
Unit 2: Intel 8085 (8 Hrs.)

BIM-3rd Semester

Prime College

Rolisha Sthapit

CONTENTS

• Functional Block Diagram and Pin

Configuration; Timing and control Unit;

Registers; Data and Address Bus; Intel 8085

Instructions; Operation Code and Operands;

Addressing Modes; Interrupts; Flags;

Institutions and Data Flow inside 8085; Basic

Assembly Language Programming Using 8085

Instruction Sets.

8085 Microprocessor & its Operation

• 8085 is pronounced as "eighty-eighty-five"
microprocessor.

• It is an 8-bit microprocessor designed by Intel in
1977 using NMOS technology (N-type metal-
oxide-semiconductor logic)

• It is a complete 8 bit parallel central processing
unit.

• The main components of 8085 are array of
registers, the ALU, encoder/decoder, and timing
and control circuits linked by an internal data bus.

It has the following configuration –

- 8-bit data bus

- 16-bit address bus, which can address up to 64KB

- A 16-bit program counter

- A 16-bit stack pointer

- Six 8-bit registers arranged in pairs: BC, DE, HL

- Requires +5V supply to operate at 3.2 MHZ single
phase clock

• It is used in washing machines, microwave ovens,
mobile phones, etc

8085 Microprocessor Architecture &

Functional Units

8085 consists of the following functional units −

1) Accumulator

It is an 8-bit register used to perform arithmetic, logical, I/O &
LOAD/STORE operations. It is connected to internal data bus & ALU.

2) Arithmetic and logic unit

As the name suggests, it performs arithmetic and logical operations like
Addition, Subtraction, AND, OR, etc. on 8-bit data.

3) General purpose register

There are 6 general purpose registers in 8085 processor, i.e. B, C, D, E,
H & L. Each register can hold 8-bit data. These registers can work in
pair to hold 16-bit data and their pairing combination is like B-C, D-E
& H-L.

4) Program counter

It is a 16-bit register used to store the memory address location of the next

instruction to be executed. Microprocessor increments the program whenever

an instruction is being executed, so that the program counter points to the

memory address of the next instruction that is going to be executed.

5) Stack pointer

It is also a 16-bit register works like stack, which is always

incremented/decremented by 2 during push & pop operations.

The stack is a LIFO (last in, first out) data structure implemented in the RAM

area and is used to store addresses and data when the microprocessor branches

to a subroutine. Then the return address used to get pushed on this stack. Also

to swap values of two registers and register pairs we use the stack as well.

The Stack Pointer register will hold the address of the top location of the stack.

In case of PUSH operation, the SP register gets decreased by 2 and new data

item used to insert on to the top of the stack. On the other hand, in case of POP

operation, the data item will have to be deleted from the top of the stack and

the SP register will get increased by the value of 2.

6) Temporary register

It is an 8-bit register, which holds the temporary data of arithmetic and logical

operations.

Wand Z registers are temporary registers. These registers are used to hold 8-bit

data during the execution of some instructions. These registers are not

available for the programmer since 8085Microprocessor Architecture uses

them internally.

7) Flag register

It is an 8-bit register having five 1-bit flip-flops, which holds either 0 or

1 depending upon the result stored in the accumulator.

These are the set of 5 flip-flops –

- Sign (S)

- Zero (Z)

- Auxiliary Carry (AC)

- Parity (P)

- Carry (C)

Its bit position is shown in the following table –

a) Sign Flag (S) – After any operation if result is negative sign flag becomes
set, i.e. If result is positive sign flag becomes reset i.e. 0.

Example:

MVI A 30 (load 30H in register A)

MVI B 40 (load 40H in register B)

SUB B (A = A – B)

These set of instructions will set the sign flag to 1 as 30 – 40 is a negative
number.

MVI A 40 (load 40H in register A)

MVI B 30 (load 30H in register B)

SUB B (A = A – B)

These set of instructions will reset the sign flag to 0 as 40 – 30 is a positive
number.

b) Zero Flag (Z) – After any arithmetical or logical operation if

the result is 0 (00)H, the zero flag becomes set i.e. 1, otherwise it

becomes reset i.e. 0.

Example:

MVI A 10 (load 10H in register A)

SUB A (A = A – A)

These set of instructions will set the zero flag to 1 as 10H – 10H

is 00H

c) Auxiliary Carry Flag (AC) – If intermediate carry is generated this

flag is set to 1, otherwise it is reset to 0.

•Example:

MOV A 2B (load 2BH in register A)

MOV B 39 (load 39H in register B)

ADD B (A = A + B)

These set of instructions will set the auxiliary carry flag to 1, as on

adding 2B and 39, addition of lower order nibbles B and 9 will generate

a carry.

d) Parity Flag (P) – If after any arithmetic or logical operation

the result has even parity, an even number of 1 bits, the parity

register becomes set i.e. 1, otherwise it becomes reset.

1-accumulator has even number of 1 bits

0-accumulator has odd parity

e) Carry Flag (CY) – Carry is generated when performing n bit

operations and the result is more than n bits, then this flag

becomes set i.e. 1, otherwise it becomes reset i.e. 0.

During subtraction (A-B), if A>B it becomes reset and if (A<B) it

becomes set.

Carry flag is also called borrow flag.

8) Instruction register and decoder

It is an 8-bit register. When an instruction is fetched from memory then it is
stored in the Instruction register. Instruction decoder decodes the information
present in the Instruction register.

9) Timing and control unit

It provides timing and control signal to the microprocessor to perform
operations. Following are the timing and control signals-

- Control Signals: READY, RD’, WR’

- Status Signals: S0, S1, IO/M’

- DMA Signals: HOLD, HLDA

- RESET Signals: RESET IN, RESET OUT

[S0 and S1 are used to observe the state, HOLD is used by peripheral device to
request permission for accessing the system bus, HLDA is used to grant or
deny access to its system bus, IO/M’ is to distinguish between I/O and memory
port.

