
UNIT 2
APPLICATION LAYER

LH-4

CONTENTS

• Introduction; Application Architectures (Host-Based Architectures, Client-Based
Architectures, Client-Server Architectures, Cloud Computing Architectures, Peer-
to-Peer Architectures, Choosing Architectures); World Wide Web (Working of
WWW, HTTP Request and Response); Electronic Mail (Working of Email, SMTP
Packet, Multipurpose Internet Mail Extension); Other Applications (Telnet, Instant
Messaging, Videoconferencing).

Introduction

• The application layer is the top-most layer of OSI model.

• It provides services directly to user applications.

• It enables the to access the network.

• It provides user interfaces and support for services such as email, remote file access and transfer,
shared database management and other types of distributed information services.

• The functions of the application layer are:

- It facilitates the user to use the services of the network.

- It is used to develop network-based applications.

- It provides user services like user login, naming network devices, formatting messages, and e-mails,
transfer of files etc.

- It is also concerned with error handling and recovery of the message as a whole

Application layer protocols

• Hyper Text Transfer Protocol, HTTP: It is the underlying protocol for world wide web. It defines
how hypermedia messages are formatted and transmitted.

• File Transfer Protocol, FTP: It is a client-server based protocol for transfer of files between client
and server over the network.

• Simple Mail Transfer Protocol, SMTP: It lays down the rules and semantics for sending and
receiving electronic mails (e-mails).

• Domain Name System, DNS: It is a naming system for devices in networks. It provides services
for translating domain names to IP addresses.

• TELNET: It provides bi-directional text-oriented services for remote login to the hosts over the
network.

• Simple Network Management Protocol, SNMP: It is for managing, monitoring the network and for
organizing information about the networked devices.

• Functionalities of the Application layer

Specific functionalities of the Application layer are as follows:

1. Network Virtual terminal

• The application layer is the software version of a physical terminal and this layer permitted to a
user to log on to a remote host.

• For this, an application creates a software emulation of a terminal at the remote host. By this user's
computer can communicate with the software terminal, which in turn, communicates with the host.

• It is shown that the remote host is communicating with one of its terminals, so it allows the user to
log on.

2. File Transfer, Access, and Management (FTAM)

• An application permits a user to access files in a remote computer, to retrieve files from a computer
and to manage files on a remote computer.

• FTAM is concerned with a hierarchical virtual file in terms of file attributes, file structure and the
types of operations performed on the files and their attributes.

3. Addressing

• To achieve communication between client and server system, there is a need for
addressing.

• When a request is sent from the client side to the server side, this request contains the
server address and its own address.

• The server answered to the client request, this request contains the destination address,
i.e., client address. DNS is used to achieve this type of addressing.

4. Mail Services

• Email forwarding and storage of e-mails provided by an application layer.

5. Directory Services

• A distributed database is contained by an application that provides access for global
information about various objects and services.

6. Authentication

• It provides authentication to occur between devices for an extra layer of security and it
authenticates the sender or receiver's message or both.

Application Architecture

• It should be clear that to use the Internet, two application programs are needed to interact with each
other: one running on a computer somewhere in the world, the other running on another computer
somewhere else in the world.

• An application architecture is the way in which the functions of the application layer software are
spread among the clients and servers in the network.

• The work done by any application program can be divided into four general functions which are
the basic building blocks of any application.

• Data storage: Most application programs require data to be stored and retrieved. whether it is a
small file such as a memo produced by a word processor or a large database such as an
organization's accounting records.

• Data access logic: the processing required to access data, which often means database queries in
SQL (structured query language).

• Application logic (sometimes called business logic), which also can be simple or complex,
depending on the application.

• Presentation logic, the presentation of information to the user and the acceptance of the user's
commands.

• There are many ways in which these four functions can be allocated between the client
computers and the servers in a network. There are four fundamental application
architectures in use today.

• In host-based architectures, the server (or host computer) performs virtually all of the
work.

• In client-based architectures, the client computers perform most of the work.

• In client-server architectures, the work is shared between the servers and clients.

• In peer-to-peer architectures, computers are both clients and servers and thus share the
work. The client-server architecture is the dominant application architecture.

