Operating System
BIM IV Semester

Credits: 3
Lecture Hours:48

Er. Santosh Bhandari,
(Master Computer Science)

Process and thread

' Process and thread l

-A process Is a program in execution.

-The execution of a process must progress in a sequential manner.
-A process is defined as a sequence of instructions executed in a
predefined order.

-A process is defined as an entity which represents the basic unit
of work to be implemented in the system.

-Processes change their state as they execute and can be either
new, ready, running, waiting or terminated.

-A process in OS is managed by the Process Control Block (PCB).
PCB is a data structure that contains information about the
process, such as its state, priority, and memory usage.

' Process and thread l

What is thread?
-Unit of execution within a process. A process can have one or
many threads.

l Process I

-When a program is loaded into the Stack
memory and it becomes a process, it can T
be divided into four sections — stack,
heap, text and data.

Stack: The process Stack contains the
temporary data such as method/function, !
parameters, return address and local eap
variables. Data

Heap: This is dynamically allocated
memory to a process during its run time.

Text

l Process I

Program code/Text: The instructions that Stack

the process will execute. This includes the T
current activity represented by the value
of Program Counter and the contents of
the processor's registers.

-The program counter provides the !
address of the next instruction to be eap
executed by the current process. Data

Data: This section contains the global and
static variables.

Text

' Program l

-Program is a set of instructions. #include <stdio h>
-A computer program is written by a
computer programmet. int main() {

printf("Hello, World! \n");
return O;

J

-The programs are usually written in a
Programming Language like C, C ++, Python,
Java, R, C # (C sharp), etc.

-The step-by-step process of constructing a
program is an algorithm.

' Process vs. Program l

Program Process

Program contains a set of
instructions designed to complete
a specific task.

Process is an instance of an
executing program.

Process iIs a active entity as it iIs
created during execution and
loaded into the main memory.

Program Is a passive entity as it
resides in the secondary memory.

Program Is a static entity. Process is a dynamic entity.

' Process vs. Program l

Program

Process

Program does not have any
resource requirement, it only
requires memory space for storing
the instructions.

Process has a high resource
requirement, it needs resources
like CPU, memory address, |/O
during its lifetime.

Program contains instructions

Process is a sequence of
Instruction execution.

Process Life Cycle/Process Model

When a process executes, it passes through different states.
1. Start/new: This is the initial state when a process is first

| _Short-lerm o
started/created.
Schedule]
B - Dispatch -
p . Created . . Completion ~ Y
. New | | Heady .' Hunnlng Exlt __f
" - ' Fl FIors t:!.-'

Suspended

Middle-Term

lime qu antum
He
Hesume umpl tion request
Walt or hlm:l-:

Euspended rE:.Eu:i',,ir)

| Suspended Resume Middle-Term
Process completed

by /O but still in N
suspended |'_ Blocked suspended _.3

' Process Life Cycle l

2. Ready: The process is waiting to be assigned to a processor. Ready
processes are waiting to have the processor allocated to them by
the operating system so that they can run. Long-term scheduler
works here.

3. Running: Once the process has been assigned to a processor by
the OS scheduler, the process state is set to running and the
processor executes its instructions.

4. Waiting: The process moves into the waiting state if it needs to
wait for a resource, such as waiting for user input, or waiting for a
file to become available.

' Process Life Cycle l

5. Terminated or Exit: Once the process finishes its execution, or it is
terminated by the operating system, it is moved to the terminated
state where it waits to be removed from main memory.

Additional states:

1. Suspend wait/block: if the wait state is full then, the process is
sent to secondary memory for waiting.

2. Suspend ready: when ready is full, it sends to suspend ready
state.

' Process Life Cycle l

We have many processes ready to run. There are two types of
multiprogramming:

Preemption — Process is forcefully removed from CPU. Pre-emotion
is also called time sharing or multitasking.

Non-preemption — Processes are not removed until they complete
the execution. Once control is given to the CPU for process

execution, till the CPU releases the control by itself, control cannot
be taken back forcibly from the CPU.

' Process Scheduling l

Process scheduling is the activity of the process manager that
handles the removal of the running process from the CPU and the

selection of another process based on a particular strategy.

CPU Scheduling takes place when the process:

1. Switches from running to waiting state (preemptive)

2. Switches from running to ready state (preemptive)

3. Switches from waiting to ready state (non-preemptive)
4. Terminates (Non-Preemptive)

1 and 2 are preemptive and others are non preemptive

' Schedulers l

Process Scheduling is an integral part of Multi-programming
applications. Such operating systems allow more than one process
to be loaded into usable memory at a time and the loaded shared

CPU process uses repetition time.

There are three types of process schedulers:
1. Long-term or Job Scheduler

2. Short-term or CPU Scheduler

3. Medium-term Scheduler

Schedulers

Types of Schedulers

Long-term scheduler or Job scheduler or High-level Scheduler or
Admission Scheduler — performance: Decides how many processes
should be made to stay in the ready state. (Created).

-It brings the new process to the ‘Ready State’, "V-Pound: [fthe execution of
a task or program is highly

-It controls the Degree of Multi-programming. dependent on the CPU.
-Provides both I/O and CPU-bound processes.

/0 bound: if its execution is
dependent on the input-output
-If the job scheduler selects more I/O bound system and its resources, such

processes, all of the jobs may become stuck, 35 disk drives and peripheral
the CPU will be idle for long time, and EVICES.

multiprogramming will be reduced as a result.

' Schedulers l

Short-term scheduler or CPU scheduler — Context switching time:
-It chooses one job from the ready queue and then sends it to the
CPU for processing.

The short-term scheduler will decide which process is to be
executed next and then it will call the dispatcher.

-In other words, it is context switching.

-If it chooses a job with a long CPU burst time, all subsequent jobs
will have to wait in a ready queue for a long period. This is known as
hunger/starvation.

' Schedulers l

Medium-term — Swapping time:

-Suspension decision is taken by the medium-term scheduler.

-It is used for swapping (which is moving the process from main
memory to secondary and vice versa.)

-It handles the switched-out processes.

-If the running state processes require some IO time to complete,
the state must be changed from running to waiting. This is
accomplished using a Medium-Term scheduler.

' Other Schedulers l

1/0 schedulers: 1/0 schedulers manage the execution of 1/0
operations such as reading and writing to discs or networks.
-Algorithms to determine the order in which I/O operations are
executed: FCFS (First-Come, First-Served) or RR (Round Robin).
Real-time schedulers: Real-time schedulers ensure that critical tasks
are completed within a specified time frame.

-Used in a real-time system.

They can prioritize and schedule tasks using various algorithms such
as EDF (Earliest Deadline First) or RM (Rate Monotonic).

Short term. Vs. Long-Term vs. Medium-term Schedulers

Long Term Scheduler

Short term schedular

Medium Term Scheduler

It is a job scheduler

It is @ CPU scheduler

It Is @ process-swapping
scheduler.

Speed is lesser than short-
term scheduler

Speed is the fastest among all
of them.

Speed lies in between both
short and long-term

It controls the degree of
multiprogramming

It gives less control over how
much multiprogramming is
done.

It reduces the degree of
multiprogramming.

It is barely present or
nonexistent in the time-
sharing system.

It is a minimal time-sharing
system.

It is a component of systems
for time sharing.

Selects processes from the
pool and then loads them into
the memory for execution.

It selects those processes
which are ready to execute

It can re-introduce the process
into memory and execution
can be continued.

| Possible State Transitions in process model l

1. Null > New: A new process is created for execution.

2. New - Ready: The newly created process which is ready to
execute on the CPU and is waiting for it to get free is moved here in
the ready state. There can be multiple processes in these states at a
time.

3. Ready - Running: The Selected process is moved into the
Running state where it will get the CPU for executing its tasks. There
can be at most one process in the Running state at a time.

| Possible State Transitions in process model l

4. Running = Exit: The process whose execution gets over will be
terminated and moved into the Exit state.

5. Running - Ready: When the process has reached its maximum
time limit of execution or when a high priority process came for

execution, the process currently present in the running state will be
moved into the ready state.

6. Running - Blocked: When the process is waiting for some event

to occur the process will be moved to the Blocked state from the
Running state.

| Possible State Transitions in process model l

7. Blocked - Ready: A process will be moved back into the ready
state when the event that it has been waiting for occurs.

8. Ready = Exit: This will only happen when the parent process of
the current process gets terminated or it requests explicitly to
terminate the child process.

9. Blocked - Suspend: When the Blocked queue gets filled with the
processes then some of the processes from the blocked queue will
be moved into the Suspend state. Suspend state exists in the
secondary memory by using the concept of virtual memory.

| Possible State Transitions in process model l

10. Suspend - Blocked: When the Space gets available into the
Blocked state then the process that has been put into the Suspend
state will be moved back into the Blocked State.

11. Suspend - Ready: When the event has occurred for the process
that has been waiting into the suspend state in the secondary
memory then it will be directly moved into the Ready state.

' Multiprogramming l

-A multiprogramming operating system may run many programs
on a single processor computer.

-If one program must wait for an input/output transfer the other
programs are ready to use the CPU.

-Various jobs may share CPU time.

-Execution of their jobs is not defined to be at the same time
period.

-When a program is being performed, it is known as a "Task",
"Process", and "Job".

-The CPU won't be idle in a multiprogramming OS.

Multiprogramming

Main Memory

- - Supervisor
Writing Data on Disk
Secondary Storage : Job A
Device /O Operations
Job B
Job B’ isin

execution

' Types of Multiprogramming l

Two types:
1. Multitasking Operating System
2. Multiuser Operating System

' Types of Multiprogramming l

Two types:

1. Multitasking OS

A multitasking operating
system enables the
execution of two or more hvd

programs at the same
time.

