indirect address 800 300
Relative address 702 325
Indexed address 600 900
Register — 400
Register indirect 400 700
Autoincrement 400 700
Autodecrement 399 450

Fig: Content of AC after each addressing modes

Calculate the value of EA and AC using all

addressing modes.
Address Memory

Pe=10 400 Load to AC
200 401 Address= 600

407 Next Instruction
XR=107

501 101
BR=106 550 400

600 800

706 900

708 350

1007 850

Er. Rolisha Sthapit

Addressing Modes Effective Address Content of AC
Immediate 401 600

Register - 500

Register Indirect 500 -

Auto Increment 500 - ,500+1=501
Auto Decrement 499 -

Direct 600 800

Indirect 800 -

Relative Addressing 1007 850

Indexed Register 707 -

Base Register 706 900

Er Rolisha Sthapit

8-14. A two-word instruction is stored in memory at an address designated by the
symbol W. The address field of the instruction (stored at W + 1) is desig-
nated by the symbol Y. The operand used during the execution of the
instruction is stored at an address symbolized by Z. An index register
contains the value X. State how Z is calculated from the other addresses if
the addressing mode of the instruction is
a. direct
b. indirect
c. relative

d. indexed
Z = Effective address | PC | W[opcode Mode
(a) Direct: Z=Y W+ 1 Y
(b) Indirect: Z = M[Y] | XR =X |“f"+2 Next instruction
(c) Relative: Z=Y +W+ 2
(d) Indexed: Z=Y + X
s operand

Er. Rolisha Sthapit

b

B-18. An instruction is stored at location 300 with its address field at location 301 .
The address field has the value 400. A processor register FE1 contains the
number 200. Evaluate the effective address if the addressing mode of the

instruction is (a) direct;: (b) immediate; (c) relative; (d) register indirect;
(e) index with R1 as the index register.

Effective address

(a) Direct: 400 | Memory
(b) Immediate: 301 PC—300 | opcode Mode
(c) Relative: 302 + 400 = 702 301 400

(d) Reg. Indirect: 200 RI = 200

(e) Indexed: 200 + 400 = 600 302 |Next instruction

Er. Rolisha Sthapit

14.

l\‘

Consider the following figure :

PC =300

R1=500
What is the value in AC if the instruction is
LDA 300 if the modes are:

I Direct addressing < 6 O

it. immediate 200
tii. Indircct addressing 200

iv. Register indirect if LDA (R1) is used .L OO

Er. Rolisha Sthapit

Address
300

450
500

Memory

430

200

100

Consider the following memory and the instruction LDA 250:

2z0 |511 .
R 250 > |
s32s | 22s — i
!
t PC 325
511 f 432

Write the value loaded into AC when the addressing mode is

a) Indirect_ 5/ b) Register Indirect c) Immediaie

-
-

Solution:

a) Indirect : 432
b)Register Indirect: 511
c) Immediate : 250

d) Direct : 511

Er. Rolisha Sthapit

d)

IDirect

Data Transfer and Manipulation

 Computers give extensive set of instructions to give the user the
flexibility to carryout various computational tasks. The actual
operations in the instruction set are not very different from one
computer to another although binary encodings and symbol name
(operation) may vary. So, most computer instructions can be classified
Into 3 categories:

1. Data transfer instructions
2. Data manipulation instructions
3. Program control instructions

Data Transfer Instructions:

Data transfer instructions causes transfer of data from one
location to another without modifying the binary information content.
The most common transfers are:

* between memory and processor registers
* between processor registers and |/O

* between processor register themselves
Example: Load, store, exchange, move, push, pop, etc

Name Mnemonic
Load LD
Store ST
Move MOV
Exchange XCH
Input IN
Output OUT
Push PUSH
Pop POP

Load: denotes transfer from memory to registers (usually AC)
Store: denotes transfer from a processor registers into memory
Move: denotes transfer between registers, between memory
words or memory & registers.

Exchange: swaps information between two registers or register
and a memory word.

Input & Output: transfer data among registers and 'O terminals.
Push & Pop: transfer data among registers and memory stack.