• Host Based Architectures:

The very first data communications
networks developed in the 1960s were
host-based, with the server (usually a large
mainframe computer) performing all
functions. The clients (usually terminals)
enabled users to send and receive
messages to and from the host computer.
The clients merely captured keystrokes,
sent them to the server for processing, and
accepted instructions from the server on
what to display.

• This very simple architecture often works very well. Application software is
developed and stored on the one server along with all data. If you’ve ever used a
terminal you’ve used a host-based application. There is one point of control,
because all messages flow through the one central server. In theory, there are
economies of scale, because all computer resources are centralized.

• There are some fundamental problems with host-based networks. The server must
process all messages. As the demands for more and more network applications
grow, many servers become overloaded and unable to quickly process all the
users’ demands. Prioritizing users’ access becomes difficult. Response time
becomes slower, and network managers are required to spend increasingly more
money to upgrade the server.

• Client Based Architectures:

In the late 1980s, there was an explosion in the
use of personal computers. Today, more than
90% of most organizations’ total computer
processing power now resides on personal
computers, not in centralized mainframe
computers. Part of this expansion was fueled by
a number of low-cost, highly popular
applications such as word processors,
spreadsheets, and presentation graphics
programs. It was also fueled in part by
managers’ frustrations with application software
on host mainframe computers. Most mainframe
software is not as easy to use as personal
computer software, is far more expensive, and
can take years to develop.

• With client-based architectures, the clients are personal computers on a LAN, and the server is
usually another personal computer on the same network. The application software on the client
computers is responsible for the presentation logic, the application logic, and the data access logic;
the server simply stores the data.

• This simple architecture often works very well. If you’ve ever used a word processor and stored
your document file on a server (or written a program in Visual Basic or C that runs on your
computer but stores data on a server), you’ve used a client-based architecture.

• The fundamental problem in client-based networks is that all data on the server must travel to the
client for processing. For example, suppose the user wishes to display a list of all employees with
company life insurance. All the data in the database (or all the indices) must travel from the server
where the database is stored over the network circuit to the client, which then examines each
record to see if it matches the data requested by the user. This can overload the network circuits
because far more data are transmitted from the server to the client than the client actually needs.

• Client-Server Architecture:
• Most applications written today use client–server architectures.

Client– server architectures attempt to balance the processing
between the client and the server by having both do some of
the logic. In these networks, the client is responsible for the
presentation logic, whereas the server is responsible for the
data access logic and data storage. The application logic may
either reside on the client, reside on the server, or be split
between both.

• Figure shows the simplest case, with the presentation logic and application logic on the client and the data

access logic and data storage on the server.

• In this case, the client software accepts user requests and performs the application logic that produces

database requests that are transmitted to the server.

• The server software accepts the database requests, performs the data access logic, and transmits the results to

the client. The client software accepts the results and presents them to the user. When you used a Web

browser to get pages from a Web server, you used a client– server architecture. Likewise, if you’ve ever

written a program that uses SQL to talk to a database on a server, you’ve used a client–server architecture.

• Types of Client-Server Architecture:

• There are many ways in which the application logic can be partitioned between the client
and the server.

• 2-tier architecture: In 2-tier architecture, the presentation and business logic layers are
stored on the client while the data layer is stored on a server. So as long as the code of an
application is fully executed on the client and some of the data is being stored in a remote
database, that application fits the 2-tier architecture criteria. A desktop application that
requires you to log into an online account is a good example.

• 3-tier architecture: The presentation layer is stored on the client, the business logic layer
is stored on one server, and the data layer is stored on another server. For example, you
use a smartphone app's user interface to interact with an app while an application server
executes most of the app's code and a database server stores the data.

• N-tier architecture: In N-tier architecture, the presentation and data layers are left
untouched, compared to the 3-tier architecture. The difference is that N-tier architecture
splits the business logic layer into multiple layers to improve performance, management,
and stability.

Two – Tier Three– Tier

N– Tier

• Another way of classifying client server architectures is by examining how much of the
application logic is placed on the client computer.

• Thin-client: A thin client is a lightweight computer that relies on the resources of the host
computer. It works by connecting with a remote server, where applications and data are
stored. They don't have storage capability to store user's data, so the date stores at a
remote server from which the thin client is connected to. In terms of security, they are
more secure than thick clients as they have fewer security threats. System management is
much easier in thin clients.