Word Processor E-mail Web Browser Anti Virus

' Types of Multiprogramming l

2. Multiuser OS

A multiuser OS allows
many users to share
processing time on a
central computer from
different terminals.

' How Multiprogramming works? l

4
o

' Advantages of Multiprogramming l

1. CPU utilization is high because the CPU is never goes to
idle state.

2. Memory utilization is efficient.

3. CPU throughput is high and also supports multiple
interactive user terminals.

' Disadvantages of Multiprogramming l

1. CPU scheduling is compulsory because lots of jobs are
ready to run on CPU simultaneously.

2. Ifit has alarge number of jobs, then long-term jobs will
require a long wait.

3. Programmers also cannot modify a program that is being
executed.

' Process Creating l

A process can create several new processes through creating
process system calls during the process execution.

-In Linux Process creation is achieved through the fork() system call.
-In Windows, the CreateProcess() function is commonly used to
create a new process

-The newly created process is called the child process and the
process that initiated it (or the process when execution is started) is
called the parent process.

-Every new process creates another process forming a tree-like
structure.

' Process Creating l

-A unique process ID is allocated to

each process when it is created

-The child process created by fork is
a copy of the original parent

process, except that it has its own

process ID.

' Tree of process on a Solaris system l

-On UNIX systems the process
scheduler is termed sched, and is
given PID O.

-The first thing it does at system
startup time is to launch init,
which gives that process PID 1.
Init then launches all system
daemons and becomes the
ultimate parent of all other
processes.

' Tree of process on a Solaris system l

What is Daemon?

a daemon is a type of background process that runs

continuously, providing specific services or performing tasks
without direct user interaction.

' Process Creating l

A process that is waiting for its parent to accept its return
code is called a zombie process.

If a parent dies before its child, the child (orphan process)

Is automatically adopted by the original “init” process
whose PID is 1.

' Process Creating l

There are four principal events that cause processes to be created:

1. System initialization.
2. Execution of a process creation system call by a running process.

3. A user request to create a new process.
4. Initiation of a batch job.

' Process Creating l

The fork() system call returns either of the three values

1. fork() returns Negative value to indicate an error, i.e.,
unsuccessful in creating the child process.

2. fork() returns a zero for child process, i.e. successful creation of

child process.
3. fork() returns a positive value for the parent process. This value

is the process ID of the newly created child process.

Process Creating

#include<stdio.h>
#include<unistd.h>
int main()
{
pid_t pid;
pid = fork(); /* fork another process */
if (pid < 0) {/* error occurred */
printf(“child process creation is Failed");
}
else if (pid ==0) {/* child process */
printf(“child process”);
printf("%d", pid);
}
else { /* parent process */
printf (“parent process");
printf("%d", pid);
}

' Process Creating l

#include <stdio.h>

Hinclude <SyS/typeS.h> . Header file for data types pid t (process ID type).
#tinclude <unistd.h> : header file for the fork() system call.
int main() {

fork();
printf("Called fork() system call\n"); Output
return O; Called fork() system call

} Output explanation: Called fork() system call

In the above case, fork() is called once, hence the output is

printed twice (2 power 1). If fork() is called, 3 times, then the
output would be printed 8 times (2 power 3).

Process Creation

P1
{ ()
Fork();
Printf(“Hello); P() ol
} ello
Hello
Hello C1l

P() Hello

{ P1

Fork();
Fork(); \FQ\
Printf(“Hello);

) P()
Hello Hello
Hello c1 -
Hello
Hello) m
—FQ)
. P() P() Hello
Process Creation Hello
ci1
()
-

P() Hello

{ P1

Fork();
Fork();
Fork();
Printf(“Hello);
}
Hello
Hello C1
Hello
Hello F()
Hello R()
Hello Hello
Hello P()
Hello C12
C1l1
F()_
R()
i SR
p) Hello
f% Hello ¢ Hello
F)
-

()
P() Hello

{
Fork();

Printf(“HI")
Fork();
Printf(“Hello);
}

HI

HI

HELLO

HELLO

HELLO

HELLO

P(HL)

HELLO

P1

R
P(HI)
F) | HI
Cl P(HL) HELLO
F() c2
P(HI)
—F—
HI P(HI)
HELLO “FO)
P(HL)

45

HELLO

Process Creation..

what will be the o/p for this???
1. main()

2. {

3. fork();

4. fork();

5. printf(“hello”);

6. }

' Process Control Block (PCB) l

-A process in OS is managed by the Process Control Block (PCB).
-A Process Control Block is a data structure maintained by the

Operating System for every process. The PCB is identified by an
integer process ID (PID).

Following information exists in PCB:
Process State (PS): The current state of the process i.e., New, ready,
running, waiting, terminated.

Process privileges: This is required to allow/disallow access to
system resources.

' Process Control Block (PCB) l

Process ID (PID): Unique identification for each of the process in the
operating system.

Pointer: A pointer to parent process.

Program Counter (PC): Program Counter is a pointer to the address
of the next instruction to be executed for this process.

CPU registers: Various CPU registers where process need to be
stored for execution for running state.

' Process Control Block (PCB) l

Memory management information: This includes the information of
page table, memory limits, Segment table depending on memory
used by the operating system.

Accounting information: This includes the amount of CPU used for
process execution, time limits, execution ID etc.

O status information: This includes a list of I/O devices allocated to
the process.

Process Control Block (PCB): Example

-Use the top or ps command in Linux to check process state.

4749384
533472
13544
166704
©

o s R o s R Qs - o o R o

RES
3235100
51792
4224
11348
0

SO0 00000000

SHR
133120
39580
3456
8148

0

o s R o s o Qs - o o o

H ULV HHHHHHHEHEHEAELLDLDZI WL

2 0 QO 00 0o 0 e o W Oh)-

o s B o R o Qs - s R o Qs o s i
2 Q00O OO0 LNNMNIW

Lo s - o O o QR - Qs o o s o R R - o

COMMAND
gnome-s+
gnome-t+
top
systemd
kthreadd

rcu_gp
rcu_par+

slub Tl+
netns

kworker+
kworker+
mm_perc+
rcu_tas+
rcu_tas+
rcu_tas+
ksoftir+
rcu_pre+

' Process Control Block (PCB) l

-Use the top command in Linux.

PID (Process ID): The unique identification number assigned to
each running process. Processes are listed in order of their PID.
USER: The username of the owner of the process.

PR (Priority): The priority of the process. Higher numerical values

indicate lower priority. The priority may be influenced by factors
such as nice values and process scheduling.

' Process Control Block (PCB) l

NI (Nice Value): The "niceness" value of the process, which
determines its priority. Higher nice values mean lower priority.
Users can adjust the nice value to influence the scheduling priority
of a process.

VIRT (Virtual Memory): The total virtual memory used by the
process. This includes the process's code, data, and shared
libraries, as well as memory that has been swapped out.

RES (Resident Memory): It represents the portion of the process's

memory that is held in RAM.

' Process Control Block (PCB) l

SHR (Shared Memory): The amount of shared memory used by
the process. Shared memory is memory that may be used by
multiple processes.

S (%CPU): The percentage of CPU time used by the process since
the last update. This value is calculated as a percentage of total
CPU time.

MEM (%MEM): The percentage of physical RAM used by the
process. It is calculated as the ratio of the process's resident set
size (RES) to the total physical memory.

' Process Control Block (PCB) l

TIME+: The total accumulated CPU time used by the process since
it started.

COMMAND: The name of the command or executable associated
with the process.

' Thread l

" Athread is the smallest unit of processing that can be
performed in an OS.

" |n most modern operating systems, a thread exists within a
process - that is, a single process may contain multiple threads.

= Athread is a basic unit of CPU utilization, it comprises a thread
ID, a program counter, a register set, and a stack.

' Thread l

= Athreadis also called a lightweight process.

" Each thread belongs to exactly one process and no thread can
exist outside a process.

= The process can be split down into so many threads.

For example, in a browser, many tabs can be viewed as threads. MS
Word uses many threads - formatting text from one thread,
processing input from another thread, etc.

Thread

What is shared among threads and what is unique for each thread?

Shared Among Threads Unique For Each Thread
Code Section Thread Id
Data Section Register Set
OS Resources Stack
Open Files & Signals Program Counter

Single Thread and Multi thread

Register

Counter

Stack

Data

Files

Code

Single Thread

Register Register Register
Counter Counter Counter
Stack Stack Stack

Data Files

:

Single Process P with single thread

First Thread

L —————

Second Thread

Third Thread

Single Process P with three threads

' Single Thread and Multi thread l

Process 1 Process 1 Process 1 Process
\
\ Y
User 2
space
Thread Thread
Kernel
space 3 Kernel Kernel

(a) (b)

(a) Three processes each with one thread
(b) One process with three threads

' Single Thread and Multi thread l

Thread 2
|

Thread 1 Thread 3
\ /

é m// rfegens
Thread 1's — E H ~€ Thread 3's stack
stack v

Kernel

Each thread has its own stack

Thread usage example

- | =i gy e | e iy | =
By b @) e e] | ek ey el | s @ dnace
1 b=y md | e e e | | g A e e | s By By
& = o | e =, e | B e e | e g

il il e o | | B iy o e | il e el
L LD N LR B B LR B - Pl W i
dmbae. w | | s ey e e sk rwsay i o, Sl
e S oe e el |bve m e e v bkl ieedee
s ma | emaewey ks Y Rl Pl T
- =i || Py e | | e s gk b B
e | e e el | ke e b il | e On e g

T

=
Kernel

Keyboard Disk

A word processor with three threads

Each thread has its own stack

Process vs. Thread

Process

Thread

Process is heavy weight or resource intensive.