10) Interrupt control

As the name suggests it controls the interrupts during a process. When a
microprocessor is executing a main program and whenever an interrupt occurs,
the microprocessor shifts the control from the main program to process the
incoming request. After the request is completed, the control goes back to the
main program.

There are 5 interrupt signals in 8085 microprocessor: INTR, RST 7.5, RST
6.5, RST 5.5, TRAP. When microprocessor receives interrupt signals, it sends
an acknowledgement (INTA) to the peripheral which is requesting for its
service.

Maskable and Non-Maskable Interrupts

Maskable Interrupts are those which can be disabled or ignored by the
microprocessor. INTR, RST 7.5, RST 6.5, RST 5.5 are maskable interrupts in
8085 microprocessor.

Non-Maskable Interrupts are those which cannot be disabled or ignored
by microprocessor. TRAP is a non-maskable interrupt.

11) Serial Input/output control

It controls the serial data communication by using these two
instructions: SID (Serial input data) and SOD (Serial output data).

12) Address buffer and address-data buffer

The content stored in the stack pointer and program counter is loaded
into the address buffer and address-data buffer to communicate with the
CPU. The memory and I/O chips are connected to these buses; the CPU
can exchange the desired data with the memory and I/O chips.

13) Address bus and data bus

Data bus carries the data to be stored. It is bidirectional, whereas
address bus carries the location to where it should be stored and it is
unidirectional. It is used to transfer the data & Address I/O devices.

8085 Pin Configuration

The pins of a 8085 microprocessor can be classified into seven groups:

1) Address bus

A15-A8, it carries the most significant 8-bits of memory/IO address.

2) Data bus

AD7-AD0, it carries the least significant 8-bit address and data bus.

3) Control and status signals

These signals are used to identify the nature of operation. There are 3
control signal and 3 status signals.

Three control signals are RD, WR & ALE.

a) RD − This signal indicates that the selected IO or memory device
is to be read and is ready for accepting data available on the data
bus.

b) WR − This signal indicates that the data on the data bus is to be
written into a selected memory or IO location.

c) ALE (Address Latch Enable) − It is a positive going pulse
generated when a new operation is started by the microprocessor. When
the pulse goes high, it indicates address. When the pulse goes down it
indicates data.

Three status signals are IO/M, S0 & S1.

IO/M

This signal is used to differentiate between IO and Memory operations,
i.e. when it is high indicates IO operation and when it is low then it
indicates memory operation.

S1 & S0

These signals are used to identify the type of current operation.

4) Power supply

There are 2 power supply signals: VCC & VSS. VCC indicates

+5v power supply and VSS indicates ground signal.

5) Clock signals

There are 3 clock signals, i.e. X1, X2, CLK OUT.

• X1, X2 − A crystal (RC, LC N/W) is connected at these two

pins and is used to set frequency of the internal clock

generator. This frequency is internally divided by 2.

• CLK OUT − This signal is used as the system clock for

devices connected with the microprocessor.

6) Interrupts & externally initiated signals

• Interrupts are the signals generated by external devices to

request the microprocessor to perform a task. There are 5

interrupt signals, i.e. TRAP, RST 7.5, RST 6.5, RST 5.5, and

INTR.

• INTA − It is an interrupt acknowledgment signal.

• RESET IN − This signal is used to reset the microprocessor

by setting the program counter to zero.

• RESET OUT − This signal is used to reset all the connected

devices when the microprocessor is reset.

• READY − This signal indicates that the device is ready to
send or receive data. If READY is low, then the CPU has to
wait for READY to go high.

• HOLD − This signal indicates that another master is
requesting the use of the address and data buses.

• HLDA (HOLD Acknowledge) − It indicates that the CPU
has received the HOLD request and it will relinquish the
bus in the next clock cycle. HLDA is set to low after the
HOLD signal is removed

7) Serial I/O signals

There are 2 serial signals, i.e. SID (Serial input data line) and
SOD (Serial output data line) and these signals are used for
serial communication.

Addressing Modes in 8085

To perform any operation, we have to give the
corresponding instructions to the microprocessor. In each
instruction, programmer has to specify 3 things:

1. Operation to be performed.

2. Address of source of data.

3. Address of destination of result.

The method by which the address of source of data or the
address of destination of result is given in the instruction
is called Addressing Modes. The term addressing mode
refers to the way in which the operand of the instruction is
specified.

Intel 8085 uses the following addressing modes:

1) Direct Addressing Mode

2) Register Addressing Mode

3) Register Indirect Addressing Mode

4) Immediate Addressing Mode

5) Implicit Addressing Mode

Direct Addressing Mode

In direct addressing mode, the data to be
operated is available inside a memory location
and that memory location is directly specified as
an operand. The operand is directly available in
the instruction itself.

Example:

LDA 2050 (load the contents of memory location
into accumulator A)

Register Addressing Mode

In register addressing mode, the data to be operated is
available inside the register(s) and register(s) is(are)
operands. Therefore, the operation is performed within
various registers of the microprocessor.

Examples:

MOV A, B (move the contents of register B to register A)

ADD B (add contents of registers A and B and store the
result in register A)

INR A (increment the contents of register A by one)

Register Indirect Addressing Mode

In register indirect addressing mode, the data to
be operated is available inside a memory
location and that memory location is indirectly
specified by a register pair.

Example:

MOV A, M (move the contents of the memory
location pointed by the H-L pair to the
accumulator)

Immediate Addressing Mode

In immediate addressing mode the source

operand is always data. If the data is 8-bit, then

the instruction will be of 2 bytes, if the data is of

16-bit then the instruction will be of 3 bytes.

Example:

MVI B,45 (move the data 45H immediately to

register B)

Implied/Implicit Addressing Mode

In implied/implicit addressing mode the operand

is hidden and the data to be operated is available

in the instruction itself.