• Thick-client: The thick client relies lightly upon the server and provides rich
functionality. The majority of data processing is performed by thick clients. They are also
called as heavy or fat clients. In terms of security, they are less secure than thin client as
they have more security threats. They are not dependent upon the applications of server as
they have their own software applications and operating system.

• Cloud Computing Architectures

• The traditional client–server architecture can be
complicated and expensive to deploy. Every
application has to be hosted on a server so that it
can fulfill requests from potentially thousands of
clients. An organization has hundreds of
applications, so running a successful client–server
architecture requires a variety of software and
hardware and the skilled personnel who can build
and maintain this architecture.

• Cloud computing architectures are different
because they outsource part or all of the
infrastructure to other firms that specialize in
managing that infrastructure. There are three
common cloud-based architecture models. Figure
summarizes these three models and compares
them to the client– server architecture

• Software as a Service (SaaS):

• Saas is one of the three cloud computing models. With SaaS, an organization outsources
the entire application to the cloud provider and uses it as any other application that is
available via a browser (thin client). SaaS is based on multitenancy. This means that
rather than having many copies of the same application, there is only one application that
everybody shares, yet everybody can customize it for his or her specific needs. Popular
SaaS offering the include Microsoft 365, Salesforce, and Google Workspace (also known
as, G Suite).

• Platform as a Service (PaaS):

• PaaS is another of the three cloud computing models. What if there is an application you
need but no cloud provider offers one you like? You can build your own application and
manage your own data on the cloud infrastructure provided by your cloud supplier. This
model is called Platform as a Service. The developers in your organization decide what
programming language to use to develop the application of choice. The needed hardware
and software infrastructure, called the platform, is rented from the cloud provider.

• Infrastructure as a Service (laaS):

• With laas, the cloud provider manages the hardware, including servers, storage, and
networking components. The organization is responsible for all the software, including
operating system (and virtualization software), database software, and its applications and
data. IaaS is sometimes referred to also as Haas, or Hardware as a Service, because in this
cloud model, only the hardware is provided; everything else is up to the organization This
model allows a decrease in capital expenditures for hardware and maintaining the proper
environment (e.g., cooling) and redundancy, and backups for data and applications.
Providers of laas are Amazon Web Services, Microsoft Windows Azure, and so on.

• Peer-to-Peer Architectures:

• Peer-to-peer (P2P) architectures are very old, but
their modern design became popular in the early
2000s with the rise of P2P file-sharing
applications (e.g., Napster). With a P2P
architecture, all computers act as both a client
and a server. Therefore, all computers perform all
four functions: presentation logic, application
logic, data access logic, and data storage. With a
P2P file-sharing application, a user uses the
presentation, application, and data access logic
installed on his or her computer to access the data
stored on another computer in the network. With
a P2P application-sharing network (e.g., grid
computing such as seti.org), other users in the
network can use others’ computers to access
application logic as well.

• The advantage of P2P networks is that the data can be installed anywhere on the network.
They spread the storage throughout the network, even globally, so they can be very
resilient to the failure of any one computer. The challenge is finding the data. There must
be some central server that enables you to find the data you need, so P2P architectures
often are combined with a client– server architecture. Security is a major concern in most
P2P networks, so P2P architectures are not commonly used in organizations, except for
specialized computing needs (e.g., grid computing).

• Choosing Architectures

• Each of the preceding architectures has certain costs and benefits, so how do you choose
the “right” architecture? In many cases, the architecture is simply a given; the
organization has a certain architecture, and one simply has to use it. In other cases, the
organization is acquiring new equipment and writing new software and has the
opportunity to develop a new architecture, at least in some part of the organization.

• Almost all new applications today are client–server applications. Client– server
architectures provide the best scalability, the ability to increase (or decrease) the capacity
of the servers to meet changing needs. For example, we can easily add or remove
application servers or database servers depending on whether we need more or less
capacity for application software or database software and storage.

• Client–server architectures are also the most reliable. We can use multiple servers to
perform the same tasks, so that if one server fails, the remaining servers continue to
operate and users don’t notice problems.

• Finally, client–server architectures are usually the cheapest because many tools exist to
develop them. And lots of client–server software exists for specific parts of applications
so we can more quickly buy parts of the application we need. For example, no one writes
Shopping Carts anymore; it’s cheaper to buy a Shopping Carts software application and
put it on an application server than it is to write your own.