Thread is light weight, taking lesser
resources than a process.

Process switching needs interaction with operating
system.

Thread switching does not need to
interact with operating system.

In multiple processing environments, each process
executes the same code but has its own memory and
file resources.

All threads can share same set of open
files, child processes.

If one process is blocked, then no other process can
execute until the first process is unblocked.

While one thread is blocked and
waiting, a second thread in the same
task can run.

Multiple processes without using threads use more
resources.

Multiple threaded processes use fewer

resources.

' Properties of Thread l

* Only one system call can create more than one thread
(Lightweight process).

 Threads share data and information.

 Threads shares instruction, global and heap regions but has its
own individual stack and registers.

* Thread management consumes no or fewer system calls as
the communication between threads can be achieved using
shared memory.

 The isolation property of the process increases its overhead in
terms of resource consumption.

' Types of Thread l

There are two types of threads:
1. User level Threads
2. Kernel level Threads

' User level Threads l

-Thread that can occurs in user level called user-level thread.
-The operating system does not recognize the user-level thread.
-User threads can be easily implemented and it is implemented
by the user.

-The kernel level thread does not know nothing about the user
level thread.

examples: Java thread, POSIX threads, etc.

User level Threads

Process P1 Process P2

2 3 3

Thread Ubrary I

-
-

User Space

[Thread Ubrary I

Kernel Space

CPU CPU CPU CPU

' User level Threads l

Advantages of User-level threads

 The user threads can be easily implemented than the kernel
thread.

* User-level threads can be applied to such types of operating
systems that do not support threads at the kernel-level.

* |tis faster and efficient.

* Context switch time is shorter than the kernel-level threads.

* |t does not require modifications of the operating system.

' User level Threads l

Disadvantages of User-level threads

e User-level threads lack coordination between the thread and
the kernel.
* |f athread causes a page fault, the entire process is blocked.

' Kernel level Threads l

-The kernel thread recognizes the operating system.

-There is a thread control block and process control block for each
thread and process in the kernel-level thread.

-The kernel-level thread is implemented by the operating system.
-The kernel-level thread offers a system call to create and manage
the threads from user-space.

' Kernel level Threads l

Advantages of Kernel-level threads

 The kernel-level thread is fully aware of all threads.
 The scheduler may decide to spend more CPU time in the
process of threads being large numerical.

* The kernel-level thread is good for those applications that
block the frequency.

' Kernel level Threads l

Disadvantages of Kernel-level threads

* The kernel thread manages and schedules all threads.

* The implementation of kernel threads is difficult than the user
thread.

 The kernel-level thread is slower than user-level threads.

User thread vs. Kernel level Threads

User Threads

Kernel Thread

Multithreading in user process

Multizhreading in kernel process

Created without kernel intervention

Kernel itself is multithreaded

Context switch is very fast

Context switch is slow

If one thread is blocked, OS blocks
entire process

= |

Individual thread can be blocked

Generic and can run on any OS

Specificto OS

Faster to create and manage

Slower to create and manage

' Multithreading l

-Multithreading allows the application to divide its task into
individual threads.

-In multi-threads, the same process or task can be done by the
number of threads, or we can say that there is more than one
thread to perform the task in multithreading.

-With the use of multithreading, multitasking can be achieved.

' Multithreading l

 Many software package that run on modern desktop pcs are
multithreaded.

* A web browser might have one thread to display images or
text while other thread retrieves data from the network.

A word-processor may have a thread for displaying graphics,
another thread for reading the character entered by user
through the keyboard, and a third thread for performing
spelling and grammar checking in the background.

' Why Multithreading l

* |n certain situations, a single application may be required to
perform several similar task such as a web server accepts client
requests for web pages, images, sound, graphics etc.

* A busy web server may have several clients concurrently
accessing it.

* So if the web server runs on traditional single threaded
process, it would be able to service only one client at a time.

' Benefits of Multithreading l

Responsiveness:

The multithreaded interactive application continues to run even if

part of it is blocked or performing a lengthy operation.

Resource Sharing:

* |t allows an application to have several different threads of
activity within the same address space.

' Benefits of Multithreading l

Economy:

Allocating memory and resources for each process creation is
costly. Since thread shares the resources of the process to which
they belong, it is more economical to create and context switch
threads.

Utilization of multiprocessor architecture:

The benefits of multi threading can be greatly increased in
multiprocessor architecture, where threads may be running in
parallel on different processors. Multithreading on a multi-CPU
Increases concurrency.

' Benefits of Multithreading l

Modularity:

Multithreading can facilitate better code organization and
modularity by dividing complex tasks into smaller, manageable
units of execution.

' Multithreading Models l

1. Many to many relationship.
2. Many to one relationship.
3. One to one relationship.

' One to one Model l

-The one to one model creates a separate kernel thread to handle
each and every user thread.
-Linux and Windows from 95 to XP implement the one-to-one

model for threads.
-As each user thread is connected to different kernel, if any user

thread makes a blocking system call, the other user threads won’t
be blocked.

' One to one Model l

A disadvantage of this model is
that the creation of a user
thread requires a
corresponding kernel thread.

' Many to One Model l

-In the many to one model, many user-level threads are all
mapped onto a single kernel thread.

-Thread management is handled by the thread library in user
space, which is efficient in nature.

' Many to One Model l

A disadvantage of this
model is that a thread o
blocking system call

blocks the entire

process. Also, multiple \/
threads cannot run in
parallel as only one

thread can access the () o romer e
kernel at a time.

Many to One Model

' Many to Many Model l

* The many to many model multiplexes any number of user threads
onto an equal or smaller number of kernel threads, combining
the best features of the one-to-one and many-to-one models.

* Users can create any number of the threads.

* Blocking the kernel system calls does not block the entire process.

* Processes can be split across multiple processors.

' Many to Many Model l

Advantage of this model is if a a a

a user thread is blocked we
can schedule others user
thread to other kernel

thread. Thus, System doesn’t é
(%)

block if a particular thread is
blocked.

*+— Kernel Thread

Many to Many Model

| Hyperthreading or simultaneous multithreading l

Hyperthreaded system allow their processor cores resources to
become multiple logical processors for performance.

It enables processors to execute two threads at a time.

To check if your system supports hyperthreading:
CMD>wmic

(window management Instrumentation)
>CPU Get NumberOfCores,NumberOfLogicalProcessors

| Example Thread creationinC l

#include <stdio.h>
#include <stdlib.h>
#tinclude <pthread.h>

void *print_message function(void *ptr); //Function to be executed by the threads
main()
{
pthread tthreadl, thread2; // Thread identifiers
char *messagel =" thread1l "; //message for thread 1
char *message2 =" thread2";
int a, b; //variables to store created thread
// Create two threads, each running the print_message function
a = pthread create(&threadl, NULL, print message function, (void*) messagel);
b = pthread create(&thread2, NULL, print message function, (void*) message?2);

| Example Thread creation inC l

// Wait for both threads to complete

pthread join(threadl, NULL); Output:

pthread_join(thread2, NULL); Threadl

// Print the return status of each thread Thread 2
printf(" threadl returns: %d\n",a); Thread 1 returns: O
prl.ntf(thread2 returns: %d\n",b); Thread 2 returns: O
exit(0);

}

void *print_message function(void *ptr) //// Function to be executed by threads

{

char *message;
message = (char *) ptr;
printf("%s \n", message);

Inter-Process Commmunication

IPC is a mechanism that allows the exchange of data between processes.
Processes frequently needs to communicate with each other. For example, the
output of the first process must be passed to the second process and so on.

Thus there is a need for communication between the process, preferably in a well-
structured way not using the interrupts.

Inter-process communication (IPC) is a set of techniques for the exchange of data
among multiple threads in one or more processes.

Processes may be running on one or more computers connected by a network.
Processes executing concurrently in the operating system may be either
independent process or co-operating process

Inter-Process Commmunication

Process are divided into two categories

1. Independent process:

A process isindependent if it can't affect or be affected by another
process.

2. Co-operating Process:

* A process is co-operating if it can affects other or be affected by the
other process.

* Any process that shares data with other process is called co-operating
process.

Why do we provide process cooperation?

1.Information sharing:

Several users may be interested to access the same piece of information(for instance
a shared file).

We must allow concurrent access to such information.

2.Computation Speedup:

To run the task faster we must breakup tasks into sub-tasks.

Such that each of them will be executing in parallel to other, this can be achieved if
there are multiple processing elements.

3.Modularity:

construct a system in a modular fashion which makes easier to deal with individual.
4.convenience:

Even an individual user may work on many tasks at the same time. For instance, a
user may be editing, printing, and compiling in parallel.

Ways of IPC

The communication between processes can be seen as a method of co-

operation between them. Processes can communicate with each other
in two ways.

Approaches to Interprocess Communication

1. Shared Memory - /,--
I Shared Memory i Process P2 -
2. Message Passing _ | N

Process P2

\
\ /

4 Message Queue /

Shared Memory Message Queue

Ways of IPC

process A M I process A -

1
shared "l

process B process B d ‘

kernel kernel

(a) (b)

Ways of IPC

Shared Memory

Here a region of memory that is shared by co-operating process is
established.

Process can exchange the information by reading and writing data to
the shared region.

Shared memory allows maximum speed and convenience of
communication as it can be done at the speed of memory within the
computer.

System calls are required only to establish shared memory regions.
Once shared memory is established no assistance from the kernel is
required, all access are treated as routine memory access.

Ways of IPC

Message Passing:

* Communication takes place by means of messages exchanged
between the co-operating process

 Message passing is useful for exchanging the smaller amount of
data.