Examples:

RRC (rotate accumulator A right by one bit)

RLC (rotate accumulator A left by one bit)

Addressing Modes of 8085

Instruction cycle, Machine Cycle & T

State in 8085 microprocessor
Time required to execute and fetch an entire instruction is called instruction

cycle.

It consists:

a) Fetch cycle – The next instruction is fetched by the address stored in

program counter (PC) and then stored in the instruction register.

b) Decode instruction – Decoder interprets the encoded instruction from

instruction register.

c) Reading effective address – The address given in instruction is read from

main memory and required data is fetched. The effective address depends on

direct addressing mode or indirect addressing mode.

d) Execution cycle – consists memory read (MR), memory write (MW), input

output read (IOR) and input output write (IOW).

General Flowchart of Instruction Cycle

Upon the completion of step 4, the control goes back to step 1
to fetch, decode, and execute the next instruction. This process
continues indefinitely unless a HALT instruction is
encountered.

The time required by the microprocessor to complete an
operation of accessing memory or input/output devices is
called machine cycle. Following are the different types of
machine cycle:

- Opcode fetch, which takes 4 t-states

- Memory Read, which takes 3 t-states

- Memory Write, which takes 3 t-states

- I/O Read, which takes 3 t-states

- I/O Write, which takes 3 t-states

• The time required by the microprocessor to

complete an operation of accessing memory or

input/output devices is called machine cycle.

• One time period of frequency of microprocessor

is called t-state. A t-state is measured from the

falling edge of one clock pulse to the falling edge

of the next clock pulse.

• Fetch cycle takes four t-states and execution cycle

takes three t-states.

Fetch & Execute Operation: Timing

Diagram

• The graphical representation of status of various
signals involved during a machine cycle with
respect to time is called timing diagram.

• This gives basic idea of what is happening in the
system when the instruction is getting fetched and
executed, at what instant which signal is getting
activated.

• The signals involved during machine cycle are
CLK, A15 – A8, AD7 – AD0, IO/M(bar),
RD(bar), WR(bar) and S1,S0.

Timing diagram for op-code fetch

cycle

The op-code fetch timing diagram can be explained as below:

i) The MP places the 16-bit memory address from the program counter on

address bus. At time period T1, the higher order memory address is placed on

the address lines A15 – A8. When ALE is high, the lower address is placed on

the bus AD7 – AD0. The status signal IO/M(bar) goes low indicating the

memory operation and two status signals S1 = 1, S0 = 1 to indicate op-code

fetch operation.

ii) At time period T2, the MP sends RD(bar) control line to enable the memory

read. When memory is enabled with RD(bar) signal, the op-code value from

the addressed memory location is placed on the data bus with ALE low.

iii) The op-code value is reached at processor register during T3 time period.

When data (op-code value) is arrived, the RD(bar) signal goes high. It causes

the bus to go into high impedance state.

iv) The op-code byte is placed in instruction decoder of MP and the op-code is

decoded and executed. This happens during time period T4. In this time, the

first, 3 T-states are used for fetching the opcode from memory and the

remaining T-states are used for internal operations by the processor.

Timing diagram for memory read cycle

The memory read timing diagram can be explained as below:

i) The MP places the 16-bit memory address from the program counter
on address bus. At time period T1, the higher order memory address is
placed on the address lines A15 – A8. When ALE is high, the lower
address is placed on the bus AD7 – AD0. The status signal IO/M(bar)
goes low indicating the memory operation and two status signals S1 =
1, S0 = 0 to indicate memory read operation.

ii) At time period T2, the MP sends RD(bar) control line to enable the
memory read. When memory is enabled with RD(bar) signal, the data
from the addressed memory location is placed on the data bus with
ALE low.

iii) The data is reached at processor register during T3 state. When data
is arrived, the RD(bar) signal goes high. It causes the bus to go into
high impedance state.

Timing diagram for memory write

cycle

The memory write timing diagram can be explained as below:

i) The MP places the 16-bit memory address from the program counter
on address bus. At time period T1, the higher order memory address is
placed on the address lines A15 – A8. When ALE is high, the lower
address is placed on the bus AD7 – AD0. The status signal IO/M(bar)
goes low indicating the memory operation and two status signals S1 =
0, S0 = 1 to indicate memory write operation.

ii) At time period T2, the MP sends WR(bar) control line to enable the
memory write. When memory is enabled with WR(bar) signal, the data
from the processor is placed on the addressed location with ALE low.

iii) The data is reached at memory location during T3 state. When data
is reached, the WR(bar) signal goes high. It causes the bus to go into
high impedance state.

Timing diagram for IO read cycle

Timing diagram for IO write cycle

Timing Diagram of MOV

Eg: MOV A,B
• The instruction MOV A ,B is of 1 byte; therefore the complete instruction will be

stored in a single memory address.

• For example: 2000: MOV A, B

In Opcode fetch (t1-t4 T states):

• 00 – lower bit of address where opcode is stored, i.e., 00

• 20 – higher bit of address where opcode is stored, i.e., 20.

• ALE – provides signal for multiplexed address and data bus. Only in t1 it used as
address bus to fetch lower bit of address otherwise it will be used as data bus.

• RD (low active) – signal is 1 in t1 & t4 as no data is read by microprocessor. Signal
is 0 in t2 & t3 because here the data is read by microprocessor.

• WR (low active) – signal is 1 throughout, no data is written by microprocessor.

• IO/M (low active) – signal is 1 in throughout because the operation is performing
on memory.

• S0 and S1 – both are 1 in case of opcode fetching.

Timing Diagram of MOV

Eg: MOV A,B

Timing Diagram of MVI

Eg: MVI B, 43H

Timing diagram for MVI B, 43H

• Fetching the Op-code 06H from the memory

2000H. (OF machine cycle)

• Read (move) the data 43H from memory

2001H. (memory read)

Timing diagram for LDA 4050H

• Let us consider LDA 4050H as an example instruction of this type. It is a 3-

Byte instruction. The initial content of memory address 4050H is ABH.

