Operating System
BIM IV Semester

Credits: 3
Lecture Hours:48

Er. Santosh Bhandari,
(Master Computer Science)

Unit-3

Deadlock

' Deadlock l

A process in operating system uses resources in the following way.
1. Requests a resource

2. Use the resource

3. Releases the resource

What is deadlock?

A Deadlock is a situation where each of the computer process
waits for a resource which is being assigned to some another
process. In this situation, none of the process gets executed since
the resource it needs, is held by some other process which is also
waiting for some other resource to be released.

' Deadlock l

A deadlock happens in operating system when two or more
processes need some resource to complete their execution that is

held by the other process.

In the diagram, the process 1 has resource 1

and needs to acquire resource 2. Similarly, Assimed
process 2 has resource 2 and needs to acquire
resource 1. Process 1 and process 2 are in a
deadlock as each of them needs the other’s
resources to complete their execution but
neither of them is willing to relinquish their
resources.

Assigned
to

Resource 2

' Deadlock l

Example
4+ System has 2 tape drives.
4+ P1 and P2 each hold one tape drive and each needs another one.

Example

4 semaphores A and B, initialized to 1
PO

wait (A); wait(B)

P1

wait (B); wait(A)

Necessary Conditions for Deadlock/Characteristics

Coffman Conditions
A deadlock occurs in four different scenarios. Those four conditions
are also known as the Coffman conditions. Coffman (1971)

In other words, a deadlock occurs if four Coffman conditions are true.
1. Mutual exclusion

2. Hold and wait

3. No preemption

4. Circular wait

' Necessary Conditions for Deadlock l

Mutual Exclusion: Two or more resources are non-shareable
(Only one process can use at a time)

There should be a resource that can only be held by one
process at a time. In the diagram below, there is a single
instance of Resource 1 and it is held by Process 1 only.

Allocated
Resource 1

' Necessary Conditions for Deadlock l

2. Hold and Wait: A process is holding at least one resource
and waiting for resources.

A process can hold multiple resources and still request more
resources from other processes which are holding them. In the
diagram given below, Process 2 holds Resource 2 and Resource
3 and is requesting the Resource 1 which is held by Process 1.

Allocated

Resource 2
Allocat ed Request
Resource 1 4 FProcess 2
Resource 3

' Necessary Conditions for Deadlock l

3. No Preemption: A resource cannot be taken from a process
unless the process releases the resource.

A resource cannot be preempted from a process by force. A
process can only release a resource voluntarily. In the diagram
below, Process 2 cannot preempt Resource 1 from Process 1. It
will only be released when Process 1 relinquishes it voluntarily
after its execution is complete.

Allocated Request Allecated

Process 1 Resource 1 R Qﬂ: 2

Resource 2

' Necessary Conditions for Deadlock l

4. Circular Wait: A set of processes waiting for each other in
circular form. A process is waiting for the resource held by the
second process, which is waiting for the resource held by the
third process and so on, till the last process is waiting for a
resource held by the first process. This forms a circular chain.

' Necessary Conditions for Deadlock l

For example: Process 1 is allocated Resource2 and it is
requesting Resource 1. Similarly, Process 2 is allocated
Resource 1 and it is requesting Resource 2. This forms a circular
wait loop.

Deadlock vs. Starvation

Deadlock Starvation
Deadlock is a situation where no process got Starvation is a situation where the low
blocked and no process proceeds priority process got blocked and the high
priority processes proceed.
Deadlock is an infinite waiting. Starvation is a long waiting but not infinite.
Every Deadlock is always a starvation. Every starvation need not be deadlock.

The requested resource is blocked by the The requested resource is continuously be
other process. used by the higher priority processes.

Deadlock happens when Mutual exclusion, It occurs due to the uncontrolled priority and
hold and wait, No preemption and circular resource management.
wait occurs simultaneously.

' System resources l

A computer has many different resources. A process needing
one of these resources can use any of them.

There are two types of system resources:
1. Preemptable

2. Non-Preemptable

' System resources l

Preemptable: A preemptable resource is one which can be
allocated to a given process for a period of time, then be
allocated to another process and then be reallocated to the
first process without any effects.

Examples
Memory, Buffers, CPU, Array Processor

' System resources l

Non Preemptable: A non preemptable resource cannot be
taken from one process and given to another without any side
effects.

Example: Printer, certainly we would not want to take the

printer away from one process and give it to other in the
middle of a print job.

' Resource Allocation Graph (RAG) l

A resource allocation graph shows which resource is held by
which process and which process is waiting for a resource of
a specific kind.

The resource allocation graph explained following:

what is the state of the system in terms of processes and
resources?

How many resources are available?

How many are allocated?

What is the request of each process?

' Resource Allocation Graph (RAG) l

Types of Vertices in RAG: two types

1. Process Vertex: Every process will be represented as a process
vertex. Generally, the process will be represented with a circle.