* Easier to implement than shared memory.

* Slower than that of Shared memory as message passing system are
typically implemented using system call

 Which requires more time consuming task of Kernel intervention.

Synchronization of concurrent processes

If multiple processes run in our system there would be two modes.
1. Serial mode:
-executes one after another (e.g. ATM)
-one process does not affect another
- Non-preemptive approach
2. Parallel mode
-Multiple process runs at a time simultaneously
-One process may affect another
-Preemptive approach

| Processes Types l

The process is divided into two categories

1. Independent process:

* A processisindependent if it can't affect or be affected by
another process.

2. Co-operating Process:

* A process is cooperating if it may affect others or be
affected by the other process.

* They share something (Memory, Resources, Variables,
Code) with other processes.

* They have something in common

Example:

Process synchronization

Initially Shared =5

Process 1 Process 2
int X =shared | intY =shared
X++ Y--
sleep(1) sleep(1)
shared = X shared =Y

We are assuming the final value of
a shared after execution of P1 and
P2 is 5 (as P1 increment by 1 and
P2 decrement by 1). But we are
getting undesired value 4.

This is called RACE condition

Example how one process can affect another

P1 and P2 share a common variable (shared=5),

Suppose, Process P1 first executes:

Shared =5

X=5

increment it by 1(X=6),

sleep(1), it switches from P1 to P2 and P1 goes waiting for 1 sec.
Now CPU executes P2:

Shared =5

Y=5

decrement Y by 1(Y=4),

sleep(1), the P2 goes in waiting.

after 1 second CPU takes the P1 and executes the remaining:
shared=6 (shared value is updated), process 1 terminated.
after 1 second CPU starts executing the remaining line of P2
(store the local variable (Y=4) in shared.

Shared = 4 (shard value updated). Process terminated.

Process synchronization

-Process Synchronization is the coordination of execution of multiple
processes in a multi-process system to ensure that they access shared
resources.

-It is crucial for managing multiple concurrent processes or threads
effectively.

-It aims to resolve conflict, problem of race conditions and other
synchronization issues in a concurrent system.

-The primary goal of Process Synchronization is to maintain data integrity,
manage shared resources, and prevent concurrency-related issues like data
corruption, deadlock, and contention.

'resource contention’: conflict over a shared resource between several
components.

| Process synchronization l

Process synchronization is crucial in scenarios where:

Shared Resources: Multiple processes need to access and modify
shared data, such as files, memory locations, or hardware devices.
Concurrency: Processes run concurrently, and their execution order
cannot be predetermined.

Critical Sections: Critical sections are parts of code where data
integrity must be maintained. Only one process should access a
critical section at a time.

Preventing Race Conditions: Race conditions occur when multiple
processes attempt to modify shared data simultaneously.

I Synchronization Mechanism l

Several synchronization mechanisms are commonly used in OS:

1. Mutex (Mutual Exclusion):

 Mutexes are binary semaphores that allow only one process to
access a shared resource at a time.

 They are often used to protect critical sections of code.

2. Semaphore:

* Semaphores are more general synchronization primitives that
can be used to control access to a resource by multiple

Processes.

I Synchronization Mechanism l

3. Condition Variables:

* Condition variables are used to control the flow of execution in a
multi-threaded program.

* They allow threads to wait for a specific condition to be met before
proceeding.

4. Spinlock:

* Spinlocks are used in multi-core systems, where a thread repeatedly
checks the lock until it becomes available.

Challenges in Process Synchronization

Synchronization is critical, it comes with its set of challenges:
Deadlocks: Inefficient synchronization can lead to deadlocks, where
processes are stuck, waiting for resources indefinitely:.

Starvation: Poorly designed synchronization mechanisms can result in.
some processes getting more access to resources and others are
walting

Performance Overhead: Excessive use of synchronization can
introduce performance overhead, as processes spend time waiting for
locks and resources.

Complexity: Implementing synchronization mechanisms correctly can
be challenging, especially in large-scale systemes.

Race condition

The situation where two or more
processes are reading or writing
some shared data, but not in proper
sequence is called race Condition.
The final results depend on who runs

precisely (accurately).

Two processes want to access shared memory at same time

N~ o o A&

Spooler
directory

abc

out=4

prog.c

prog.n

!
~

in

| Race condition l

Q.1: What is a race condition?

A race condition occurs when multiple processes or threads access
shared data concurrently, and the final outcome of the program
depends on the relative timing of their execution. This can lead to
unexpected and undesired results, such as data corruption,
incorrect calculations, or program crashes.

| Critical section problem l

What is critical section?

-The critical section is a part of the program or code segment where the
shared variables can be accessed by various processes.

-Only one process can execute in its critical section at a time.

-All the other processes have to wait to execute in their critical sections.
Scenario:

Concurrent process: Multiple processes are running

Cooperative process: which shares something.

Critical section problem

There are four section in program:

1. Entry section: The entry section handles
the entry into the critical section. That is to
execute the code written in the critical
section, it is necessary to execute the code in
the entry section. Entry section is door to
critical section.

2. Critical Section: This part allows one
process to enter and modify the shared
variable. (common section)

o |

Entry Section

Critical Section

EXit Section

Remainder Section

} while (TRUE):

Critical section problem

3. Exit Section: Exit section allows the other
process that are waiting in the Entry
Section, to enter into the Critical Sections. It
also checks that a process that finished its
execution should be removed through this
Section.

4. Remainder Section: All other parts of the
Code, which is not in Critical, Entry, and Exit
Section, are known as the Remainder
Section.

o |

Entry Section

Critical Section

EXit Section

Remainder Section

} while (TRUE):

| Critical section problem l

When two process tries to execute code written in critical section,
then problem may occurs (race condition).

The critical section problem is used to design a set of protocols

which can ensure that the Race condition among the processes will
never arise.

Synchronization mechanism

There are four requirements or rules or conditions for any solution to the critical
section problem or to Achieve synchronization.

Primary rules: mandatory to follow

1. Mutual Exclusion: only one process can be inside the critical section at any time.

2. Progress: Any process wants to access the critical section but another process
protects it even if the critical section is free. In the progress, there should not be such a
case. Progress means that if one process doesn't need to execute into critical section
then it should not stop other processes to get into the critical section.

Secondary rules: Optional to follow

3. Bounded Waiting: Each process must have a limited waiting time. It should not wait
endlessly to access the critical section.

4. No assumption related to hardware, or speed: It must be portable or compatible
with hardware and software.

Critical section and solution: Mutual Exclusion

-Mutual Exclusion is a property of process synchronization that
states that “no two processes can exist in the critical section at any
given point of time”. only one process can be inside the critical
section at any time.

-If any other processes require the critical section, they must wait
until it is free.

Critical Section
Critical Section

| Mutual Exclusion: use cases l

Use cases of Mutual Exclusion in Synchronization:
* Printer Spooling

* Bank Account Transactions

* Traffic Signal Control

| Ways to manage race condition l

Mutual Exclusion with Busy Waiting Busy waiting: It is process
* Disabling Interrupts synchronization technique
e Lock Variables where the process waits
» The Test and set lock (TSL) Instruction and continuously keeps

on checking for the
condition to be satisfied
before going ahead with
Its execution.

-Busy Waiting is also

* Semaphore known as busy looping or
* Message Passing spinning.

* Monitor

e Strict Alternation

* Peterson’s Solution

Mutual Exclusion without Busy Waiting
* Sleep and wakeup

| Disabling Interrupts l

-An interrupt is a signal emitted by hardware or software when a process
or an event needs immediate attention.

-It is hardware mechanism provided by OS

-OS should disable interrupt so that another process can enter to the
critical section.

-The simplest solution is to have each process disable all interrupts just
after entering its critical region and re-enable them just before leaving it.

<interrupt on>
Critical section
<interrupt off>

| Disabling Interrupts l

Limitation:
-This approach is generally unattractive because it is unwise to

give user processes the power to turn off interrupts.
-Suppose that one of them did it and never turned them on or off

again? That could be the end of the system.

| Lock variable l

A lock variable provides the simplest synchronization mechanism
for processes.

Some important points about lock variables:

1. Its a software mechanism implemented in user mode, i.e. no
support required from the Operating System.

2. Its a busy waiting solution (keeps the CPU busy even when its
technically waiting).

3. It can be used for more than two processes.

Lock variable working

Lock = O implies critical section is vacant
Lock = 1 implies critical section occupied.

Pseudo code:

doy At starting lock = 0 or false
acquire lock while(lock == 1); // Entry section
critical section Lock = 1:
release lock //critical section

} Lock = O; // Exit section

Casel: if no preemption, Mutual Exclusion is possible
Case 2: if preemption, Mutual Exclusion is not possible

Lock variable

Case 2: if preemption, Mutual Exclusion is not possible

Explanation:

Let us consider that we have two processes P1 and P2. The process P1 wants to execute its
critical section. P1 gets into the entry section. Since the value of lock is 0 hence P1 changes
its value from 0 to 1 and enters into the critical section.

Meanwhile, P1 is preempted by the CPU and P2 gets scheduled. Now there is no other
process in the critical section and the value of lock variable is 0. P2 also wants to execute
its critical section. It enters into the critical section by setting the lock variable to 1.

Now, CPU changes P1's state from waiting to running. P1 is yet to finish its critical section.
P1 has already checked the value of lock variable and remembers that its value was 0O
when it previously checked it. Hence, it also enters into the critical section without
checking the updated value of lock variable.

Now, we got two processes in the critical section.

| Lock variable l

* Inthe lock variable approach, the process is able to enter into
the critical section only when the lock variable is set to 1.