Er. Rolisha Sthapit

* Instructions described above are often associated with the variety of
addressing modes. Assembly language uses special character to
designate the addressing mode. E.g. # sign placed before the operand
to recognize the immediate mode. (Some other assembly languages
modify the mnemonics symbol to denote various addressing modes,
e.g. for load immediate: LDI). Example: consider load to accumulator
instruction when used with 8 different addressing modes:

Assembly

Mode Convention Register Transfer
Direct address LD ADR AC «— M[ADR]
Indirect address LD @ADR AC «— M[M[ADR]]
Relative address LD SADR AC «— M[PC + ADR]
Immediate operand LD #NBR AC «— NBR
Index addressing LD ADR(X) AC «— M[ADR + XR]
Register LD R1 AC «— R1
Register indirect LD (R1) AC «— MI[RI1]
Autoincrement LD (R1)+ AC «— MI[RI], R1 «+— R1 41

Er. Rolisha Sthapit

Table: Recommended assembly
language conventions for load

instruction in
addressing modes

different

Data manipulation Instructions:

Data manipulation Instructions perform operations on data and
provide the computational capabilities for the computer. These
instructions perform arithmetic, logic and shift operations.

Example: increment, decrement, add, subtract, add with carry,
subtract with borrow, 2’s complement.

Arithmetic instructions:

* Typical arithmetic instructions are listed below:

Name Mnemonic
Increment INC
Decrement DEC
Add ADD
Subtract SUB
Multiply MUL
Divide DIV
Add with carry ADDC
Subtract with borrow SUBB
Negate (2’s complement) NEG

Increment (decrement) instr. adds k
(subtracts 1 from) the register or memory
word value.

Add. subtract, multiply and divide
instructions may operate on different
data types (fixed-point or floating-point.

binary or decimal). //

Er. Rolisha Sthapit

Logical and bit manipulation instructions :

* Logical instructions perform binary operations on strings of bits stored in registers
and are useful for manipulating individual or group of bits representing binary coded
information. Logical instructions each bit of the operand separately and treat it as a
Ranlean variahle.

Name Mnemonic
Clear CLR
Complement COM /-7 Clear instr. causes specified operand to be\
AND AND replaced by 0’s.
OR OR e Complement mstr. produces the 17s
Exclusive-OR XOR complement.
Clear carry CLRC e AND. OR and XOR mstructions produce
Set carry SETC the corresponding logical operations on
Complemient carry COMC mdividual bits of the operands.
Enable interrupt EI //
Disable interrupt DI

Er. Rolisha Sthapit

Shift instructions

* Instructions to shift the content of an operand are quite useful and
are often provided in several variations (bit shifted at the end of word

determine the variation of shift). Shift instructions may specify 3
different shifts:

dLogical shifts
JArithmetic shifts
(JRotate-type operations

/Ta ble lists 4 types of shift instructions. \

Name Mnemonic e Logical shift inserts 0 at the end position

. _— e Arithmetic shift left inserts 0 at the end
Logfca] Shl_ﬂ: right SHR (identical to logical left shift) and arithmetic
Inglca] shuft left SHL shift right leave the sign bit unchanged
Ar{thmet?c Sh{'ﬂi right SHRA (should preserve the sign).
Arithmetic shift left SHLA e Rotate instructions produce a circular shift.
Rotate right ROR e Rotate left through carry instruction
Rotate left ROL transfers carry bit to right and so is for
Rotate right through carry RORC rotate shift right.
Rotate Icft through carry ROLC /

Er. Rolisha Sthapit

5.3 RISC and CISC characteristics

RISC (reduced instruction set computer) characteristics

» Relatively few instructions

» Relatively few addressing modes

» Memory access limited to load and store instructions

» All operations done within the registers of the CPU

» Fixed-length, easily decoded instruction format

» Single-cycle instruction execution

» The control unit is hardwired rather than micro programmed
» Relatively large number of registers in the processor unit

» Efficient instruction pipeline

The main concept of RISC is to reduce execution time by simplifying the instruction set of
the computer. Example: MIPS(Microprocessor without Interlocked Pipeline Stages), ARM
(Advanced RISC Machine)

 CISC (complex instruction set computer) characteristics
» A large number of instructions - typically from 100 to 250 instructions

»Some instructions that perform specialized tasks and are used
infrequently

» A large variety of addressing modes — typically from 5 to 20 different
modes

»Variable-length instruction format
»Uses memory to load and store instruction and operand as well
»Instructions that manipulate operands in memory

* Principle of CISC:

To provide single machine instruction for each statement that is
written in a higher level language. One reason to provide a complex
instruction set is to simplify the compilation and improve the overall
computer performance.