• Client–server architectures also enable cloud computing. As we mentioned in cloud
computing architectures, companies may choose to run a SaaS because of low price and
high scalability compared to traditional client–server architecture hosted at home. One
major issue that companies face when choosing SaaS is the security of the data. Each
company has to evaluate the risk of its data being compromised and select its cloud
provider carefully. However, SaaS is gaining popularity and companies are becoming
more and more accustomed to this solution.

World Wide Web (WWW)

• The World Wide Web (WWW), or the Web, is a repository
of information spread all over the world and linked
together. The WWW has a unique combination of
flexibility, portability, and user-friendly features that
distinguish it from other services provided by the Internet.
The WWW project was initiated by CERN (European
Laboratory for Particle Physics) to create a system to
handle distributed resources necessary for scientific
research.

• Today it is a distributed client-server service, in which a
client using a browser can access a service using a server.
However, the service provided is distributed over many
locations called websites, as shown in figure. Each website
holds one or more documents, referred to as web pages.
Each web page, however can contain some links to other
web pages in the same or other websites. The pages can be
retrieved and viewed by using browsers.

• Let us go through the scenario shown in figure. The client needs to see some information
that it knows belongs to site A. It sends a request through its browser, a program that is
designed to fetch Web documents. The request, among other information, includes the
address of the site and the Web page, called the URL. The server at site A finds the
document and sends it to the client. When the user views the document, s/he finds some
references to other documents, including a Web page at site B. The reference has the URL
for the new site. The user is also interested in seeing this document. The client sends
another request to the new site, and the new page is retrieved.

• The above example shows the idea of hypertext and hypermedia. Hypertext means
creating documents that refer to other documents. In a hypertext document, a part of text
can be defined as a link to another document. When a hypertext is viewed with a browser,
the link can be clicked to retrieve the other document. Hypermedia is a term applied to
document that contains links to other textual document or documents containing graphics,
video, or audio.

• Browser:

• A variety of vendors offer commercial browsers that interpret and display a web
document, and all of them use nearly the same architecture. Each browser usually consists
of three parts a controller, client programs, and interpreters as shown in figure. The
controller receives input from the keyboard or the mouse and uses the client programs to
access the document. After the document has been accessed, the controller uses one of the
interpreters to display the document on the screen. The client program can be one of the
protocols described previously such as FTP, or TELNET, but it is usually HTTP. The
interpreter is a language used today on the Internet such as HTML, Java, or JavaScript.

• Web Server:

• The server stores all pages belonging to the site. Each time a client request arrives, the
corresponding document is sent to the client. To improve efficiency, servers normally
store requested files in a cache in memory: memory is faster to access than disk. Some
popular Web servers include Apache and Microsoft Internet Information Server.

• Uniform Resource Locator (URL):

• A client that wants to access a Web page needs the file name and the address. To facilitate
the access of documents distributed throughout the world, HTTP uses locators. The
uniform resource locator (URL) is a standard locator for specifying any kind of
information on the Internet. The URL defines four things: protocol, host computer, port,
and path.

• To combine these four pieces together, the uniform resource locator (URL) has been
designed; it uses three different separators between the four pieces as shown below:

• protocol://host/path - Used most of the time

• protocol://host:port/path→ Used when port number is needed

• The protocol is the client-server application program used to retrieve the document. Many
different protocols can retrieve a document; among them are Gopher, FTP, HTTP, News,
and TELNET. The host is the domain name of the computer on which the information is
located. The URL can optionally contain the port number of the server. If the port is
included, it is inserted between the host and the path, and it is separated from the host by a
colon. Path is the pathname of the file where the information is located.

How the Web Works

• The Web is a good example of a two-tier client–server
architecture. Each client computer needs an application
layer software package called a Web browser. There are
many different browsers, such as Microsoft’s Internet
Explorer. Each server on the network that will act as a
Web server needs an application layer software package
called a Web server. There are many different Web
servers, such as those produced by Microsoft and
Apache.

• To get a page from the Web, the user must type the
Internet uniform resource locator (URL) for the page he
or she wants (e.g., www.yahoo.com) or click on a link
that provides the URL. The URL specifies the Internet
address of the Web server and the directory and name
of the specific page wanted. If no directory and page
are specified, the Web server will provide whatever
page has been defined as the site’s home page.