Initially Accumulator content is CDH. As after execution A will be

initialized with value ABH. Memory location 4050H will still remain with

the content ABH. The results of execution of this instruction is as below −

Machine Cycle T-states Operation Performed

Opcode Fetch 4 Read Opcode from Memory to instruction register
(3A)

Memory Read 3 Read Lower order memory address (50)

Memory Read 3 Read higher order memory address (40)

Memory Read 3 Read data from memory, using the address values
read from previous 2 machine read cycle i.e from
4050 to accumulator.

Timing diagram for STA 526AH.

• STA means Store Accumulator -The contents of the accumulator is stored in the

specified address(526A).

• The opcode of the STA instruction is said to be 32H. It is fetched from the memory

41FFH(see fig). - OF machine cycle

• Then the lower order memory address is read(6A). - Memory Read Machine Cycle

• Read the higher order memory address (52).- Memory Read Machine Cycle

• The combination of both the addresses are considered and the content from

accumulator is written in 526A. - Memory Write Machine Cycle

• Assume the memory address for the instruction and let the content of accumulator

is C7H. So, C7H from accumulator is now stored in 526A.

Machine Cycle T-states Operation Performed

Opcode Fetch 4 Read Opcode from Memory to instruction register
(32)

Memory Read 3 Read Lower order memory address (6A)

Memory Read 3 Read higher order memory address (52)

Memory Write 3 Write data present in accumulator to memory, in
the address values read from previous 2 machine
read cycle i.e. to memory location 526AH

Timing Diagram of IN

Timing Diagram of OUT

• Instruction Format: OUT 8 bit Port Address

• Example: OUT 02H

Address Data

8000 Opcode of OUT (D3)

8001 02 (Port Address)

Machine Cycle T-states Operation Performed

Opcode Fetch 4 Read Opcode from Memory to instruction register
(D3)

Memory Read 3 Read Lower order memory address (02)

I/O Write 3 Write data to previously read port address i.e. to
port 02

Timing Diagram of MOV M, E

Timing Diagram of MOV E, M

Assembly Language Programming Basics

• An assembly language is the most basic programming language available

for any processor.

• With assembly language, a programmer works only with operations that are

implemented directly on the physical CPU.

• Assembly languages generally lack high-level conveniences such as

variables and functions, and they are not portable between various families

of processors.

• They have the same structures and set of commands as machine language,

but allow a programmer to use names instead of numbers. This language is

still useful for programmers when speed is necessary or when they need to

carry out an operation that is not possible in high-level languages.

• Assembly language is specific to a given processor. For e.g. assembly

language of 8085 is different than that of Motorola 6800 microprocessor.

• Microprocessor cannot understand a program written in Assembly language. A

program known as Assembler is used to convert Assembly language program to

machine language.

Advantages of Assembly Language

a) The symbolic programming of Assembly Language is easier to

understand and saves a lot of time and effort of the

programmer.

b) It is easier to correct errors and modify program instructions.

c) Assembly Language has the same efficiency of execution as

the machine level language.

Disadvantages of Assembly Language

a) One of the major disadvantages is that assembly language is

machine dependent. A program written for one computer might

not run in other computers with different hardware

configuration.

b) If you are programming in assembly language, you must have

detailed knowledge of the particular microcomputer you are

using.

c) Assembly language programs are not portable

• Machine language and Assembly language are
both

–Microprocessor specific (Machine dependent)

–Low-level languages

•Machine independent languages are called

–High-level languages

–For e.g. BASIC, PASCAL,C++,C,JAVA, etc.

–A software called Compiler is required to convert
a high-level language program to machine code

8085 Programming Model

• 8085 HARDWARE MODEL

The hardware model in fig (a) shows two major segments. One
segment includes arithmetic logic unit [ALU] and an 8 bit register
called an accumulator, instruction decoder, and flags. The second
segment shows 8 bit and 16 bit registers. Both segments are connected
with various internal connections called an internal bus. The arithmetic
and logic operations are performed in the arithmetic logic unit [ALU].
Results are stored in the accumulator, and flip-flops, called flags, are
set or reset to reflect the results. There are 3 buses- a 16 bit
unidirectional address bus, an 8 bit bidirectional data bus, and a control
bus.

• The 8085 Programming Model

• The 8085 programming model includes six registers, one

accumulator, and one flag register. In addition, it has two 16-bit

registers: the stack pointer and the program counter. They are

described briefly as follows.

• Registers

The 8085 has six general-purpose registers to store 8-bit data; these

are identified as B,C,D,E,H, and L as shown in the figure. They can

be combined as register pairs - BC, DE, and HL - to perform some

16-bit operations. The programmer can use these registers to store or

copy data into the registers by using data copy instructions.

• Accumulator

- The accumulator is an 8-bit register that is a part of

arithmetic/logic unit (ALU). This register is used to store 8-bit

data and to perform arithmetic and logical operations. The

result of an operation is stored in the accumulator. The

accumulator is also identified as register A.

Data Bus Address Bus

- 8 Lines Bidirectional data bus and 16 Lines unidirectional

address bus

• Flags
The ALU includes five flip-flops, which are set or reset after an operation according to
data conditions of the result in the accumulator and other registers. They are called
Zero(Z), Carry (CY), Sign (S), Parity (P), and Auxiliary Carry (AC) flags; their bit
positions in the flag register are shown in the Figure below. The most commonly used
flags are Zero, Carry, and Sign. The microprocessor uses these flags to test data
conditions.