2. Resource Vertex: Every resource will be represented as a resource
vertex. It is also two types:

Single instance type resource: It represents a box, inside the box,
there will be one dot. So the number of dots indicates how many
instances are present of each resource type.

Multi-resource instance type resource: It also represents as a dot,
inside the box, there will be many dots present.

' Resource Allocation Graph (RAG) l

Vertices
Process Resource
Vertex Ver'iex
Single Multi-
Instance - —

Ex. CPU Ex. Register

' Resource Allocation Graph (RAG) l

Types of Edges in RAG?: two
1. Assign Edge: If you already

Edge

assign a resource to a process Astgn Refuest

then it is called Assign Edge. Fdge o

2. Request Edge: It means in ©)

the future the process might | l

want some resource to R R

complete the execution, that is

called request edge. Arrow R->P: if a process is using a resource

Arrow P->R: If a process is requesting a
resource

' Example 1: Single instances RAG l

With deadlock

If there is a cycle in the Resource
Allocation Graph and each resource
in the cycle provides only one
instance, then the processes will be
in deadlock. For example, if process
P1 holds resource R1, process P2
holds resource R2 and process P1 is
waiting for R2 and process P2 is
waiting for R1, then process P1 and
process P2 will be in deadlock.

R1

P1is holdingRl L~ | 5 ~ P2 is waiting for R1

P2 is holding R2

P1 is waiting for R2 —a

R2

SINGLE INSTANCE RESOURCE TYPE WITH DEADLOCK

Example 1: Single instances RAG

Without Deadlock:

Processes P1 and P2 acquiring
resources R1 and R2 while .
process P3 is waiting to G 2 okl ¢
acquire both resources. In -
this example, there is no \ \

deadlock because there is no » -
Ci rC u I a r d e p e n d e n Cy. SINGLE INSTANCE RESOURCE TYPE WITHOUT DEADLOCK

P3 is waiting for R1\ P3 is waiting for R2

' Handling Deadlocks l

Methods of handling deadlocks:
There are four approaches to dealing with deadlocks.

1. Deadlock Ignorance (Ostrich Method)

2. Deadlock Prevention
-Mutual exclusion, hold and wait, No-preemption, Circular wait

3. Deadlock avoidance (Banker's Algorithm)
4. Deadlock detection & recovery

' Deadlock Ignorance (Ostrich Method) l

Stick your head in the sand and pretend there is no problem at
all, this method of solving any problem is called Ostrich
Algorithm. This Ostrich algorithm is the most widely used
technique in order to ignore the deadlock and also it used for all
the single end-users uses. If there is deadlock in the system, then
the OS will reboot the system in order to function well.

Including UNIX and WINDOWS, all the operating system ignore
the deadlock.

' Deadlock Ignorance (Ostrich Method) l

Advantages:

* Simplicity: Ignoring the possibility of deadlock can make the
designh and implementation of the operating system simpler
and less complex.

* Performance: Avoiding deadlock detection and recovery
mechanisms can improve the performance of the system, as
these mechanisms can consume significant system resources.

' Deadlock Ignorance (Ostrich Method) l

Disadvantages:

* Unpredictability: Ignoring deadlock can lead to unpredictable
behavior, making the system less reliable and stable.

* System crashes: If a deadlock does occur and the system is not
prepared to handle it, it can cause the entire system to crash,
resulting in data loss and other problems.

 Reduced availability: Deadlocks can cause processes to
become blocked, which can reduce the availability of the
system and impact user experience.

' Deadlock Prevention l

-Try to false necessary conditions of deadlock (Mutual exclusion,
hold and wait, No-preemption, Circular wait).

-To prevent deadlock we try to false any of the four or all four
conditions.

We can prevent a Deadlock by eliminating any of the four
conditions.

1. Removal of mutual exclusion

2. Eliminate Hold and wait

3. Eliminate No Preemption

4. Eliminate Circular Wait

' Deadlock Prevention l

1. Removal of mutual exclusion

A resource can never be used by more than one process
simultaneously which is fair enough but that is the main reason
behind the deadlock. If a resource could have been used by more
than one process at the same time then the process would have
never been waiting for any resource.

2. Eliminate Hold and Wait: Allocate all required resources to
the process before the start of its execution, this way hold and
wait condition is eliminated but it will lead to low device
utilization.

' Deadlock Prevention l

3. Eliminate No Preemption:

In certain situations, deadlocks can be prevented by resource
preemption. If a process requests a resource that is currently
allocated to another process, the operating system can preempt

(temporarily revoke) the resource from the current process and
allocate it to the requesting process.

' Deadlock Prevention l

4. Eliminate Circular Wait:

To violate circular wait, we can assign a priority number to each
of the resource. A process can't request for a lesser priority
resource. This ensures that not a single process can request a
resource which is being utilized by some other process and no
cycle will be formed.