* Inthe lock variable approach, more than one process has a lock
variable value of 1 at the same time.

e Due to such conditions, the lock variable is not able to
guarantee mutual execution.

To overcome this mutual exclusion problem, there is another
method called Test and Set Lock

| Test and Set Lock (TSL) method l

-It is an atomic (combined) method, which means all the operations
in the process (i.e. test lock, check vacant, set lock 1) can execute in a
single operation, which can not be interrupted by another process.
-It is a hardware solution to the synchronization problem

-there is a shared lock variable which can have a value of either O
(vacant) or 1 (occupied).

-Before entering into the critical section, the process enquires about
a lock.

-if it is locked, it waits until it becomes vacant

-if not locked, it sets the lock and enters into the Critical section.

Test and Set Lock (TSL) method

boolean TestAndSet (boolean
boolean rv = - Atomic
= TRUE:; Operation

return rv;

}
The definition of the TestAndSet () instruction

do { do {
while (TestAndSet (; while (TestAndSet ()):
// do nothing // do nothing

// critical section @OC@SS Pl // critical section

= FALSE; = FALSE;

// remainder section // remainder section

} while (TRUE); } while (TRUE);

| Test and Set Lock (TSL) method l

-It satisfied mutual exclusion

-It satisfied progress

-It does not satisfy bounded-waiting because, there is no queue
maintained, so any new process that finds the lock to be false again
can enter. So bounded waiting is not ensured.

l Turn variable: Strict Alternation method l

-It is two process solution, it can’t work in more than two process
-It works in user mode.

-It always ensures mutual exclusion

-Progress may not be possible, because one process can protect
another.

-Bounded waiting: Each process gets the chance, once a previous
process is executed the next process gets the chance therefore turn
variable ensures bounded waiting.

Turn variable: Strict Alternation method

Initially, turn value is set to O. A 2 |

: Process PO L Process P1 |
Turn Value =0 meansitis the : while (turn!=0); | Entry Section E : while (turn!=1); | Entry Section i
turn of process PO to enter the : ! 5
Cri tical section. E Critical Section E E Critical Section i
Turn value = 1 means it is the : tumn =1 Exit Section E : turn =0 Exit Section i

turn of process P1 to enter the
critical section.

Turn variable: Strlct Alternation method

..

Case 1:if turnvalueis 0
1. if Process PO arrives.

2 It executes the turn!=0 mstructlon

--

Process PO

while (turn!=0);

Critical Section

!
Entry Section ! |

L]
Exit Section ! |

Process P1

while (turn!1=1);

Critical Section

3. Since turn value is set to 0, so it returns value O to the Whl|e loop.

4. The while loop condition breaks.

5. Process PO enters the critical section and executes.
6. Now, even if process PO gets preempted in the middle, process P1 can not

enter the critical section.

1
Entry Section |

Exit Section

7. Process P1 can not enter unless process PO completes and sets the turn

value to 1.

l Turn variable: Strlct Alternation method l

..

Process PO E : Process P1
while (turn!=0); Entry Section E § while (turn!=1); Entry Section i
Case 2: if turn valueis 0 —— N —
Critical Section L Critical Section
1. if Process P1 arrives. _ . .
turn = 1 Exit Section ! . turn = 0 Exit Section |
2 It executes the turn!=1 instruction.: X

--

3. Since turn value is set to 0, so it returns value 1 to the Whl|e loop.

4. The returned value 1 does not break the while loop condition.

5. The process P1 is trapped inside an infinite while loop.

6. The while loop keeps the process P1 busy until the turn value becomes 1
and its condition breaks.

Turn variable: Strlct Alternation method

..

Process PO : : Process P1
]

while (turn !=0) ;

Critical Section

i [
Entry Section ! ,

EXxit Section

while (turn!=1) ;

Critical Section

1
Entry Section |

Case 3- E | am e et section
1. Process PO comes out of the critical section and sets the turn value to 1.
2. The while loop condition of process P1 breaks.

3. Now, the process P1 waiting for the critical section enters the critical
section and execute.

4. Now, even if process P1 gets preempted in the middle, process PO can not
enter the critical section.

5. Process PO can not enter unless process P1 completes and sets the turn

value to O.

| Peterson’s Solution l

e This is a software based solution to Critical Section Problem.

 Doesn’t work on modern architectures.
* |t's for only 2 processes which alternate execution between then critical

section and remainder section. Say, P1 is the first process and P2 is the

second process.
* |tisahumble algorithm

| Peterson’s Solution l

Requires Two data items to be shared between the process:

1. int turn : indicates whose turns to enter into critical section.
2. Boolean flag [2] : used to indicate if process is ready to enter into

critical section

Let flag]|i] indicate process Pi.
-If flag[i] = true , then Process Pi is ready to execute in its critical section.

Let flag|j] indicates process Pj.
-If flag]j] = true, then Process Pj is ready to execute in its critical section.

Indicates whose turn it is to enter its critical

Peterson’s Solution

Int turn

section.

boolean flag [2]

Used to indicate if a process Is ready to
enter its critical section.

do {

Structure of process P; in Peterson’s solution

flag [1] = true ;

Turn = ;
while (flag[j] &&turn==[]]);

flag [1] = false ;

} while (TRUE) ;

Structure of process P; in Peterson’s solution

do {

flag [)] = true;
turn =1
while Wlag [i] && turn==[i1]):

} while (TRUE) ;

| Peterson’s Solution l

Mutual Exclusion (satisfied): The method provides mutual exclusion for
sure. In entry section, the while condition involves the criteria for two
variables therefore a process cannot enter in the critical section until the
other process is interested and the process is the last one to update turn
variable.

Progress (satisfied): An uninterested process will never stop the other
interested process from entering in the critical section. If the other
process is also interested then the process will wait.

Bounded waiting (satisfied): The interested variable mechanism failed
because it was not providing bounded waiting.

l Mutual Exclusion without Busy Waiting l

* Sleep and wakeup (producer-consumer/ Bounded Buffer)
 Semaphore

* Message Passing
* Monitor

l Sleep and wakeup l

* Also called producer-consumer problem or bounded buffer problem.

* The Producer-Consumer problem is a classical multi-process
synchronization problem, that is we are trying to achieve
synchronization between more than one process.

* Sleep and wakeup are system calls that blocks process instead of
wasting CPU time when they are not allowed to enter their critical
region.

* Sleep is a system call that causes the caller to block, that is, be
suspended until another process wakes it up.

* The wakeup call has one parameter, the process to be awakened eg.
wakeup(consumer) or wakeup(producer).

Sleep and wakeup

 Both Peterson’s solution and the solution using TSL are correct, but both have
the defect of requiring busy waiting.

* When a process wants to enter its critical region, it checks to see if the entry
is allowed. If it is not allowed, the process just sits in a tight loop waiting until
it is allowed.

* Beside of wasting CPU time, this approach can also have unexpected effects.

| Examples to use Sleep and Wakeup primitives: l

* Producer-consumer problem (Bounded Buffer):

 Two processes share a common, fixed-size buffer.

* One of them, the producer, puts information into the buffer, and the
other one, the consumer, takes it out

\

Wi

| Examples to use Sleep and Wakeup primitives: l

Trouble arises when

1. The producer wants to put a new data in the buffer, but buffer is
already full.

Solution:

Producer goes to sleep and to be awakened when the consumer has
removed data.

2. The consumer wants to remove data from the buffer but buffer is
already empty.

Solution:

Consumer goes to sleep until the producer puts some data in buffer and
wakes consumer up.

Examples to use Sleep and Wakeup primitives:

#define N 100 /* number of slots in the buffer */
int count = 0; /* number of items in the buffer */
void producer(void)
{
Int item;
while (TRUE)
{/* repeat forever */
item = produce_item(); /* generate next item */
if (count == N) sleep(); /* if buffer is full, go to sleep */
insert_item(item); /* put item in buffer */
count = count + 1; /* increment count of items in buffer */
if (count == 1) wakeup(consumer); /* was buffer empty? ie. initially */

H

Examples to use Sleep and Wakeup primitives:

void consumer(void)

{
Int item;
while (TRUE)

{/* repeat forever */
if (count == 0) sleep(); /* if buffer is empty, got to sleep */
item = remove_item(); /* take item out of buffer */
count = count - 1; /* decrement count of items in buffer */
if (count ==N - 1) wakeup(producer); /* was buffer full? */
consume_item(item); /*consume item */

J
J

Count--> a variable to keep track of the no. of items in the buffer.
N — Size of Buffer

Examples to use Sleep and Wakeup primitives:

Producers code:

The producers code is first test to see if count is N.
If it is, the producer will go to sleep ; if it is not the producer will add an
item and increment count.

Consumer code:

It is similar as of producer.

First test count to see if itis O. If it is, go to sleep; if it nonzero remove an
item and decrement the counter.

Each of the process also tests to see if the other should be awakened and if
so wakes it up.

This approach sounds simple enough, but it leads to the same kinds of race
conditions as we saw in the spooler directory.

| Examples to use Sleep and Wakeup primitives: l

Lets see how the race condition arises

1. The buffer is empty and the consumer has just read count to see
if itis O.

2. At that instant, the scheduler decides to stop running the
consumer temporarily and start running the producer. (Consumer
is interrupted and producer resumed)

3. The producer creates an item, puts it into the buffer, and
Increases count.

4. Because the buffer was empty prior to the last addition (count
was just 0), the producer tries to wake up the consumer.

| Examples to use Sleep and Wakeup primitives: l

5. Unfortunately, the consumer is not yet logically asleep, so the

wakeup signal is lost.