• For example, after an addition of two numbers, if the sum in the accumulator is larger
than eight bits, the flip-flop uses to indicate a carry called the Carry flag (CY) is set to
one. When an arithmetic operation results in zero, the flip-flop called the Zero(Z) flag is
set to one. The first Figure shows an 8-bit register, called the flag register, adjacent to the
accumulator. However, it is not used as a register; five bit positions out of eight are used
to store the outputs of the five flip-flops. The flags are stored in the 8-bit register so that
the programmer can examine these flags (data conditions) by accessing the register
through an instruction.

• These flags have critical importance in the decision-making process of the
microprocessor. The conditions (set or reset) of the flags are tested through the software
instructions. For example, the instruction JC (Jump on Carry) is implemented to change
the sequence of a program when CY flag is set. The thorough understanding of flag is
essential in writing assembly language programs.

• Program Counter (PC)

This 16-bit register deals with sequencing the execution of instructions. This

register is a memory pointer. Memory locations have 16-bit addresses, and that is

why this is a 16-bit register.

The microprocessor uses this register to sequence the execution of the instructions.

The function of the program counter is to point to the memory address from which

the next byte is to be fetched. When a byte (machine code) is being fetched, the

program counter is incremented by one to point to the next memory location

• Stack Pointer (SP)

The stack pointer is also a 16-bit register used as a memory pointer. It points to a

memory location in R/W memory, called the stack. The beginning of the stack is

defined by loading 16-bit address in the stack pointer.

This programming model will be used in subsequent tutorials to examine how these

registers are affected after the execution of an instruction.

Instruction description and format:

• An instruction manipulates the data and a sequence of instructions

constitutes a program. Generally each instruction has two parts: one is the

task to be performed, called the operation code (Op-Code) field, and the

second is the data to be operated on, called the operand or address field.

The operand (or data) can be specified in various ways. It may include 8-bit

(or 16-bit) data, an internal register, a memory location, or an 8-bit (or 16-

bit) address. The Op-Code field specifies how data is to be manipulated and

address field indicates the address of a data item.

• For example: ADD R1, R0

• Op-code address

• Here R0 is the source register and R1 is the destination register. The

instruction adds the contents of R0 with the content of R1 and stores result

in R1.

Classification of instruction on the basisof addressspecified /
Instruction Word Size

Depending on the number of address specified in
instruction sheet, the instruction

format can be classified into thecategories.

One address format (1 byte instruction):

• Here 1 byte will be Op-code and operand will be default.E.g. ADD B, MOV

A,B

Two address format (2 byte instruction) :
• Here first byte will be Op-code and second byte will be theoperand/data.

E.g. IN 40H, MVI A, 8-bit Data

Three address format (3 byte instruction):

•Here first byte will be Op-code, second and third byte will be operands/data.

That is 2nd byte- lower orderdata.

3rd byte – higher orderdata

E.g. LXI B,4050

Examples

Examples

Data Format

Instruction Set of 8085
• An instruction is a binary pattern designed inside a microprocessor to perform a

specific function. The entire group of instructions that a microprocessor supports
is called Instruction Set.

• 8085 has 246 instructions. Each instruction is represented by an 8-bit binary
value. These 8-bits of binary value is called Op-Code or Instruction Byte.

• Following are the classification of instructions:

• a) Data Transfer Instruction

• b) Arithmetic Instructions

• c) Logical Instructions

• d) Branching Instructions

• e) Control Instructions

a) Data Transfer Instruction

• These instructions move data between registers, or between memory and

registers. These instructions copy data from source to destination. While copying,

the contents of source are not modified.

• Example: MOV, MVI

b) Arithmetic Instructions

• These instructions perform the operations like addition, subtraction, increment

and decrement.

• Example: ADD, SUB, INR, DCR

c) Logical Instructions

• These instructions perform logical operations on data stored in registers and

memory. The logical operations are: AND, OR, XOR, Rotate, Compare and

Complement.

• Example: ANA, ORA, RAR, RAL, CMP, CMA

d) Branching Instructions

• Branching instructions refer to the act of switching execution to a
different instruction sequence as a result of executing a branch
instruction. The three types of branching instructions are: Jump,
Call and Return.

e) Control Instructions

• The control instructions control the operation of microprocessor.
Examples: HLT, NOP, EI (Enable Interrupt), DI (Disable
Interrupt).

Instruction Set of 8085
8085 instructions can be classifiedas

1. Data Transfer (Copy) instructions

2. Arithmetic instructions

3. Logical and Bit manipulation instructions

4. Branching instructions

5. Miscellaneous instructions / Control

Data TransferOperations
• The data transfer instructions load given data into register, copy

data from register to register, copy data from register to memory
location, and viceversa.

• In other words we can say that data transfer instructions copy data
from source to destination.

• Source can be data or contents of register or contents of memory
location whereas destination canbe register ormemory location.

• These instructions do not affect the flag register of the processor.

Instructions
1) MOV Rd, Rs (move register instruction)

• 1 byte instruction

• Copies data from source register to destination register.

• Rd & Rs may be A, B, C, D, E, H&L

• E.g. MOV A, B

2) MVI R, 8 bit data (move immediateinstruction)

• 2 byte instruction

• Loads the second byte (8 bit immediate data) into the register specified.

• R may be A, B, C, D, E, H & L

• E.g. MVI C,53H

• E. g. MOV B, M

Cont..

3) MOV M, R (Move to memory fromregister)

• Copy the contents of the specified register to memory.
Here memory is the location specified by contents of
the HLregisterpair.

• E.g. MOV M, B

4) MOV R, M (move to register frommemory)

• Copy the contents of memory location specified by HL
pair to specified register.

Write a program to load memory locations 7090 H and 7080 H withdata 40H
and 50H and then swap these data.