• For the requests from the Web browser to be understood by the Web server, they must use the same standard
protocol or language. If there were no standard and each Web browser used a different protocol to request
pages, then it would be impossible for a Microsoft Web browser to communicate with an Apache Web server,
for example.

• The standard protocol for communication between a Web browser and a Web server is Hypertext Transfer
Protocol (HTTP). To get a page from a Web server, the Web browser issues a special packet called an HTTP
request that contains the URL and other information about the Web page requested. Once the server receives
the HTTP request, it processes it and sends back an HTTP response, which will be the requested page or an
error message.

• This request–response dialogue occurs for every file transferred between the client and the server. For
example, suppose the client requests a Web page that has two graphic images. Graphics are stored in separate
files from the Web page itself using a different file format than the HTML used for the Web page (e.g., in
JPEG [Joint Photographic Experts Group] format). In this case, there would be three request–response pairs.
First, the browser would issue a request for the Web page, and the server would send the response. Then, the
browser would begin displaying the Web page and notice the two graphic files. The browser would then send
a request for the first graphic and a request for the second graphic, and the server would reply with two
separate HTTP responses, one for each request.

HTTP AND HTTPS

• The Hypertext Transfer Protocol (HTTP) is a protocol used mainly to access data on the
World Wide Web. The protocol transfers data in the form of plain text, hypertext, audio,
video, and so on. It is called the Hypertext Transfer Protocol because its efficiency allows
its use in a hypertext environment where there are rapid jumps from one document to
another.

• An HTTP request from a Web browser to a Web server has three parts. The first two parts
are required; the last is optional. The parts are as follows:

• The request line, which starts with a command (e.g., get), provides the Web page, and
ends with the HTTP version number that the browser understands; the version number
ensures that the Web server does not attempt to use a more advanced or newer version of
the HTTP standard that the browser does not understand.

• The request header, which contains a variety of optional information such as the Web
browser being used (e.g., Internet Explorer) and the date.

• The request body, which contains information sent to the server, such as information that
the user has typed into a form.

• The format of an HTTP response from the server to the browser is very similar to that of
the HTTP request. It, too, has three parts, with the first required and the last two optional:

• The response status, which contains the HTTP version number the server has used, a
status code (e.g., 200 means “OK”; 404 means “not found”), and a reason phrase (a text
description of the status code).

• The response header, which contains a variety of optional information, such as the Web
server being used (e.g., Apache), the date, and the exact URL of the page in the response.
The response body, which is the Web page itself.

HTTP REQUEST

HTTP RESPONSE

• The HTTP controls the transactions between a web client and a web server. The HTTP
protocol transparently makes use of DNS and other Internet protocols to form connections
between the web client and the web server, so the user is aware of only the web site's
domain name and the name of the document itself. HTTP uses the services of TCP on
well-known port 80.

Table: Methods in request line of request
messages

Table: Status Code a of response message

• This example retrieves a document
in. We use the GET method to
retrieve an image with the path
/usr/bin/image1. The request line
shows the method (GET), the URL,
and the HTTP version (1.1). The
header has two lines that show that
the client can accept images in the
GIF of JPEG format. The request
does not have a body. The response
message contains the status line and
four lines of header. The header lines
define the date, server, MIME
version, and length of the document.
The body of the document follows
the header.

• In this example, the client wants to send data
to the server. We use the POST method. The
request line shows the method (POST), URL,
and HTTP version (1.1). There are four lines
of headers. The request body contains the
input information. The response message
contains the status line and four lines of
headers. The created document, which is a
CGI Common Gateway Interface document,
is included as the body.

• HTTP is fundamentally an insecure protocol. Text-based information is sent in the clear"
between the client and the server. To address the need for secure web networking,
alternatives are available, such as HTTPS. HTTPS (HTTP over SSL) refers to the
combination of HTTP and Secure Sockets Layer (SSL) to implement secure
communication between a Web browser and a Web server. The HTTPS capability is built
into all modern Web browsers. Its use depends on the Web server supporting HTTPS
communication. For example, some search engines do not support HTTPS. Google
provides HTTPS as an option: https://google.com.