6. When the consumer next runs, it will test the value of count it
previously read, find it to be 0, and go to sleep.

7. Sooner or later the producer will fill up the buffer and also go to
sleep. Both will sleep forever.

-The problem here is that a wakeup sent to a process that is not
(yet) sleeping is lost.

| Semaphore l

Semaphores refer to the integer variables that are primarily used
to solve the critical section problem via combining two atomic
procedures, wait and signal, for the process synchronization.

They are used to enforce mutual exclusion, avoid race conditions,
and implement synchronization between processes.

The process of using Semaphores provides two operations:
wait (p) and signal(v):

l Operation on Semaphore l

There are various operations in entry code and exit code:

1. P(), wait, down: it is code for the entry section. This operation
tests if there is any process in the critical section. If it is not there, it
will decrease and value and enter into a critical section. If any
process is in a critical section while the condition will be true a

Pseudo code: Elaboration of pseudocode to test: consider S = 2
P(semaphore S) P(semaphore S) {
S.value = s.value-1;
{ 1f(S.value<0){
while (S<=O),' Put process in PCB suspended list, sleep();
S--: else{
} return: //insert into critical section.

b

| Semaphore l

2. V() or Signal or up or release or post :

-This operation increments the actual value of its argument V.

-Signal is used to notify other process waiting to enter into the
critical section by incrementing it’s value.

-It is code for the exit section.

Pseudo code: Elaboration of pseudocode to test:
V(Semaphore S) P(semaphore S) {

{ S.value = s.value+1;

St+ If(S.value<=0){

| select process from suspended list, and wakeup();

b

| Critical questions l

1. How many processes are there inside the critical section when
the semaphore value is 0?

Answer: 0

2. How many processes are there inside the critical section when
the semaphore value is 107?

Answer: 10

3. How many processes are there inside the block section when the
semaphore value is -37?

Answer: 3

| Critical questions l

4. The current value of the semaphore is 10, if you perform 6P operation
and 4V operation, what will be the final value of the semaphore?
Answer: 10-6 =4

4+4 = 8 (final Semaphore value is 8).

5. The current value of the semaphore is 17, if you perform 6P operation,
3V operation, 1P operation. what will be the final value of the

semaphore?
Answer:17-6=1
11+3 =14

14-1 = 13 (final Semaphore value is 13).

| Types of semaphore l

The two common kinds of semaphores:

1. Binary semaphores:

-It is also known as Mutex lock.

-It can only have two possible values: 0 and 1, and its value is set to
1 by default.

-if the semaphore value is O: the critical section is busy

-if the semaphore value is 1: the critical section is free
Example: check the following P and V codes with 0 and 1:

P(semaphore S) { V(Semaphore S) {
while (S<=0); S++;
S--; }

!

| Types of semaphore l

2. Counting semaphores: used to count resources and its value
varies from (—infinity to +infinity).

l Solving a producer-consumer problem using semaphore I

Problems:
-Producer should not insert the data into the full buffer

-Consumer should not remove data from an empty buffer
-Producer and consumer should not insert and remove

data simultaneously.

We can solve the above problem using semaphore.

l Solving a producer-consumer problem using semaphore I

We use three semaphore to solve above problem:

1. m(Mutex): a binary semaphore which is used to acquire and
release the lock.

2. empty: a counting semaphore whose initial value is the number
of sluts in buffer, since initially all slots are empty.

3. full: It keeps the track of how many slots are filled in the buffer.
For example, if the buffer size is 10 and 5 blocks are filled, then full
value is 5. a counting semaphore, whose initial value is O because
we consider initially buffer is empty so full value is O.

Solving a producer-consumer problem using semaphore

Producer Consumer

wait (empty); wait (full);

wait (mutex); wait (mutex);
/* add data to buffer */ /* remove data from buffer */

sighal (mutex); signhal (mutex);

signal (fulb); signal (empty):
g) Y

I Advantages of Semaphores I

A simple and effective mechanism for process synchronization
 Supports coordination between multiple processes

* Provides a flexible and robust way to manage shared resources.
* |t can be used to implement critical sections in a program.

* |t can be used to avoid race conditions.

I Disadvantages of Semaphores I

* |t Can lead to performance degradation due to overhead
associated with wait and signal operations.

* (Can result in deadlock if used incorrectly.

* |t can cause performance issues in a program if not used properly.

* |t can be difficult to debug and maintain.

* |t can be prone to race conditions and other synchronization
problems if not used correctly.

* |t can be vulnerable to certain types of attacks, such as denial of

service attacks.

l The Dining philosophers problem I

-The dining philosopher's problem is the
classical problem of synchronization which says
that Five philosophers are sitting around a
circular table and their job is to think and eat
alternatively.

-To eat a philosopher needs both their right and
left chopstick.

-A philosopher can only eat if both the
immediate left and right chopsticks of the
philosopher is available.

l The Dining philosophers problem I

-In case if both immediate left and right
chopsticks of the philosopher are not
available then the philosopher puts
down their (either left or right) chopstick
and starts thinking again.

I The Dining philosophers problem I

The five Philosophers are represented as
PO, P1, P2, P3, and P4 and five chopsticks

by CO, C1, C2, C3, and C4.]
© o

P = Philosopher
C = Chopstlick

oﬂ

l The Dining philosophers problem I

Void Philosopher (void)
{

while(true)

{
thinking();

take chopstick[i]; //take left chopistick first
take chopstick[(i+1) % 5] ; //take right chopstick

. EATING THE NOODLE
put_chopstick][i]); //after eating put down left chopstick first

put chopstick| (i+1) % 5] ;

THINKING
11

l The Dining philosophers problem I

Suppose Philosopher PO wants to eat, it will enter in Philosopher() function,
and execute take chopstick[i]; by doing this it holds CO chopstick after that
it execute take chopstick| (i+1) % 5]; by doing this it holds C1 chopstick(
since i =0, therefore (0+ 1) % 5=1)

Similarly suppose now Philosopher P1 wants to eat, it will enter in
Philosopher() function, and execute take chopstick[i]; by doing this it holds
C1 chopstick after that it execute take chopstick[(i+1) % 5]; by doing this it
holds C2 chopstick(since i =1, therefore (1 +1) % 5 = 2)

But Practically Chopstick C1 is not available as it has already been taken by
philosopher PO, hence the above code generates problems and produces
race condition.

The Dining philosophers problem using semaphore

Let's modify the above code of the Dining Philosopher Problem by using

semaphore operations wait and signal to solve race condition.
void Philosopher

{
while(1)

{
Wait(take_chopstickC[i]);
Wait(take chopstickC[(i+1) % 5]) ;

. EATING THE NOODLE

Signal(put_chopstickC[i]);
Signal(put_chopstickC[(i+1) % 5]) ;

. THINKING
I

The Dining philosophers problem using semaphore

Explanation of the above code:

Let value of i = 0, Suppose PO wants to eat, it will enter in Philosopher() function, and execute
Wait(take_chopstickC[i]); by doing this it holds CO chopstick and reduces semaphore CO to O,
after that it execute Wait(take chopstickC[(i+1) % 5]); by doing this it holds C1 chopstick(
since i =0, therefore (0 + 1) % 5 =1) and reduces semaphore C1to O

Similarly, if P1 wants to eat, it will enter in Philosopher() function, and execute Wait(

take chopstickCli]); by doing this it will try to hold C1 chopstick but will not be able to do
that, since the value of semaphore C1 has already been set to O by philosopher PO, therefore
it will enter into an infinite loop because of which philosopher P1 will not be able to pick
chopstick C1 whereas if Philosopher P2 wants to eat, it will enter in Philosopher() function,
and execute Wait(take _chopstickC[i]); by doing this it holds C2 chopstick and reduces
semaphore C2 to O, after that, it executes Wait(take chopstickC[(i+1) % 5]); by doing this it
holds C3 chopstick(since i =2, therefore (2 + 1) % 5 = 3) and reduces semaphore C3 to 0.

The Dining philosophers problem using semaphore
Conditions:

1. Adjacent philosophers can’t eat at a time.
2. two opposite philosophers can eat at a time.

Deadlock condition:

If all the philosophers pick their left chopstick and preampted,
which leads to the condition of deadlock.

The Dining philosophers problem using semaphore

General solution of such deadlock are:

1. Maximum number of philosophers on the table should not be more than
four

2. A philosopher at an even position should pick the right chopstick and
then the left chopstick while a philosopher at an odd position should pick
the left chopstick and then the right chopstick.

3. Only in case if both the chopsticks (left and right) are available at the
same time, only then a philosopher should be allowed to pick their
chopsticks

4. All the four starting philosophers (PO, P1, P2, and P3) should pick the left
chopstick and then the right chopstick, whereas the last philosopher P4
should pick the right chopstick and then the left chopstick.

I Mohitors |

-To overcome the deadlock generated by semaphore, monitor
comes into existence.

-Monitors are a higher-level synchronization construct that
simplifies process synchronization by providing a high-level
abstraction (Abstract data type) for data access and
synchronization.

-A monitor data type presents set of programmer-defined
operations that provide mutual exclusion within the monitor.

Monitor monitorName{
//shared variables declaration:

procedure pl{... };
procedure p2{... };

procedure pn{ ... };

{

initializing code;
}
}

Syntax Monitors

1. procedures are operations that can be
performed on shared variables. We can have
multiple procedures.

2. Local variables of monitor can access by only
procedure defined within monitor.

3. Only one process can be active at a time within
the monitor.

Syntax Monitors

Additional considerations to achieve synchronize:
Condition construct:
Declaration: condition x,y; //x and y are condition variables it perform

wait and sighal operations.
Operations that can invoke on condition variables are wait() and signal ().