Example: IBM computer, desktop computer, Digital equipment
corporation.

Assignment: Write any 8 differences between RISC and CISC.

Reverse Polish Notation

A+B — Infix Notation

+AB — Prefix or Polish Notation

AB+ - Postfix or Reverse Polish Notation
Infix Notation:

the notation where the operator is in between the operands.
Prefix Notation:

the notation where the operator lies before the operand.
Postfix Notation:

the notation where the operator lies after the operand.

* Example:
A*B+C*D
RPN- AB*CD*+
PN- +*AB*CD
(A+B)*[C*(D+E)+F]
RPN- AB+CDE+*F+*

Program control instructions

* Instructions are always stored in successive memory locations and are
executed accordingly. But sometimes it is necessary to condition the
data processing instructions which change the PC value accidently
causing a break in the instruction execution and branching to
different program segments.

Name Mnemonic \
Branch BR e Branch (usually one address instruction) and
Jump JMP jump instructions can be changed
Skip QK P interchangeably.
Call CALL e Skip is zero address instruction and may be
Return RET conditional & unconditional.
. e (all and return instructions are used in

,EGTFSIC;E?’;“};;T&&]D”) 'E;{I"P conjunction with subroutine calls. /

est (by 1ng

Er. Rolisha Sthapit

It is sometimes convenient to supplement the ALU circuit in the CPU with a
status register where status bit conditions can be stored for further analysis.
Status bits are also called condifion-code bits or flag bits. Figure 8-8 shows the
block diagram of an 8-bit ALL with a 4-bit status register. The four status bits

are symbolized by C, S, Z, and V. The bits are set or cleared as a result of an
operation performed in the ALU.

.

2.

Bit C (carry) is set to 1 if the end carry Ci is 1. It is cleared to O if the carry
is 0.

Bit S (sign) is set to 1 if the highest-order bit F is 1. It is set to 0 if the
bit is O.

Bit Z (zero) is set to 1 if the output of the ALU contains all O0's. It is cleared
to 0 otherwise. In other words, &£ = 1 if the output is zero and Z = 0
if the output is not zero.

Bit V (overflow) is set to 1 if the exclusive-OR of the last two carries is
egual to 1, and cleared to 0 otherwise. This is the condition for an

overflow when negative numbers are in 2’s complement

For the 8-bit ALU, V = 1 if the output is greater than +127 or less than
—128.

Er. Rolisha Sthapit

—ie—

Fi Cz
([8-bit ALU
N 1 Ca
Ay C
Fe—Fg
-
Check for zero output e —
4 B
Y
Output F

Figure 8-8 Status register bits.

Er. Rolisha Sthapit

TABLE 8-11 Conditional Branch Instrucrions

Mnemonic Branch condition Tested condition
BZ Branch if zero Z =1
BNZ Branch if not zero Z =0
BC Branch if carry C =1
BNC Branch if no carry C =0
BP Branch if plus S =0
BM Branch if minus S =1
BV Branch if overflow =1
BNV Branch if no overflow F =0

Unsigned compare conditions (A4 — B)
BHI Branch if higher A > B
BHE Branch if higher or equal A > B
BLO Branch if lower A << B
BLOE Branch if lower or eqgual A < B
BE Branch if equal A = B
BNE Branch if not equal A = B

Signed compare conditions (4 — B)
BGT Branch if greater than A= B
BGE Branch if greater or equal A = B
BLT Branch if less than A < B
BLE Branch if less or equal A < B
BE Branch if equal A =B
BNE Branch if not equal A = B

Er. Rolisha Sthapit

Subroutine Call and Return

A subroutine is a self-contained sequence of instructions that performs a given
computational task. During the execution of a program, a subroutine may be
called to perform its function many times at various points in the main pro-
gram. Each time a subroutine is called, a branch is executed to the beginning
of the subroutine to start executing its set of instructions. After the subroutine
has been executed, a branch is made back to the main program.

' | ' ') _ ' | A call subroutine
instruction consists of an operation code together with an address that specifies
the beginning of the subroutine. The instruction is executed by performing two
operations: (1) the address of the next instruction available in the program
counter (the return address) is stored in a temporary location so the subroutine
knows where to return, and (2) control is transferred to the beginning of the
subroutine. The last instruction of every subroutine, commonly called return
from subroutine, transfers the return address from the temporary location into
the program counter. This results in a transfer of program control to the
instruction whose address was originally stored in the temporary location.