• The principal difference seen by a user of a Web browser is that URL addresses begin
with https:// rather than http://. A normal HTTP connection uses port 80. If HTTPS is
specified, port 443 is used, which invokes SSL.

https://google.com/

• When HTTPS is used, the following elements of the communication are encrypted:

• URL of the requested document

• Contents of the document

• Contents of browser forms (filled in by browser user)

• Cookies sent from browser to server and from server to browser

• Contents of HTTP header

• HTTPS is documented in RFC (Request for Comment) 2818, HTTP Over TLS (Transport
Layer Security). There is no fundamental change in using HTTP over either SSL or TLS,
and both implementations are referred to as HTTPS.

Electronic Mail

• Electronic mail, or e-mail, is the computerized version of writing a letter and mailing it at
the local post office. Many people are so committed to using e-mail that if it were taken
away tomorrow, some serious social and economic repercussions would be felt
throughout the world.

• Many commercial e-mail programs are in existence, as well as a number of free ones that
can be downloaded from the Internet. Although each e-mail program has its own unique
foel and options, most offer the following services:

• Creating an e-mail message

• Sending an e-mail message to one recipient, multiple recipients, or a mailing list

• Receiving, storing, replying to, and forwarding e-mail messages

• Attaching a file such as a word processing document, a spreadsheet, an image, or a
program to an outgoing e-mail message

• Most e-mail systems consist of two parts:

(1) the user agent, which is the portion of the e-mail program that allows a user to create,
edit, store, and forward e-mail messages; and

(2) the message transfer agent, which is the portion of the e-mail program that prepares and
transfers the e-mail message. Each transmitted e-mail also consists of two basic
components: an envelope, which contains information describing the e-mail message,
and the message, which is the contents of the envelope.

• The Simple Mail Transfer Protocol (SMTP) has always been the workhorse of the TCP/IP
suite. However, SMTP has traditionally been limited to the delivery of simple text
messages. In recent years, there has been a demand for the capability to deliver mail
containing various types of data, including voice, images, and video clips. To satisfy this
requirement, a new electronic mail standard, which builds on SMTP, has been defined: the
Multi-Purpose Internet Mail Extension (MIME). In this section, we first examine SMTP,
and then look at MIME.

• Simple Mail Transfer Protocol (SMTP)

• SMTP stands for "Simple Mail Transfer Protocol." It is a connection-oriented, text-based
network protocol from the internet protocol family and is located on the seventh layer of
the OSI model: the application layer. Just like any other network protocol, it contains
rules for correct communication between computers in a network. SMTP is responsible
for feeding and forwarding e-mails from sender to recipient. SMTP is an application layer
protocol. The client who wants to send the mail opens a TCP connection to the SMTP
server and then sends the mail across the connection. The SMTP server is always on
listening mode. As soon as it listens for a TCP connection from any client, the SMTP
process initiates a connection on that port (25). After successfully establishing the TCP
connection the client process sends the mail instantly. The SMTP model is of two types:

1. End-to-end method

2. Store-and- forward method.

• The end-to-end model is used to communicate between different organizations whereas
the store and forward method is used within an organization. A SMTP client who wants to
send the mail will contact the destination's host SMTP directly in order to send the mail to
the destination. The SMTP server will keep the mail to itself until it is successfully copied
to the receiver's SMTP. The client SMTP is the one which initiates the session let us call it
as client- SMTP and the server SMTP is the one which responds to the session request
and let us call it as receiver-SMTP. The client- SMTP will start the session and the
receiver-SMTP will respond to the request

• Model of SMTP system:

• In the SMTP model user deals with the user
agent (UA) for example Microsoft outlook,
Netscape, Mozilla etc. In order to exchange the
mail using TCP, MTA is used. The users
sending the mail do not have to deal with the
Message Transfer Agent (MTA) it is the
responsibility of the system admin to set up the
local MTA. The MTA maintains a small queue
of mails so that it can schedule repeat delivery
of mail in case the receiver is not available.
The MTA delivers the mail to the mailboxes
and the information can later be pulled from
the server by message access agents (MAA).
Currently two message access protocols are
available: Post Office Protocol, version 3
(POP3) and Internet Mail Protocol, Version 4
(IMAP4)

• IMAP:(Internet Mail Access Protocol)

• An Internet standard protocol for storing and retrieving messages from Simple Mail
Transfer Protocol (SMTP) hosts.