The operation x.wait(); means the process invoking this operation is
suspended until another process is invoked x.signal();

X.signal(): resumes the suspended process

Schematic view of Monitors

shareddata

gueues associated

with x, y conditions

|

operations

initialization

coge

Monitor: Race condition

Shared Data

When multiple processes access shared data simultaneously , create problem of
race condition

Dining philosophers problem using monitor

-Monitor provides dead-lock-free solution to the dining philosopher
problem.
-this solution imposes the restriction that a philosopher may pickup his
chopsticks only if both of them are available.
-To achieve this we need to distinguish three different states, for this
purpose we define the following data structure.

enum {thinking, hungry, eating} state [5]; //state of 5 philosopher

Philosopher i can set the variable state[i] = eating only if his two neighbors
are not eating. : (state[(i+4)%5!=eating) and (state[(i+1)%5!=eating).

We also need to declare condition self [5]; where philosopher i can delay
himself when he is hungry but unable to obtain the chopsticks.

Dining philosophers problem using monitor

T TT s srmms s weas ey we wr o e SRR r oy [T TRl o w gwes s [e e

monitordp {
" enum { THINKING, HUNGRY, EATING } state [5];
condition self [5];

void pickup (inti) { void test (int 1) {
state [i] = HUNGRY; It ((state [(1 + 4) % 5] '= EATING) &&
test (i) : (state [1] == HUNGRY) &&
if (state [i]!= EATING) (state [(1 +1) % 5] = EATING)) {
self [i].wait) : state [i] = EATING;
h
void putdown(int 1) {
state [i] = THINKING; }
test ((i+4)% 5): Initialization-code () {
test ((i+1)% 5); for (inti1=0;1<5; 1++)
) state [1] = THINKING ;
3

Sleeping barber problem

-The Sleeping Barber problem is a classic problem in process
synchronization that is used to illustrate synchronization issues that can
arise in a concurrent system.

-There is a barber shop with one barber and a number of chairs for
waiting customers.

-Customers arrive at random times and if there is an available chair, they
take a seat and wait for the barber to become available.

-If there are no chairs available, the customer leaves.

-When the barber finishes with a customer, he checks if there are any
waiting customers.

-If there are, he begins cutting the hair of the next customer in the queue.
-If there are no customers waiting, he goes to sleep.

Sleeping barber problem

Gag.

— Waiting Chairs -—

L

Customer 1s leaving

Customer i1s entenng

Sleeping barber problem

Conditions:
* |f there is no customer, then the barber sleeps in his own chair.

* When a customer arrives, he has to wake up the barber.

* |f there are many customers and the barber is cutting a customer’s hair,
then the remaining customers either wait if there are empty chairs in
the waiting room or they leave if no chairs are empty.

Sleeping barber problem

Start

Sleeping ~

Mo Waiting
Customer Closing

Time
- Cutting Hair —‘
Waiting

Closing Customer
Time

Customer

Sleeping barber problem

Problems:
-Starvation: when a customer enters to barber room but the barber is

busy, then he goes to the waiting room and waits, then suddenly the
customer decides to leaves waiting room temporarily. The barber finish
cutting of previous customer and checks in waiting room, but at that time
there is no one (waiting customer has temporarily outside), the barber
goes to sleep again. Then the customer return back and sits into the
waiting chair. At that time barber goes on sleeping and customer goes on
waiting. Such a situation is starvation.

Sleeping barber problem using Semaphore

We take three semaphore to solve such problem
Semaphore Customers = 0;

Semaphore Barber = 0;

Semaphore Mutex = 1;

Int FreeSeats = N;

Barber {
while(true) {

walt(Customers); /* waits for a customer (sleeps). */
walt (mutex) /* mutex to protect no. of available seats. M =1*/
FreeSeats++; /* bring customer for haircut.*/

signal(Barber); /* release the mutex on the chair.*/
signal(mutex);

I3,

Sleeping barber problem using Semaphore

Customer {
while(true) { /* protects seats so only 1 customer tries to sit in a chair if that's
the case.*/
wait(Seats); /* sitting down.*/
if(FreeSeats > 0) {
FreeSeats--; /* notify the barber. */
signal(Customers); /* release the lock */
wait(Seats); /* wait in the waiting room if barber is busy. */
signal(Barber); // customer is having hair cut
} else { /* release the lock */
signal(Seats); // customer leaves

J

y— N

Process Scheduling

Part 4

Scheduling: Introduction

-Process scheduling is the activity of the process manager that handles the

removal of the running process from the CPU and the selection of another process
based on a particular strategy.

-Process scheduling is an essential part of a Multiprogramming operating system.

-Such operating systems allow more than one process to be loaded into the

executable memory at a time and the loaded process shares the CPU using time
multiplexing.

Process state and use of scheduler

Short-Term

" Schedule/

Long-Term

Dispatch .
Created Cnmpletmn@
Priority/
Time guantum]
II|I ',I — I||I
[N 1/0 ;ﬁ 1/0
= IIII III /
Suspended Resume \ completion / request

Middle-Term B

Suspended ready | |

Suspended ||| | Resume

Middle-Term

Process completaed
by /O but still in
suspended

Blocked suspended

Scheduler

1. Long term scheduler
Long term scheduler is also known as job scheduler. It chooses the processes from

the pool (secondary memory) and keeps them in the ready queue maintained in
the primary memory.
Rom secondary memory to primary memory

2. Short term scheduler
Short term scheduler is also known as CPU scheduler. It selects one of the Jobs

from the ready queue and dispatch to the CPU for the execution.
From primary memory to CPU for execution

3. Medium term scheduler
Medium-term scheduler takes care of the swapped-out processes. If the running
state processes need some 10 time for the completion then there is a need to

change its state from running to waiting. Running to waiting.

Methods of scheduling

There are mainly two types of scheduling methods:

Preemptive Scheduling: Preemptive scheduling is used when a process switches
from running state to ready state or from the waiting state to the ready state.

Non-Preemptive Scheduling: Non-Preemptive scheduling is used when a process
terminates, or when a process switches from running state to waiting state.

Types of CPU scheduling Algorithms

Preemptive:

* Priority Scheduling

* Longest Remaining Job First

* Shortest Remaining Job-First
 Multiple Queues

 Round Robin(RR) Scheduling
* Shortest Remaining Time First

Non-primitive
First-Come, First-Served (FCFS)
Shortest-Job-First (SJF)

CPU Scheduling

=

Preemptive

_A

Y

Non-Preemptive

[

Shortest Longest
Job First Job First\

—
Priority Longe'_st
Scheduling Femaining

Job First
v
Shortest
Remaining
Job First

Round-
Robin

First-
Come
First-
Serve

Highest
Responseg
Ratio

Next

Category of scheduling

Categories of Scheduling Algorithms
 Batch System scheduling

First-Come, First-Served (FCFS)
Shortest-Job-First (SJF)

Shortest Remaining Time First (SRTF)

wnN e

Interactive system scheduling
Priority Scheduling
Longest Remaining Job First
Shortest Remaining Job-First
Multiple Queues
Round Robin(RR) Scheduling

N wh e e

 Real-time system scheduling

The objective of scheduling

Objectives of Process Scheduling Algorithm:

Utilization of CPU at maximum level. Keep CPU as busy as possible.

Allocation of CPU should be fair.

Throughput should be Maximum. i.e. Number of processes that complete their
execution per time unit should be maximized.

Minimum turnaround time, i.e. time taken by a process to finish execution
should be the least.

There should be a minimum waiting time and the process should not starve in
the ready queue.

Minimum response time. It means that the time when a process produces the
first response should be as less as possible.

The CPU scheduling Terminology

What are the different terminologies to take care of in any CPU Scheduling
algorithm?

Arrival Time: Time at which the process arrives in the ready queue.
Completion Time: Time at which process completes its execution.

Burst Time: Time required by a process for CPU execution.

Turn Around Time: Time Difference between completion time and arrival time.
Turn Around Time = Completion Time — Arrival Time (CT-AT)

Waiting Time(W.T): Time Difference between turn around time and burst time.
Waiting Time = Turn Around Time — Burst Time (TAT-BT)

First Come First Serve Algorithm

FCFS considered to be the simplest of all operating system scheduling algorithms.
First come first serve scheduling algorithm states that the process that requests
the CPU first is allocated the CPU first and is implemented by using FIFO queue.

l First Come First Serve Algorithm |

1. Problem: Consider the following table of arrival time and burst time for five
processes P1, P2, P3, P4 and P5.
Create Gantt chart and calculate:

1. Completion time Processes Arrival Time |Burst Time

2. Turp.ArOt.Jnd Time 1) g

3. Waiting time

4. Response time P2 0 1

5. Average waiting time P3 g 3

6. Average Response time
P4 3 5
P5 4 4

' First Come First Serve Algorithm l

-Criteria is arrival time

-It uses the queue data structure (FCFS) |
-CT= completion time of process ® | a2 : R
-RT is equal to WT in non-preemptive N

Proc |AT BT CT TAT= CT-AT |WT=TAT-BT RT=WT
P1 2 2 4 2 0 0
P2 0 1 1 1 0 0
P3 2 3 7 5 2 2
P4 3 5 12 S 4 4
P5 4 4 16 12 8 8

First Come First Serve Algorithm

Characteristics of FCFS:

 FCFS supports non-preemptive CPU scheduling algorithmes.

* Tasks are always executed on a First-come, First-serve concept.

* This algorithm is not much efficient in performance, and the wait time is quite
high.

Advantages of FCFS:

 Easy to implement

Disadvantages of FCFS:

* FCFS suffers from the Convoy effect.

Convoy effect: if processes with higher burst time arrived before the processes

with smaller burst time then the smaller process has to wait for a long time for

a longer process to release the CPU.

* The average waiting time is much higher than the other algorithmes.