Er. Rolisha Sthapit

Different computers use a different temporary location for storing the
return address. Some store the return address in the first memory location of
the subroutine, some store it in a fixed location in memory, some store it in
a processor register, and some store it in a memory stack. The most efficient
way is to store the return address in a memory stack. The advantage of using
a stack for the return address is that when a succession of subroutines is called,
the sequential return addresses can be pushed into the stack. The return from

subroutine instruction causes the stack to pop and the contents of the top of
the stack are transferred to the program counter. In this way, the return is

always to the program that last called a subroutine. A subroutine call is
implemented with the following microoperations:

SP<«<5P — 1 Decrement stack pointer
M[SP] «—PC Push content of PC onto the stack
PC <« effective address Transfer control to the subroutine

Er. Rolisha Sthapit

If another subroutine is called by the current subroutine, the new return
address is pushed into the stack, and so on. The instruction that returns from
the last subroutine is implemented by the microoperations:

PC «— M|[5P] Pop stack and transfer to PC
SP <SP + 1 Increment stack pointer

Er. Rolisha Sthapit

Program Interrupt

* The concept of program interrupt is to handle a variety of problems
that arise out of normal program sequence.

* Program interrupt refers to the transfer of program control from a
currently running program to another service program as a result of
an external or internal generated request. Control returns to the
original program after the service program is executed.

* After a program has been interrupted and the service routine has
been executed, the CPU must return to exactly the same state that it
was when the interrupt occurred.

* The state of the CPU at the end of the execute cycle (when the
interrupt is recognised) is determined from:

1. The content of program counter
2. The content of all processor registers

3. The content of certain status conditions

The collection of all status bit conditions in the CPU is sometimes called
a program status word or PSW. The PSW is stored in a separate hardware register
and contains the status information that characterizes the state of the CPU.

Types of Interrupt

There are three major types of interrupts that cause a break in the normal
execution of a program. They can be classified as:

1. External interrupts

2. Internal interrupts
3. Software interrupts

Er. Rolisha Sthapit

1. External Interrupt

External interrupts come from input-output (I/O) devices, from a timing
device, from a circuit monitoring the power supply, or from any other external
source. Examples that cause external interrupts are IO device requesting
transfer of data, I/O device finished transfer of data, elapsed time of an event,
or power failure. Timeout interrupt may result from a program that is in an
endless loop and thus exceeded its time allocation. Power failure interrupt may
have as its service routine a program that transfers the complete state of the
CPU into a nondestructive memory in the few milliseconds before power
ceases.

Er. Rolisha Sthapit

2. Internal Interrupt

Internal interrupts arise from iilegal or erroneous use of an instruction or
data. Internal interrupts are also calied traps. Examples of interrupts caused by
internal error conditions are register overflow, attempt to divide by zero, an
invalid operation code, stack overflow, and protection violation. These error
conditions usually occur as a result of a premature termination of the instruc-
tion execution. The service program that processes the internal interrupt deter-
mines the corrective measure to be taken.

Er. Rolisha Sthapit

3. Software Interrupt

A software interrupt is initiated by executing an instrnic-
tion. Software interrupt is a specdial call instruction that behaves like an inter-
rupt rather than a subroutine call. It can be used by the programmer to initiate
an interrupt procedure at any desired point in the program. The most cormnmon
use of software interrupt is associated with a supervisor call instruction. This
instruction provides means for switching from a CPU user mode to the super-
visor mode. Certain operations in the computer may be assigned to the super-
visor mode only, as for example, a complex input or output transfer procedure.
A program written by a user must run in the user mode. When an input or
output transfer is required, the supervisor mode is requested by means of a
supervisaor call instruction. This instruction causes a software interrupt that
stores the old CPU state and brings in a new P5SW that belongs to the supervisor

mode. The calling program must pass information to the operating system in
order to specify the particular task requested.

Er. Rolisha Sthapit

The difference between internal and external interrupts is that the inter-
nal interrupt is initiated by some exceptional condition caused by the program
itself rather than by an external event. Internal interrupts are synchronous with

the program while external interrupts are asynchronous. If the program is
rerun, the internal interrupts will occur in the same place each time. External
interrupts depend on external conditions that are independent of the program
being executed at the time.