MVI H,70H

MVI L, 90H

MVI A, 40H

MOV M, A

MOV C, M

MVI L, 80H

MVI B, 50H

MOV M, B

MOV D, M

MOV M, C

MVI L, 90H

MOV M, D

HLT

Cont..
5) LXI RP, 2 bytes data (load register pair)

• 3-byte instruction

• Load immediate data to register pair –Registerpair
may be BC, DE, HL & SP(Stack pointer)

• 1st byte- Op-code

• 2nd byte – lower order data

• 3rd byte- higher orderdata

• E.g. LXI B, 4532H; B 45,C 32H

Cont..

6) MVI M, data (load memoryimmediate)

• 2 byte instruction.

• Loads the 8-bit data to the memory location

whose address is specified by the contentsof

HL pair. E.g. MVI M ,35H; [HL] 35H

7) LDA 4035H (Load accumulatordirect)

• 3-byte instruction

• Loads the accumulator with the contents of

memory location whose address is specified

by 16 bit address.

• A [4035H]

Cont..
8. STA 16-bit address (store accumulator contentsdirect)

• 3-byte instruction.

• Stores the contents of accumulator tospecified address

• E.g. STAFA00H

9. LDAX RP (Load accumulatorindirect)

• 1 byte instruction.

• Loads the contents of memory location pointed by the contents of register
pair to accumulator.

• E. g. LDAX B
LXI B, 9000H

LDAXB

B= 90, C=00

A=[9000]

Cont..
10) STAXRP

• Stores the contents of accumulator to memory location specified
by the contents ofregister pair.

• 1 byte instruction

• Example
LXI B, 9500H

LXID, 9501H

MVI A, 32H

STAXB

MVI A,7AH

STAXD

Cont..11) IN 8-bit address

• 2-byte instruction

• Read data from the input port address specified in the
second byte and loads data intothe accumulator.

• E. g. IN 40H

12) OUT 8-bit address

• 2-byte instruction

• Copies the contents of the accumulator to the output port
address specified in the 2ndbyte

• E. g. OUT 40H

Cont..
13) LHLD 16-bit address (Load HLdirectly)

• 3-byte instruction.

• Loads the contents of specified memory location to Lregister
and contents of next higher location to H-register.

• Eg. LXI H,9500H

MVI M, 32H

MVI L, 01H

MVI m, 7AH

LHLD9500H

Cont..

14) SHLD 16-bit address (store HLdirectly)

• Opposite to LHLD.

• Stores the contents of L register to specified
memory location and contents of H registerto
next higher memory location.

• E .g. LXI H, 9500H

SHLD8500H

Cont..
15) XCHG(Exchange)

• Exchanges DE pair with HLpair.

• E. g. LXI H,7500H

LXI D, 9532H

XCHG

H= 75, L=00

D=95. E=32

H=95, L=32

D=75E=00

Arithmetic group Instructions
• The arithmetic operation add and subtract are performed in

relation to the contents of accumulator.The features of these
instructions are

1) They assumeimplicitly that the accumulator is one of the
operands.

2) They modify all the flags according to the data conditions of the
result.

3) They place the result in theaccumulator.

4) They do not affect the contents of operand register or memory.

Arithmetic group Instructions

• The 8085 microprocessor performs various arithmetic
operations such as addition, subtraction, increment and
decrement. These arithmetic operations have the following
mnemonics.

1) ADDR/M

• 1 byte add instruction.

• Adds the contents of register/memory to the contents of the
accumulator and stores the result in accumulator.

• E. g. ADD B;A A + B

Cont..
2) ADI 8 bit data

• 2 byte add immediateinstruction.

• Adds the 8 bit data with the contents of accumulator and stores
result in accumulator.

• E g.ADI 9BH ; A A+9BH

3) SUBR/M

• 1 byte subtract instruction.

• Subtracts the contents of specified register / m with the contents
of accumulator and stores the result in accumulator.

• E.g. SUBD; A A-D

Cont..

4) SUI 8 bit data

• 2 byte subtract immediate instruction.

• Subtracts the 8 bit data from thecontents of

accumulator stores result in accumulator.

• E.g. SUID3H A A–D3H

Cont..
5) INR R/M, DCRR/M

• 1 byte increment and decrementinstructions

• Increase and decrease the contents of R(register) or
M(memory) by 1respectively.

E.g. DCR B

DCR M

INR A

INRM

; B=B-1

; [HL] =[HL]-1

; A=A+1

; [HL]+1

For these, all flags are affected exceptcarry.

Cont..
6. INX Rp, DCXRP

• Increase and decrease the register pair by1.

• Acts as 16 bitcounter made from the contents of
2 registers (1 byte instruction)

;BC=BC+1

;DE=DE-1

• E.g. INXB

• DCXD

• No flags affected

Cont..

7) ADC R/M and ACI 8-bit data (addition with
carry (1 byte))

• ACI 8-bit data= immediate (2byte).

• Adds the contents of register or 8 bit data
whatever used suitably with the Previous carry.

• –E.g. ADCB

ACI70H

; A =A+B+CY

; A = A + 70+CY

Cont..
8) SBBB/M
• 1 byte instruction. –Subtracts the contents of register or memory from the

contents of accumulator andstoresthe result in accumulator.

• –e. g.SBB D; A A-D-Borrow

SBI 8 bitdata

• 2 byte instruction.

• Subtracts the 8-bit immediate data from the content of the
accumulator and stores the result in accumulator.

• E.g. SBI 70H; A A-70-Borrow

Cont..
9) DAD Rp(doubleaddition)

• 1 byte instruction.

• Adds register pair with HL pair and store the16
bit result in HLpair.

• E.g. LXI H, 7320H

LXI B, 4220H

DADB; HL=HL+BC

Cont..
10) DAA (Decimal adjustmentaccumulator)

• Used only after addition.

• 1 byte instruction.

• The content of accumulator is changed from binary to two
4-bit BCDdigits.