First Come First Serve Algorithm

Characteristics of FCFS:

 FCFS supports non-preemptive and preemptive CPU scheduling algorithmes.

* Tasks are always executed on a First-come, First-serve concept.

 FCFSis easy to implement and use.

* This algorithm is not much efficient in performance, and the wait time is quite
high.

Advantages of FCFS:

* Easy to implement

* First come, first serve method

Disadvantages of FCFS:

* FCFS suffers from Convoy effect.

* The average waiting time is much higher than the other algorithms.

 FCFSis very simple and easy to implement and hence not much efficient.

First Come First Serve Algorithm

Homework:
Write algorithm for first come first serve.

Shortest Job First (SJF) Algorithm

The shortest job first (SJF) or shortest job next, is a scheduling policy that selects
the process with the smallest arrival time then burst time to execute next.

-SJF can be solved using both approaches (i.e. preemptive and non-preemptive).
-By default it is non-preemptive

-If it is solved using a preemptive approach then this is called Shortest Remaining
Time First (SRTF).

Characteristics of SJF Scheduling:

* |tis a Greedy Algorithm.

* |t may cause starvation if shorter processes keep coming.

* SJF can be used in specialized environments where accurate estimates of
running time are available.

* |t can improve process throughput by making sure that shorter jobs are
executed first. (Throughput is the amount of work completed in a unit of time)

| Shortest Job First (SJF) Algorithm l

1. Problem: Consider the following table of arrival time and burst time for four
processes P1, P2, P3 and P4. Solve it using non-preemptive approach.
Create a Gantt chart and calculate:

1. Completion time Processes Arrival Time |Burst Time
2. Turn Around Time 1 1 3
3. Waiting time
4. Response time P2 2 4
5. Average waiting time P3 1 2
6. Average Response time
P4 4 il

' Shortest Job First (SJF) Algorithm l

-Criteria is shortest burst time first P = P TP 1
-Non-preemptive approach 2 i 2| Iy
L, 1 | |
6O 1 3 § p
Proc AT BT CT TAT= CT-AT |WT=TAT-BT |[RT=WT

P1 1 3 6 5 2 2

P2 2 4 10 3 4 4

P3 1 2 3 2 0 0

P4 4 4 14 10 6 6

Shortest Job First (SJF) with preemption/Shortest Remaining Time First (SRTF)

1. Problem: Consider the following table of arrival time and burst time for five
processes P1, P2, P3, P4 and P5. Solve it using Preemptive approach.
Create a Gantt chart and calculate:

1. Completion time

2. Turn Around Time

3. Waiting time

4. Response time

5. Average waiting time
6. Average Response time

Processes Arrival Time [Burst Time
P1 2 1
P2 1 5
P3 4 1
P4 0 6
P5 2 3

Shortest Job First (SJF) with preemption/Shortest Remaining Time First (SRTF)

-Whenever new process comes, there may be preemption of the running
process r
-Consideration: burst time
-preemptive approach

Proc |AT BT CT |TAT=CT-AT |WT=TAT-BT RT=first CPU allocated time — AT
P1 2 1 3 1 0 2-2=0
P2 1 5 16 15 10 11-1=10
P3 4 1 5 1 0 4-4=0
P4 0 6 | 11 11 5 0-0=0
P5 2 3 7/ 5 2 3-2=1

Shortest Job First (SJF) with preemption/Shortest Remaining Time First (SRTF)

1. Problem 2: Consider the following table of arrival time and burst time for four
processes P1, P2, P3, and P4. Solve it using the Preemptive approach.
Create a Gantt chart and calculate:

1. Completion time

2. Turn Around Time

3. Waiting time

4. Response time

5. Average waiting time
6. Average Response time

Processes Arrival Time |Burst Time
P1 0 5
P2 1 3
P3 2 4
P4 4 1

Shortest Job First (SJF) with preemption/Shortest Remaining Time First (SRTF)

-Consideration: burst time

-preemptive approach LP‘ \PLJPl \f,?l‘l 7. ZP, }P, [P,)77} ?3J
e DSt = TR Cf /3

Proc |AT BT CT |TAT=CT-AT |WT=TAT-BT RT=first CPU allocated time — AT
P1 0 5 9 9 4 0
P2 1 3 4 3 0 0
P3 2 4 |13 11 7/ 7/
P4 4 1 5 1 0 0

Shortest Job First (SJF) with preemption/Shortest Remaining Time First (SRTF)

Advantages:

-SRTF gives minimum WT and TAT

-.Better response time than FCFS

-MAX throughput (Throughput is the amount of work completed in a unit of

time)

Disadvantages:

* SJF may cause very long turn-around times or starvation.

* |n SJF job completion time must be known earlier, but sometimes it is hard
to predict.

 Sometimes, it is complicated to predict the length of the upcoming CPU
request.

Starvation A process that is present in the ready state and has low priority

keeps waiting for the CPU allocation because some other process with higher

orioritv comes with due respect time. So low prioritv process keeps waitinge.

Preemptive: Priority scheduling Algorithm

Priority Scheduling is a method of scheduling processes that is based on
priority. In this algorithm, the scheduler selects the tasks to work as per the

priority.

-Priority can be solved using both approaches (i.e. preemptive and non-
preemptive).

Preemptive: Priority scheduling Algorithm

Characteristics of Priority Scheduling

1.
2.
3.

A CPU algorithm that schedules processes based on priority.

It used in Operating systems for performing batch processes.

If two jobs having the same priority are READY, it works on a FIRST COME,
FIRST SERVED basis.

In priority scheduling, a number is assighed to each process that indicates
its priority level.

Preemptive: Priority scheduling Algorithm

1. Problem: Consider the following table of arrival time and burst time and
priority for four processes P1, P2, P3, and P4. Solve it using the Preemptive
approach. Consider: Higher the value higher the priority

Create a Gantt chart and calculate:
1. Completion time

2. Turn Around Time

3. Waiting time

4. Response time

5. Average waiting time

6. Average Response time

Priority Proc AT BT
10 P1 0 5
20 P2 1 4
30 P3 2 2
40 P4 4 1

Preemptive: Priority scheduling Algorithm

-Criteria: priority (higher the number higher the priority)

-preemptive approach

CEP. 11’&17’317 ll)«l

<7 S sul=2

Priority [Proc |AT BT T |TAT= CT-AT \é_IrT=TAT- 2:=first CPU allocated time —
10 (P1| O 5 |12 12 7/ 0
20 P2 1 4 | 3 7/ 3 0
30 | P3| 2 2 2 0 0
40 | P4 | 4 1 | 5 1 0 0

Preemptive: Priority scheduling Algorithm

Advantages:

1. Priority-based scheduling ensures that high-priority processes are
executed first, which can lead to faster completion of critical tasks.

2. Priority scheduling is useful for real-time systems that require processes to
meet strict timing constraints.

3. Priority scheduling can reduce the average waiting time for processes that
require a significant amount of CPU time.

Disadvantages:

1. Starvation: If the system is heavily loaded with high-priority processes,
low-priority processes may never get a chance to execute.

2. A process will be blocked when it is ready to run but has to wait for the
CPU because some other process is running currently.

' Preemptive: Round Robin Algorithm '

-Round Robin is a CPU scheduling algorithm where each process is cyclically
assigned a fixed time slot.

-It is the preemptive version of the First come First Serve CPU Scheduling
algorithm.

-Round Robin CPU Algorithm generally focuses on the sharing technique.
-The period of time for which a process or job is allowed to run in a pre-
emptive method is called time quantum.

I Preemptive: Round Robin Algorithm l

1. Problem: Consider the following table of arrival time and burst time for four
processes P1, P2, P3, and P4. Solve it using the RR Preemptive approach.
Create a Gantt chart and calculate:

1. Completion time Processes Arrival Time |Burst Time
2. Turn Around Time
3. Waiting time P 0 >
4. Response time P2 1 4
5. Average waiting time P3 g 2
6. Average Response time
P4 4 1

Consider time quantum=2

' Preemptive: Round Robin Algorithm '

-Consideration: tim ntum >
Conside gto time quantu '?(gi?w 7 ?/WTP >
-preemptive approach

“a::zj LT[”1 2 PJPJ
(Gremy-
Proc |AT BT CT |TAT=CT-AT |WT=TAT-BT RT=first CPU allocated time — AT
P1 0 5 12 |12 7/ 0
P2 1 4 |11 10 6 1
P3 2 2 6 4 2 2
P4 4 1 9 |5 4 4

I Preemptive: Round Robin Algorithm l

Consider the following table of arrival time and burst time for five processes P1,
P2, P3, P4 and P5. Solve it using the RR Preemptive approach.
Create a Gantt chart and calculate:

1. Completion time Processes Arrival Time |Burst Time
2. Turn Around Time
3. Waiting time i 0 3
4. Response time P2 0 2
5. Average waiting time P3 0 7
6. Average Response time
P4 0 3
Consider time guantum=2 P5 0 5

Consider context switch time=1

Preemptive: Round Robin Algorithm

Preemptive: Round Robin Algorithm

The Advantages of Round Robin CPU Scheduling are:

* A fair amount of CPU is allocated to each job.

 Because it doesn't depend on the burst time, it can truly be implemented
in the system.

* |tis not affected by the convoy effect or the starvation problem as occurred
in First Come First Serve CPU Scheduling Algorithm.

Disadvantages

* Low Operating System slicing times will result in decreased CPU output.
 Round Robin CPU Scheduling approach takes longer to swap contexts.
 Time quantum has a significant impact on its performance.

* The procedures cannot have priorities established.

Find me

9851083215

Santosh.it288@mail.com

www.phtechno.com

Kathmandu