Er. Rolisha Sthapit

CISC arnd RISC architectisre Microcornntrollers:

CISC Processors

IRISC Processors

Complex Instruction Set Computer

Reduced Instruction Set Computer

VWhen an MCIJ supports many
addressing modes for arithmetic
and logical anstructzons and for
memory accesses and data
transfer mstructions, thhe WMICTU ais
said to of CISC architecture.

VWhen an MCO has an mmstruaction
soet thhat supposrts one or two
addressmg modes for arithhmetic
and logical mstructions and fev
for memory accesses and data
transfer anstractions, thhe MICUT s
said to of RISC sachitectuare

Large number of comples
mstructions

Small number of imstructions

Instructions are of variable
number of bytes

Instructions are of ixed mumber of
bytes

Instructions take varyving sunounts
of tim e for execution

Instructions take fixed aanount of
taim e for execution

Er. Rolisha Sthapit

Timing and Control Unit

Control Unit

Control unit (CU) of a processor translates from machine instructions to the control

signals for the microoperations that implement them. There are two types of control
organization:

a) Hardwired Control
b) Microprogrammed Control
a) Hardwired Control

»CU ils made up of sequential and combinational circuits to generate the control
signals.

» If logic Is changed, we need to change the whole circulit.
»EXxpensive
»Fast

b) Microprogrammed Control

» A control memory on the processor contains microprograms that
activate the necessary control signals.

» | logic Is changed, we only need to change the microprogram.
»Cheap

> Slow

Control Unit of a Basic Computer (Hardwired
Control)

The block diagram of a hardwired control unit is shown below. It
consists of two decoders, a sequence counter, and a number of control
|O g | C gates . R R A .

| 55| 14 13 12 | 1t -0 |
Other inputs Mechanism:
. r ¥
=

An instruction read from memory is

decoder
7 6 5 4 32 10 — placed in the instruction resister
¢ l ‘ l l l ‘ l (IR) where it is decoded into three
[;i:] Lo parts: 1 bit, operation code and bits

0 through 11.

The operation code bit is decoded
with 3 x 8 decoder producing 8
T\s outputs Dp through D7.

Dy

Conatrol
oulputs

Control
logic
gates

Bit 15 of the instruction is
1 = transferred to a flip-flop L.

And operand Dbits are applied to
4x 16 control logic gates.
Jdecodor

The 16 outputs of 4-bit sequence|
1 . 4 ﬁ counter (SC) are decoded into 16
timing signals To through Tas.

a-bit - —o—— Incvement (INR) This means instruction cycle of basic
! Cles LR

couwnter Eochasro computer cannot take more than 16.
sy < Clock

Fig: Control unit of a basic computer
Er.Rolisha Sthapit

Timing Signal

* Generated by 4-bit
sequence counter and 4x16
decoder.

e The SC can be incremented
or cleared.

e Example: T, T, T,, T3, Ty, T,
T,...
e Assume: At time T4, SC is

cleared to O if decoder
output D3 is active:

* D,T,:SC— 0

T0

T

T2

T3

T4

TO

N I
T3 \
&\ /

Er.Rolisha Sthapit

HARDWIRED CONTROL UNIT

MICROPROGRAMMED CONTROL UNIT

The control unit whose control signals are generated
by the hardware through a sequence of instructions is
called a hardwired control unit.

The control unit whose control signals are generated
by the data stored in control memory and constitute a
program on the small scale is called 2
microprogrammed control unit

The control logic of a hardwired control is
implemented with gates, flip flops, decoders etc.

The control logic of a micro-programmed control is the
instructions that are stored in control memory to
initiate the required sequence of microoperations.

Wiring changes are made in the hardwired control unit
if there are any changes reguired in the design.

Changes in a microprogrammed control unit are done
by updating the microprogram in control memory.

Hardwired control unit are faster and known to have
complex structure.

Microprogrammed control unit is comparatively slow
compared but are simple in structure.

Er. Rolisha Sthapit

 The function of the control unit in a digital computer Is to initiate sequences
of microoperations. The number of different types of microoperations that
are available in a given system is finite. The complexity of the digital
system is derived from the number of sequences of microoperations that are
ﬁerforr_ned. Two techniques used for implementing control unit are
ardwired and microprogrammed.

 Hardwired Control:

When the control siﬁnals are generated by hardware using conventional logic
design techniques, the control unit is said to be hardwired.