-This ensures that processes never enter a circular wait state,
breaking the circular wait condition and preventing deadlocks.

' Deadlock Prevention l

Among all the methods, eliminating
Circular wait is the only approach that
can be implemented practically.

' Deadlock Avoidance l

Banker’s algorithm
-1t is used for deadlock avoidance
-t is also used for deadlock detection.

' Deadlock Avoidance: Banker’'s algorithm l

-The banker’s algorithm is used in the banking system to
check whether a loan can be sanctioned to a person or
not.

-Suppose there are n number of account holders in a
bank and the total sum of their money is S.

-If a person applies for a loan then the bank first subtracts
the loan amount from the total money that the bank has
and if the remaining amount is greater than S then only
the loan is sanctioned.

' Deadlock Avoidance: Banker’'s algorithm l

Three things to consider in the banker's algorithm :
1. Request: How much each process can request for each

resource. (i.e. [MAX] request).

2. Allocated: How much each process is currently holding each
resource. ([ALLOCATED] resource).

3. Available: The number of each resource currently available.

([AVAILABLE] resource).

' Deadlock Avoidance: Banker’'s algorithm l

The data structure used in Bankers' algorithm:

Available: It is an array of length 'm' that defines each type of
resource available in the system. When Available[j] = K, means
that 'K' instances of Resources type R[j] are available in the
system.

Max: It is a [n x m] matrix that indicates each process P[i] can

store the maximum number of resources R[j] (each type) in a
system.

' Deadlock Avoidance: Banker’'s algorithm l

The data structure used in Bankers' algorithm:

Allocation: It is a matrix of m x n orders that indicates the type of
resources currently allocated to each process in the system.
When Allocation [i, j] = K, it means that process PJi] is currently
allocated K instances of Resources type R[j] in the system.

Need: It is an M x N matrix sequence representing the number of
remaining resources for each process. When the Need|i] [j] =k,
then process P[i] may require K more instances of resources type
Rj to complete the assigned work.

Neddl[i][j] = Max[i][j] - Allocation[i][j].

' Deadlock Avoidance: Banker’'s algorithm l

The data structure used in Bankers' algorithm:

Finish: It is the vector of the order m. It includes a Boolean value
(true/false) indicating whether the process has been allocated to
the requested resources, and all resources have been released
after finishing its task.

' Deadlock Avoidance: Banker’'s algorithm l

Problem: Considering a system with five processes PO through P4
and three resources of type A, B, C. Resource type A has 10
instances, B has 5 instances and type C has 7 instances. Suppose
at time tO following snapshot of the system has been taken:

Process Allocation Max Available
Calculate:
AB C ADBC ‘g‘g 2 1. Need matrix

> 010 7 5 3

jf - = 2. ls there a deadlock?

D, 30 2 9 0 2 3. If not, calculate the safe
[

' c 11 c 2’ sequence.

P 0 0 2 4 3 3

Deadlock Avoidance: Banker’'s algorithm

Total Resources: A=10,B=5,C=7
Available = Total resource — Total of allocation (A: 10-7=3, B: 5-2=3, C: 7-5=2)
Need [i, j] = Max [i, j] — Allocation [i, j]

Process Allocation Max Available Process Need

AB C ABC AB C AlB|C
D, D010 7 5 3 3 3 2 Dy /|14 |3
F 2 00 3 2 2 Dy 1 (2] 2
Py 302 9 0 2 P2 6 0|0
P3 2 11 2 2 2 3 0]1]1
Py 002 1 3 3 P4 4 13|1

Safe sequence: P1-p3-p4-p0-p2

Deadlock Avoidance: Banker’'s algorithm

Step 1: For Process P1.

Need <= Available

7,4,3 <=3, 3, 2 condition is false.

So, we examine another process, P2.

Step 2: For Process P2:

Need <= Available

1, 2, 2 <=3, 3, 2 condition true

New available = available + Allocation
(3,3,2)+(2,0,0)=>5, 3, 2

Similarly, we examine another process P3.
Step 3: For Process P3:

P3 Need <= Available

6,0, 0< =05, 3, 2 condition is false.
Similarly, we examine another process, P4.

Deadlock Avoidance: Banker’'s algorithm

Step 4: For Process P4.

P4 Need <= Available

0,1, 1<=5, 3, 2 condition is true

New Available resource = Available + Allocation
5 3,2+2,1,1=>7,4,3

Similarly, we examine another process P5.

Step 5: For Process P5:

P5 Need <= Available

4,3, 1<=7,4, 3 condition is true

New available resource = Available + Allocation
7,4,3+0,0,2=>7,4,5

Now, we again examine each type of resource request for processes P1 and P3.