• E.g MVI A, 78H

MVI B,42H

ADD B

DAA

; A=78

; B=42

; A=A+B =BA

; A=20,CY=1

Logical Group Instructions:
• Microprocessor can perform all the logic functions of the

hardwired logic through its instruction set.The 8085 instruction
set includes such logic functions as AND, OR, XOR and NOT
(Complement):

• The following features hold true for all logic instructions:

1. The instructions implicitly assumethat the accumulator is one of
the operands.

2. All instructions reset (clear) carry flag except for complement
where flag remainunchanged.

3. They modify Z, P & S flags according to the data conditionsof
the result.

4. Place the result in theaccumulator.

5. They do not affect the contents of the operand register

1) ANAR/M (the contents of register/memory)

• LogicallyANDthe contents of register/memory with the
contents of accumulator.

• 1 byte instruction.

• CY flag is reset and AC is set.

2) ANI 8 bit data

• LogicallyAND8 bit immediate data with the contents of
accumulator.

• 2 byte instruction.

• CY flag is reset and AC is set. Others as per result

3) ORAR/M

• Logically OR the contents ofregister/memory
with the contents ofaccumulator.

• 1 byte instruction.

• CY and AC is reset and other as perresult.

4) ORI 8 bit data

• Logically OR 8 bit immediate data with the
contents of theaccumulator.

• 2 byte instruction.

• CYandACisreset and
सरोज

o
थ
t
ा प
h
ा
er asper result.

5) XRAR/M

• Logically exclusive OR the contents of register memory with the contents

of accumulator.

• 1 byte instruction.

• CY and AC is reset and other as per result.

6) XRI 8 bit data

• Logically Exclusive OR 8 bit data immediate with the content of accumulator.

• 2 byte instruction.

• CY and AC is reset and other as per result.

7) CMA (Complement accumulator)

• 1 byte instruction.

• Complements the contents of theaccumulator.

• No flags are affected

Logically Compare instructions
7. CMP R/M (1 byte instruction)

CPI 8 bit data (2 byte instruction)

• Compare the contents of register/ memoryand 8 bit
data with the contents ofaccumulator.

• Status is shown by flags & all flags aremodified.

Case CY Z

[A]<[R/M] or 8bit 1 0 A-R<0

[A]=[R/M] or 8bit 0 1 A-R=0

[A]>[R/M] or 8bit 0 0 A-

R>0

Logical Rotate instructions
• This group has four instructions, two are for rotating left and two are

for rotating right. The instructionsare:

1) RLC: Rotate accumulatorleft

• Eachbit is shifted to the adjacent left position.

• Bit D7 becomes D0.

• The carry flag is modified according toD7

2) RAL: Rotate accumulator left throughcarry

• Eachbit is shifted to the adjacent left position.

• Bit D7 becomes the carry bit and the carry bit is shifted into D0.

• The carry flag is modified according toD7.

3) RRC: rotate accumulatorright
• Each bit is shifted right to theadjacent position.

• Bit D0 becomes D7.

• The carry flag is modified according to D0.

4) RAR: Rotate accumulator right throughcarry

• Each bit is shifted right to theadjacent position.

• Bit D0 becomes the carry bit and the carry bit is shifted into

D7.

Branching Group Instructions:
• The microprocessor is a sequential machine; it executes machine codes

from one memory location to the next.

• The branching instructions instruct the microprocessor to go to a

different memory location and the microprocessor continues executing

machine codes from that newlocation.

• The branching instruction code categorized in following threegroups:

– Jump instructions

– Call and return instruction

– Restart instruction

JumpInstructions
• The jump instructions specify the memory locationexplicitly.

• They are 3 byte instructions, one byte for the operation code followed
by a 16 bit (2 byte) memory address. Jump instructions can be
categorized into unconditional and conditionaljump.

1. Unconditional Jump

• 8085 includes unconditional jump instruction to enable the
programmer to set up continuous loops without depending only type
of conditions.

• E.g. JMP 16 bit address: loads the program counter by 16 bit address
and jumps to specified memorylocation.

E.g. JMP4000H

Conditional Jump
• The conditional jump instructions allow the

microprocessor to make decisions based on certain
conditions indicated by the flags.

• After logic and arithmetic operations, flags are set or
reset to reflect the condition of data.

• These instructions check the flag conditions and
make decisions to change or not to change

the sequence of program.
• The four flags namely carry, zero, sign and parity

used by the jump instruction.

Cont…
Mnemonics

JC 16bit

JNC 16 bit

JZ 16bit

JNZ 16bit

JP 16bit

JM 16bit

JPE 16bit

JPO16bit

Description

Jump on carry (if CY=1)

Jump on if no carry (ifCY=0)

Jump on zero (if Z=1)

jump on if no zero (if Z=0)

jump on positive (if S=0)

jump on negative (if S=1)

Jump on parity even (if P=1)

Jump on parity odd (ifP=0)

WAP to move 10 bytes of data from starting address 9500 H to
9600H

2008

2000 MVI B,0AH

2002 LXI H, 9500H

2005 LXI D, 9600H

2008 MOV A, M

2009

200A

200B

200C

200D

2010

STAXD ; Store the contents of accumulator to register pair.

INXH ; Increment the register pair by 1.

INX D

DCR B

JNZ

HLT

Call and return instructions:

(Subroutine)
• Call and return instructions are associated with subroutine

technique.
• A subroutine is a group of instructions that perform a subtask. A

subroutine is written as a separate unit apart from the main
program and the microprocessor transfers the program execution
sequence from main program to subroutine whenever it is called to
perform atask.

• After the completion of subroutine task microprocessor returns to
main program.

• The subroutine technique eliminates the need to write a subtask
repeatedly, thus it usesmemoryefficiently.

• Toimplement subroutine there are two instructions CALL
and RET.

1. CALL16 bit memory

• Call subroutine unconditionally.

• 3 byte instruction.

• Saves the contents of program counter on the stack pointer.
Loads the PC by jump address (16 bit memory) and executes
the subroutine.

2. RET

• Returns from the subroutineunconditionally.