* Microprogrammed Control:

Microprogramming is a second alternative for designing the control unit of a
digital computer which uses microoperations sequences.

A computer that employs a microprogrammed control unit will have
two separate memories: a main'memory and a control memory.

Control Memory

 Control Memory (Control Storage: CS): Storage In the
microprogrammed control unit to store the microprogram.

« Control word: It is a string of control variables (0’s and 1°s)
occupying a word in control memory.

« Microprogram:

»Program stored In control memory that generates all the control
signals required to execute the instruction set correctly

» Consists of microinstructions

* Microinstruction:
» Contains a control word and a sequencing word
» Control Word — contains all the control information required for one clock cycle

»Sequencing Word - Contains information needed to decide the next
microinstruction address

« Microoperation:

» A microinstruction contains one or more microoperations to be completed.
* Writable Control Memory (Writable Control Storage: WCS):

CS whose contents can be modified:

»Microprogram can be changed

» Instruction set can be changed or modified

A computer that employs a microprogrammed control unit will have two
separate memories: main memory and a control memory. The user’s
program In main memory consists of machine instructions and data
whereas control memory holds a fixed microprogram that cannot be
altered by the user. Each machine instruction initiates a series of
microinstructions in control memory.

The general configuration of a microprogrammed control unit Is
demonstrated in the following block diagram:

External
input

Next -
address

generator >

— | (sequencer)

Control
address

register

-

Control

memory
(ROM)

LNext-address information

— —

Fig: Microprogrammed control organization

Er. Rolisha Sth

Control
data
register

—

apit

m—

Control
word

Dynamic Microprogramming

»A more advanced development that permits a microprogram to be loaded
Initially from an auxiliary memory such as magnetic disk.

»Computer system whose control unit is implemented with a microprogram
in WCS.

»Microprogram can be changed by a systems programmer or a user.

e Sequencer. The device or program that generates address of next
microinstruction to be executed Is called sequencer. While the
microoperations are being executed, the next address Is computed in the
next address generator circuit and then transferred into the control address
register to read the next microinstruction.

« Control Address Register: CAR contains address of
microinstruction.

« Control Data Register: CDR contains microinstruction read from
memory. The microinstruction contains a control word that specifies
one or more microoperations. The data register i1s sometimes called a
pipeline register.

It allows the execution of the microoperations specified by the
control word simultaneously with the generation of the next
microinstruction. This configuration requires a two-phase clock, with
one clock applied to the address register and the other to the data
register.

Address Sequencing

Each computer instruction has its own microprogram routine in control
memory to generate the microoperations that execute the instruction. Process
of finding address of next microinstruction to be executed is called address
sequencing. The address sequencing capabilities required In a control
memory are:

a) Incrementing of the control address register.

b) Unconditional branch or conditional branch, depending on status bit
conditions.

c) A mapping process from the bits of the instruction to an address for
control memory.

d) A facility for subroutine call and return.

Following 1s the block diagram for control memory and the associated
hardware needed for selecting the next microinstruction address.

Instruction code

Mapping
logic

Suarus
bats .

Branch MUX
logic select

Clock ——

Sclect a status

t

1

Multiplexers

Control address register

(CAR)

Subroutine
register
(SBR)

Control memory

bit

Branch address

Microoperations

Fig: Bleclodiagram of address sequencer.

The diagram shows four different paths from which the control address register (CAR)
receives the address. The incrementer increments the content of the control address register
by one, to select the next microinstruction in sequence. Branching is achieved by specitying
the branch address in one of the fields of the microinstruction. Conditional branching is
obtained by using part of the microinstruction to select a specific status bit in order to
determine 1ts condition. An external address is transferred into control memory via a
mapping logic circuit. The return address for a subroutine is stored in a s%emal_ register
whose value is then used when the microprogram wishes to return from the subroutine.

Control address register receives address of next microinstruction from different
sources.

a) Incrementer simply increments the address by one
b) In case of branching, branch address is specified in one of the field of microinstruction.

c) In case of subroutine call, return address is stored in the register SBR which is used
when returning from called subroutine.

d) A mapping process from the bits of the instruction to an address for control memory.

 Conditional Branch:

~ Simplest way of mpl_ementmg branch logic hardware is to test the specified
condition and branch to the indicated address if condition is met otherwise address register
IS slmpI%/ Incremented. If Condition is true, hardware set the appropriate field of status
register to 1. Conditions are tested for O (overflow), N (negative), Z (zero), C (carry), etc.