How It Works

• SMTP provides the underlying message transport mechanism for sending e-mail over the
Internet, but it does not provide any facility for storing and retrieving messages.

• SMTP hosts must be continuously connected to one another, but most users do not have a
dedicated connection to the Internet.

• IMAP4 provides mechanisms for storing messages received by SMTP in a receptacle
called a mailbox.

• IMAP4 server stores messages received by each user until the user connects to download
and read them using an IMAP4 client such as Microsoft Outlook Express.

Specifically, IMAP4 allows users to

• Access multiple folders, including public folders

• Create hierarchies of folders for storing messages

• Leave messages on the server after reading them so that they can access the messages again from

another location

• Search a mailbox for a specific message to download

• Flag messages as read

• Selectively download portions of messages or attachments only

• Review the headers of messages before downloading them

• Post Office Protocol version 3 (POP3)
• An Internet standard protocol for storing and retrieving messages from Simple Mail Transfer

Protocol (SMTP) hosts.

How It Works

• SMTP provides the underlying transport mechanism for sending e-mail messages over the Internet,
but it does not provide any facility for storing messages and retrieving them.

• SMTP hosts must be continuously connected to one another, but most users do not have a
dedicated connection to the Internet.

• Post Office Protocol version 3 (POP3) provides mechanisms for storing messages sent to each user
and received by SMTP in a receptacle called a mailbox.

• A POP3 server stores messages for each user until the user connects to download and read them
using a POP3 client such as Microsoft Outlook 98, Microsoft Outlook Express, or Microsoft Mail
and News.

• To retrieve a message from a POP3 server, a POP3 client establishes a Transmission Control
Protocol (TCP) session using TCP port 110, identifies itself to the server, and then issues a series of
POP3 commands

• IMAP VS POP:

• The main difference, as far as we are concerned here, is the way in which IMAP or POP controls
your e-mail inbox.

• When you use IMAP you are accessing your inbox on the mail server. IMAP does not actually
move messages onto your computer. You can think of an e-mail program using IMAP as a window
to your messages on the server. Although the messages appear on your computer while you work
with them, they remain on the central mail server.

• POP does the opposite. Instead of just showing you what is in your inbox on the U's mail server, it
checks the server for new messages, downloads all the new messages in your inbox onto your
computer, and then deletes them from the server. This means that every time you use POP to view
your new messages, they are no longer on the central mail server.

• Multipurpose Internet Mail Extension (MIME)

• Electronic mail has a simple structure. Its simplicity,
however, comes with a price. It can send messages
only in NVT (Network Virtual Terminal) 7-bit ASCII
format. In other words, it has some limitations. It
cannot be used for languages other than English
(such as French, German, Hebrew, Russian, Chinese,
and Japanese). Also, it cannot be used to send binary
files or video or audio data.

• MIME is a supplementary protocol that allows non-
ASCII data to be sent through e-mail. MIME
transforms non-ASCII data at the sender site to NVT
ASCII data and delivers it to the client MTA to be
sent through the Internet. The message at the
receiving site is transformed back to the original
data. We can think of MIME as a set of software
functions that transforms non-ASCII data to ASCII
data and vice versa, as shown in figure.

Other Applications

• Telnet:

• Telnet is a protocol that allows user to log in to remote computers (called hosts) over a
TCP/IP network (such as the internet). Using telnet client software on your computer, you
can make s connection to a telnet server (that is, the remote host). Once your telnet client
establishes a connection to the remote host, your client becomes a virtual terminal,
allowing you to communicate with the remote host from your computer. In most cases,
you'll need to log into the remote host, which requires that you have an account on that
system. Occasionally, you can log in as guest or public without having an account.

• Although Telnet requires a logging name and password, it is vulnerable to hacking
because it sends all data including the password in plaintext (not encrypted). A hacker can
eavesdrop and obtain the logging name and password. Because of this security issue, the
use of Telnet has diminished in favor of another protocol, Secure Shell (SSH).

• Although Telnet is almost replaced by SSH, it is still widely used today for two reasons:

• The simple plaintext architecture of Telnet allows us to explain the issues and challenges
related to the concept of remote logging, which is also used in SSH when it serves as a
remote logging protocol.

• Network administrators often use Telnet for diagnostic and debugging purposes.