Deadlock Avoidance: Banker’'s algorithm

Step 6: For Process P1.:

P1 Need <= Available

7,4,3<=7,4,5 condition is true

New Available Resource = Available + Allocation
7,4,5+0,1,0=>7,5,5

So, we examine another process P2.

Step 7: For Process P3:

P3 Need <= Available

6,0, 0<=7,5, 5 condition is true

New Available Resource = Available + Allocation
7,5,5+3,0,2=>10,5,7

Hence, we execute the banker's algorithm to find the safe state and the safe sequence like
P2, P4, P5, P1 and P3.

Deadlock Avoidance: Banker’'s algorithm

Safety Algorithm

1) Let Work and Finish be vectors of length ‘m” and ‘n’ respectively.
Initialize: Work = Available
Finish[i] = false; fori=1, 2, 3, 4....n
2) Find an i such that both

a) Finish[i] = false

b) Needi <= Work

if no such i exists goto step (4)

3) Work = Work + Allocation[i]
Finish[i] = true

goto step (2)

4) if Finish [i] = true for all i

then the system is in a safe state

I Detecting deadlock using resource allocation graph l

1. Using Single instance RAG
2. Using Multiple Instance RAG

Deadlock detection using Single instances RAG

Problem: Check if deadlock occurs:
-There is a cycle so deadlock occurs.

To verify:
From the table, We

can’t fulfill the request
from availability. So,
There is a deadlock

R1

P1is holdingR1 /

SN « P2 is waiting for R1

_ " P2isholdingR2

R2

P1 is waiting for R2 =

SINGLE INSTANCE RESOURCE TYPE WITH DEADLOCK

Deadlock detection using Single instances RAG

Problem: Check if deadlock occurs:
-There is no complete cycle so No deadlock.

From the table, We can fulfill the request from ks
availability. So, There is NO deadlock .

P3 is waiting for R2

\

R1 R2

SINGLE INSTANCE RESOURCE TYPE WITHOUT DEADLOCK

Deadlock detection using MULTIPLE instances RAG

Problem: Check if deadlock occurs:

-There is no complete cycle so No deadlock.

From the table, We can fulfill the request from
availability. So, There is NO deadlock.

Allocation Request
— Resource Resource
R1 R2 R1 R2
51 1 0 0 1
P2 " 1 : v
P3 0 1 - ’

R1

~ P2 is waiting for R1

P1is holdingR1 /

P2 is holding R2

P1 is waiting for R2 /

P3 is holding R2

R2

MULTI INSTANCES WITHOUT DEADLOCK

Available:
R1:0
R2:0

%

Deadlock detection using MULTIPLE instances RAG

Problem: Check if deadlock occurs:

-There is complete complete cycle so deadlock.

From the table, We can’t fulfill the request from

availability. So, There is deadlock.

Allocation Request
Bioiia b Resource Resource
R1 R2 R1 R2
p1 1 0 0 1
P2 . . : .
P3 0 1 ' .

P1 is holdingR1 /

/

P2 is waiting for R1

P2 is holding R2

P1is waitingforR2 =

‘>®

P3 is holding R2

MULTI INSTANCES WITH DEADLOCK

Available:
R1:0
R2:0

I Deadlock Recovery I

Deadlock recovery is a critical process that is initiated after a
deadlock has been detected in a computer system.

Four methods of deadlock recovery:
1. Process termination (kill)
2. Priority inversion l l
3. Resource pre-emption

4. Resource Rollback.

Recovery

Resources Processes

l l l l

Preempt Rollback Kill one Kill All

I Deadlock Recovery I

Process Termination:

-In this method, the operating system identifies the processes
involved in the deadlock and terminates one or more processes.
-This frees up the resources held by the terminated processes,
which can be used by the remaining processes to continue their

execution.

Drawbacks: loss of data, abrupt termination of processes, and
inconsistency in the system.

I Deadlock Recovery I

Priority Inversion

-In this method, the priority of the processes is changed to
avoid deadlock situations.

-The process holding the required resources is given a higher
priority, and the process waiting for the resources is given a
lower priority.

-this method can also lead to starvation of lower priority

processes, as higher priority processes can keep preempting the
resources.

I Deadlock Recovery I

Resource Pre-emption

-It is a complex method for resolving deadlocks.

-In this method, the operating system identifies the resources
involved in the deadlock and selects one or more resources to
be pre-empted.

-The resources are then taken away from the process holding
them and allocated to the waiting processes.

-The pre-empted process is suspended until the required
resources become available again.

I Deadlock Recovery I

Rollback
-Rollback is a method for resolving deadlocks that is commonly

used in database systemes.
-In this method, the system rolls back the transactions of the

involved processes to a previous state where they were not

deadlocked.
-This method can cause significant delays in the execution of

the transactions and can result in a loss of data.

Find me

9851083215

Santosh.it288@mail.com

www.phtechno.com

Kathmandu