• 1 byte instruction

• Inserts the contents of stack pointer to program counter

Restart Instruction:

• 8085 instruction set includes 8 restart instructions(RST).These are 1

byte instructions and transfer the program execution to a specific

location.

Cont..
• When RST instruction is executed, the 8085 stores the

contents of PCon SP and transfers the program to the restart

location.

• Actually these restart instructions are inserted through

additional hardware.

• These instructions are part of interrupt process.

Miscellaneous Group Instructions:
STACK

• The stack is defined as a set of memory location in R/W
memory, specified by a programmer in a main memory.
These memory locations are used to store binary
information temporarily during the execution of a program.

• The beginning of the stack is defined in the program by
using the instruction LXISP,16 bit address.

• Once the stack location is defined, it loads 16 bit address in
the stack pointer register. Storing of data bytes for this
operation takes place at the memory location that is one
less than the address

• e.g. LXI SP,2099H

• The stack instructions are:

1. PUSH Rp/PSW (Store register pair onstack)

• 1 byte instruction.

• Copies the contents of specified register pair or program
status word (accumulator and flag) on the stack.

• Stack pointer is decremented and content of high order
register is copied. Then it is again decremented and content
of low orderregister is copied.

2. POP Rp/PSW (retrieve register pair fromstack)

• 1 byte instruction.

• Copies the contents of the top two memory locations of the
stack into specified register pair or program status word.

• Acontent of memory location indicated by SPis copied into low order

register and SPis incremented by 1. Then the content of next memory

location is copied intohigh order register and SPis incremented by 1.

Cont..

3. XTHL –exchanges top of stack (TOS) with HL

4. SPHL –move HL toSP

5. PCHL –move HL toPC

Example
LXI SP, 1FFFH

LXI H, 9320H

LXI B, 4732H

LXI D, ABCDH

MVI A, 34H

PUSH H

PUSH B

PUSH D

PUSH PSW

POPH

POP B

POP D

POP PSW

HLT

•PROGRAMS

	Slide 1: Unit 2: Intel 8085 (8 Hrs.)
	Slide 2: CONTENTS
	Slide 3: 8085 Microprocessor & its Operation
	Slide 4
	Slide 5: 8085 Microprocessor Architecture & Functional Units
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: 8085 Pin Configuration
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Addressing Modes in 8085
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Addressing Modes of 8085
	Slide 32: Instruction cycle, Machine Cycle & T State in 8085 microprocessor
	Slide 33: General Flowchart of Instruction Cycle
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Fetch & Execute Operation: Timing Diagram
	Slide 38
	Slide 39: Timing diagram for op-code fetch cycle
	Slide 40
	Slide 41: Timing diagram for memory read cycle
	Slide 42
	Slide 43: Timing diagram for memory write cycle
	Slide 44
	Slide 45: Timing diagram for IO read cycle
	Slide 46: Timing diagram for IO write cycle
	Slide 47: Timing Diagram of MOV Eg: MOV A,B
	Slide 48: Timing Diagram of MOV Eg: MOV A,B
	Slide 49: Timing Diagram of MVI Eg: MVI B, 43H
	Slide 50
	Slide 51: Timing diagram for LDA 4050H
	Slide 52
	Slide 53
	Slide 54: Timing diagram for STA 526AH.
	Slide 55
	Slide 56
	Slide 57: Timing Diagram of IN
	Slide 58
	Slide 59: Timing Diagram of OUT
	Slide 60
	Slide 61
	Slide 62: Timing Diagram of MOV M, E
	Slide 63: Timing Diagram of MOV E, M
	Slide 64: Assembly Language Programming Basics
	Slide 65
	Slide 66: Advantages of Assembly Language
	Slide 67: Disadvantages of Assembly Language
	Slide 68
	Slide 69: 8085 Programming Model
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75: Instruction description and format:
	Slide 76: Classification of instruction on the basis of address specified / Instruction Word Size
	Slide 77: Examples
	Slide 78: Examples
	Slide 79: Data Format
	Slide 80
	Slide 81
	Slide 82: Instruction Set of 8085
	Slide 83
	Slide 84
	Slide 85: Instruction Set of 8085
	Slide 86: Data Transfer Operations
	Slide 87: Instructions
	Slide 88: Cont..
	Slide 89: # Write a program to load memory locations 7090 H and 7080 H with data 40H and 50H and then swap these data.
	Slide 90: Cont..
	Slide 91: Cont..
	Slide 92
	Slide 93: Cont..
	Slide 94: Cont..
	Slide 95: Cont..
	Slide 96: Cont..
	Slide 97: Cont..
	Slide 98: Cont..
	Slide 99: Arithmetic group Instructions
	Slide 100: Arithmetic group Instructions
	Slide 101: Cont..
	Slide 102: Cont..
	Slide 103: Cont..
	Slide 104: Cont..
	Slide 105: Cont..
	Slide 106: Cont..
	Slide 107: Cont..
	Slide 108: Cont..
	Slide 109: Logical Group Instructions:
	Slide 110
	Slide 111
	Slide 112
	Slide 113: Logically Compare instructions
	Slide 114: Logical Rotate instructions
	Slide 115: 2) RAL: Rotate accumulator left through carry
	Slide 116: 3) RRC: rotate accumulator right
	Slide 117
	Slide 118: Branching Group Instructions:
	Slide 119: Jump Instructions
	Slide 120: Conditional Jump
	Slide 121: Cont…
	Slide 122: WAP to move 10 bytes of data from starting address 9500 H to 9600H
	Slide 123: Call and return instructions: (Subroutine)
	Slide 124
	Slide 125: Restart Instruction:
	Slide 126: Cont..
	Slide 127: Miscellaneous Group Instructions:
	Slide 128
	Slide 129
	Slide 130: Cont..
	Slide 131: Example
	Slide 132
	Slide 133