Telnet clients are available for all major operating systems. Command-line telnet clients are
built into most versions of macOS, Windows, Unix, and Linux.

• How telnet works?

• Telnet also operates on the client/server principle. The local computer uses a telnet client program
and the remote, or host, computer uses a telnet server program.

• Telnet uses software installed on your computer, to create a connection with the remote host.

• The telnet client (local computer), at your command, will send a request to the telnet server
(remote host).

• The server will reply asking for a user name and password. If accepted, the Telnet client will
establish a connection to the host, thus making your computer a virtual terminal and allowing you
complete access to the host’s computer.

• Telnet requires the use of a user name and password, which means you need to have previously
set up an account on the remote computer.

• In some cases, however, computers with telnet will allow guests to log on with restricted access.

• Instant Messaging

• One of the fastest growing Internet applications has been instant messaging (IM). With IM, you can
exchange real-time typed messages or chat with your friends. Some IM software also enables you
to verbally talk with your friends in the same way as you might use the telephone or to use cameras
to exchange real-time video in the same way you might use a videoconferencing system. Several
types of IM currently exist, including Google Talk and AOL Instant Messenger.

• IM works in much the same way as the Web. The client computer needs an IM client software
package, which communicates with an IM server software package that runs on a server. When the
user connects to the Internet, the IM client software package sends an IM request packet to the IM
server informing it that the user is now online. The IM client software package continues to
communicate with the IM server to monitor what other users have connected to the IM server.
When one of your friends connects to the IM server, the IM server sends an IM packet to your
client computer so that you now know that your friend is connected to the Internet. The server also
sends a packet to your friend’s client computer so that he or she knows that you are on the Internet.

• With the click of a button, you can both
begin chatting. When you type text, your
IM client creates an IM packet that is
sent to the IM server. The server then
retransmits the packet to your friend.
Several people may be part of the same
chat session, in which case the server
sends a copy of the packet to all of the
client computers. IM also provides a way
for different servers to communicate with
one another, and for the client computers
to communicate directly with each other.
Additionally, IM will do voice and video.

• Videoconferencing:
• Video conferencing is a visual communication session between two or more users regardless of

their location, featuring audio and video content transmission in real time. In broad terms, video
conferencing software is a solution that allows two or more persons to talk and see each other
remotely. Initially video conferencing software only enabled users to make video calls or hold
group video conferences. However, as technology advanced, video conferencing softwares
acquired plenty of helpful tools and features for remote communication and learning.

• Today, video conferencing is rather a tool for integrated into video collaboration and unified
communications platforms that also offer screen sharing, slideshow, recording, instant messaging.
project management tools, telephony integration among other features. As an increasing number of
companies switch to remote work, video conferencing in gradually becoming the new normal,
shaping the way we communicate, learn and work.

• The transmission of video requires a lot of network capacity. Most videoconferencing uses data
compression to reduce the amount of data transmitted. Surprisingly, the most common complaint is
not the quality of the video image but the quality of the voice transmissions. Special care needs to
be taken in the design and placement of microphones and speakers to ensure quality sound and
minimal feedback

• Most videoconferencing systems were originally developed by vendors using different formata, so
many products were incompatible. The best solution was to ensure that all hardware and software
used within an organization was supplied by the same vendor and to hope that any other
organizations with whom you wanted to communicate used the same equipment. Today, three
standards are in common use: H.320, H.323, and MPEG-2 (also called ISO 13818-2). Each of
these standards was developed by different organizations and is supported by different products.
They are not compatible, although some application software packages understand more than one
standard.

• H.320 is designed for room-to-room videoconferencing over high-speed telephone lines.

• H.323 is a family of standards designed for desktop videoconferencing and just simpleaudio
conferencing over the Internet.

• MPEG-2 is designed for faster connections, such as a LAN or specially designed, privately
operated WAN

• Webcasting is a special type of one-directional videoconferencing in which content is sent from the
server to the user. The developer creates content that is downloaded as needed by the users and
played.

	Slide 1: UNIT 2 APPLICATION LAYER
	Slide 2: CONTENTS
	Slide 3: Introduction
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Application Architecture
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: World Wide Web (WWW)
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: How the Web Works
	Slide 31
	Slide 32: HTTP AND HTTPS
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Electronic Mail
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: Other Applications
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