 Unconditional Branch:

Fix the value of one status bit at the input of the multiplexer to 1. So that, branching
can always be done.

« Mapping

Assuming operation code of 4-bits which can specify 16 824) distinct instructions.
Assume further and control memory has 128 words, requiring an address of 7-bits. Now we
have to map 4-bit operation code into 7-bit control memory address. Thus, we have to map
Op-code of an instruction to the address of the Microinstruction which is the starting
microinstruction of its subroutine in memory.

» Approach of direct mapping:

Transfer Op-code bits to use it as an address of control memory.
In this mapping, one 0 is placed in the MSB and two 0Os in the LSB as
shown in figure:

Opcode

Computer instruction: 1011 address

Fig: mapping from instruction code
to microinstruction address

Mappingbits: 0|x x x x|0 0

Microinstruction address: 1 S

Er. Rolisha Sthapit

e Subroutines:

Subroutines are programs that are used by another program to
accomplish a particular task. Microinstructions can be saved by
employing subroutines that use common sections of micro code.
Example: the sequence of microoperations needed to generate the
effective address is common to all memory reference instructions. Thus,
this sequence could be a subroutine that is called from within many
other routines to execute the effective address computation.

Subroutine register is used to save a return address during a
subroutine call which is organized in LIFO (last in, first out) stack.

Microprogram Example

Once the configuration of a computer and Its microprogrammed
control unit iIs established, the designer’s task IS to generate the
microcode for the control memory. This code generation is called

microprogramming and Is a process similar to conventional machine
language programming.

Computer Configuration:

» It consists of two memory units: a main memory for storing instructions and data, and a control
memory for storing the microprogram

» Four registers are associated with the processor unit and two with the control unit. The processor
registers are PC, AR, DR and AC.

» The control unit has control address register CAR and subroutine register SBR.

» The transfer of information among the registers in processor is done through multiplexer rather
than a common bus. DR can receive information from AC, PC or memory. AR can receive
Information from PC or DR. PC can receive information only from AR.

» The arithmetic, logic and shift unit performs microoperations with data from AC and DR and
places the result in AC. Note that memory receives Its address from AR. Input data written to
memory come from DR, and data read from memory can go only to DR.

» The computer instruction format has three fields: a 1-bit field for indirect addressing symbolized
bg |, a 4-bit operation code (op-code), and an 11-bit address field. The figure below lists four of the
16 possible memory reference instructions.

BRSNS LI o F iR - :
‘ol s 11| GFINS sl ITTNIRIL

Address
10 O

—Q

Control unit

15

Y
AT

Fig: Computer hardware confi%uration
Er. Rolisha Sthap

Microinstruction Format and Description

We know the computer instruction format (explained in previous chapter) for
different set of instruction in main memory. Similarly, microinstruction in control
memory has 20-bit format divided into 4 functional parts as shown below.

3 3 3 2 2 7

F1 F2 F3 CD BE AT

Fig: Microinstruction code format (20 bits)

Fl1_F2_ F3: Microoperation fields
CID: Condition for branching
BE.: Branch field

ATy Address field

Each microoperation below is defined using resister transfer statements and is assigned a

svimbol for use in svmbolic microprogram._

Description oﬂ CD Description of BR

CD Condition Symbol Comments BR Symbol Function

00 Always =1 U Unconditional branch W JMP CAR«AD if condition = |

01 DR(15) I Indirect address bit CAR«CAR + 1if condition =0

10 AC(15) S Sign bit of AC 01 CALL CAR«AD, SBR o-CAR + 1 if condition = 1
11 AC=0 Z Zero value in AC CAR «CAR + 1if condition = 0

10 RET CAR «SBR (Return from subroutine)
11 MAP CAR(2-5)«DR(11-14), CAR(0,1,6) «0

CD (condition) field consists of two bits representing 4 status bits and BR (branch)

field (2-bits) used together with address field AD, to choose the address of the next
microinstruction.

Er. Rolisha Sthapit

F1 Microoperation Symbol 2 Microoperation Symbol
000 None NOP 000 None NOP
OO01 AC <——AC + DR ADD o011 AC «— AC — DR sSsuUB
010 AC «—0O CLRAC O10 AC «<— AC s DR OR

o111 AC «——AC + 1 INCAC o111 AC «<— AC N\ DR AND
100 AC <-—— DR DRTAC 100 DR «— M[{AR] READ
101 AR «—— DR(0O—10) DRTAR 101 DR «—— AC ACTDR
110 AR «— PC PCTAR 110 DR «—— DR + 1 INCDR
111 AMAR]|-—DR WRITE 111 DR(O0-10) -—— FPC PCTIDR
3 Microoperation Symbol

OO0 None NOP

001 AC «-— AC P DR XOR

010 AC «<— AC COM

Oo11 AC =—shl AC SHI

100 AC «—shr AC SHR

101 PC -—PC + 1 INCPC

110 PC«—AR A RTPC

111 Reserved

Here, microoperations are subdivided into three fields of 3-bits each. These 3 bits are used to
encode 7 different microoperations. No more than 3 microoperations can be chosen for a
microinstruction, one for each field. If fewer than 3 microoperations are used, one or more
fields will contain 000 for no operation.

Er. Rolisha Sthapit

Symbolic Microinstructions

Symbols are used in microinstructions as in assembly language. A symbolic microprogram
can be translated into its binary equivalent by a microprogram assembler.

Format of Microinstruction:

Contains five fields: label; micro-ops; CD; BR; AD

Label: may be empty or may specify a symbolic address terminated with a colon
Micro-ops: consists of one, two, or three symbols separated by commas
CD:oneof {U, I, S, Z},

Where
U: Unconditional Branch S: Sign of AC
I: Indirect address bit Z: Zero value iIn AC

BR: one of {JMP, CALL, RET, MAP}
AD: one of {Symbolic address, NEXT, empty (in case of MAP and RET)}

Fetch Routine

" Fetch routine

- Read mstruction from memory
- Decode instruction and update PC

Microinstructions for fetch routine:

AR «— PC
DR ¢« MJAR]. PC « PC + 1
AR ¢« DR(0-10). CAR(2-5)« DR(11-14). CAR(0.1.6) «— 0

Svmbolic microprogram for fetch routine:

ORG 64

FETCH: PCTAR U JMP NEXT
READ.INCPC U JMP NEXT
DRTAR U DMAP

Binary microporgram for fetch routine:

Binary

address K1 FZ F3 D BR AD
1000000 110 000 000 00 00 1000001
1000001 000 100 101 0o 00 I00D0 10
10000 10 101 000 000 0o 11 00 0RO 0D

Er. Rolisha Sthapit

	Slide 1: CHAPTER 4
	Slide 2: CONTENTS
	Slide 3: INTRODUCTION
	Slide 4: General Register Organization
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Stack Organization
	Slide 11: Register stack
	Slide 12: Memory stack
	Slide 13: CPU Organizations/Processor Organization
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Instruction Formats
	Slide 18
	Slide 19: Example
	Slide 20
	Slide 21: Example
	Slide 22
	Slide 23: Example
	Slide 24
	Slide 25: Example
	Slide 26: X=A-B+C+(D/E)
	Slide 27: Y=A+B(CD+EF-G/H)
	Slide 28: Addressing Modes
	Slide 29: Types of Addressing Modes
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Numerical Example
	Slide 39: Calculate the value of EA and AC using all addressing modes.
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Data Transfer and Manipulation
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55: 5.3 RISC and CISC characteristics
	Slide 56
	Slide 57
	Slide 58: Reverse Polish Notation
	Slide 59
	Slide 60: Program control instructions
	Slide 61
	Slide 62
	Slide 63
	Slide 64: Subroutine Call and Return
	Slide 65
	Slide 66
	Slide 67: Program Interrupt
	Slide 68
	Slide 69: Types of Interrupt
	Slide 70: 1. External Interrupt
	Slide 71: 2. Internal Interrupt
	Slide 72: 3. Software Interrupt
	Slide 73
	Slide 74
	Slide 75: Timing and Control Unit
	Slide 76
	Slide 77: Control Unit of a Basic Computer (Hardwired Control)
	Slide 78: Timing Signal
	Slide 79
	Slide 80
	Slide 81: Control Memory
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87: Address Sequencing
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93: Microprogram Example
	Slide 94
	Slide 95
	Slide 96: Microinstruction Format and Description
	Slide 97
	Slide 98
	Slide 99: Symbolic Microinstructions
	Slide 100

