Unit 8 Sorting

The efficiency of data handling can be increased if the data are sorted according to some
criteria of order. It is often necessary to sort data before processing. We choose some criteria
that is used to order data. The choice will vary from application to application and must be
defined by the user. Very often, the sorting criteria are natural, as in case of numbers. A set of
numbers can be sorted in ascending or descending order.

The final ordering of data can be obtained in a variety of ways, and only some of them can be
considered meaningful and efficient. To decide which method is best, certain criteria of
efficiency have to be established and a method for quantitatively comparing different
algorithms must be chosen

To make the comparison machine independent, certain critical properties of sorting algorithms
should be defined when comparing alternative methods. Two such properties are the number
of comparisons and the number of data movements. To sort a set of data, the data have to be
compared and moved as necessary; the efficiency of these two operations depends on the size
of the data set.

Elementary Sorting Algorithms:
1. Insertion Sort
2. Selection Sort
3. Bubble Sort

Efficient Sorting Algorithm:

1. Heap Sort
2. Quick Sort
3. Merge Sort
4. Radix Sort

1. Insertion Sort
void Insertion sort (int [] data)

{
inti, j, temp;
for (i=1; i<data.length; i++)
{
temp = datali];
for (j=i; j>0 && temp<datalj-1]; j--)
datalj] = datalj-1];
datalj] = temp;
}
}

Example: Consider the following array: 25, 17, 31, 13, 2

N

Since 17 < 25. Hence swap 17 and 25.

NIMESH POKHREL

Second Iteration:

17

25

31

13

2

Since 31> 25, no swapping takes place.

Also, 31> 17, no swapping takes place and 31 remains at its position.

Third Iteration:

17

25

31

13

2

Since 13 < 31, we swap the two.

Array now becomes:

VAR

17

25

13

31

Since, 13 < 25, we swap the two.

The array becomes:

VAR

17

13

25

31

Since 13 < 17, we swap the two.

The array now becomes:

13

17

25

31

2

Fourth Iteration:

YN

13

17

25

31

2

Since 2 < 31. Swap 2 and 31.

Array now becomes:

O\

13

17

25

2

31

Since 2< 25. Swap 25 and 2. Array now becomes:

13

g

17

2

25

31

Since, 2<17. Swap 2 and 17. Array now becomes:

Y

13

2

17

25

31

Since 2< 13. Swap 2 and 13. The array now becomes:

2

13

17

25

31

sorted

NIMESH POKHREL

2. Selection Sort:
The idea of algorithm is quite simple. Array is imaginary divided into two parts- sorted and
unsorted one. At the beginning, sorted part is empty, while unsorted one contains whole
array. At every step, algorithm finds minimal element in the unsorted part and adds it to the
end of the sorted one. When unsorted part becomes empty, algorithm stops.
The pseudocode for Selection sort is:

Selection_sort (int data[])

fori=0to data.length-2
select the smallest element among datafi], ..., data/data.length-1];
swap it with dataf[i];

Selection Sort Implementation:
void selectionsort(int [] data)

{
inti, j, least;
for (i=0; i<data.length-1; i++)
{
for (j=i+1, least=i; j<data.length; j++)
if(data[j] < (data[least]))
least = j;
if(i = least)
swap(data, least, i);
}
}

Example: 15, 28, 17,12, 18,9, 6

Find the smallest element (i.e., 6) and swap it with the element at index O (i.e., 15)
6,28,17,12,18,9, 15
= Now, 6 is at correct position. So, start search from index 1 (i.e., 28).
e Find the smallest element (i.e., 9) and swap it with the element at index 1 (i.e., 28)
6,9,17,12,18, 28, 15
= Now, 9 is at correct position. So, start search from index 2 (i.e., 17).
e Find the smallest element (i.e., 12) and swap it with the element at index 2 (i.e., 17)
6,9,12,17,18, 28, 15
= Now, 12 is at correct position. So, start search from index 3 (i.e., 17).
e Find the smallest element (i.e., 15) and swap it with the element at index 3 (i.e., 17)
6,9, 12,15, 18, 28, 17
= Now, 15 is at correct position. So, start search from index 4 (i.e., 18).
e Find the smallest element (i.e., 17) and swap it with the element at index 4 (i.e., 18)
6,9,12,15,17, 28, 18
= Now, 17 is at correct position. So, start search from index 5 (i.e., 28).

NIMESH POKHREL

e Find the smallest element (i.e. 18) and swap it with the element at index 5 (i.e. 28)

6,9,12,15,17,18, 28

= Now, 18 is at correct position. Only 28 is left so it is at last index.

2. Bubble Sort:

The bubble sort is the easiest and frequently used sorting algorithm among all the sorting
algorithms. The algorithm has got its name as after every pass, the largest element bubbles up
and move to end of the array.

The Java Implementation for bubble sort:
void bubblesort(int [] data)

{
for (int 1= 0; 1 < data.length-1; i++)
for (intj = data.length-1; j > 1; --))
if(data[j]) < (data[j-1]))
swap(data, j, j-1);
h

Consider the following array: 7, 2, 12, 8, 3

e Try to push the largest element to the last index.

e The basic idea underlying the bubble sort is to pass through the file sequentially several
times. Each pass consists of comparing each element in the file with its successor (x[i] with
x[i+1]) and interchanging the two elements if they are not in proper order.

NIMESH POKHREL n

First Pass:

e Now, 12 is placed at the last index.
e So, sort element from 0 index to 3 index (2, 7, 8, 3) with the same process as above

Second Pass/ Third Pass/ Fourth Pass:

The complexity of Elementary Sorting algorithm (Insertion, Selection and Bubble Sort) is O(n?)

NIMESH POKHREL

Efficient Sorting Algorithms
1. Quick Sort:

The quick sort divides the original array into two subarrays, the first of which contains
elements less than or equal to a chosen key called pivot or bound. The second subarray
includes elements equal to or greater than the bound. The two subarrays can be sorted
separately but before this is done, the partition process is repeated for both subarrays. As
aresult, two new bounds are chosen, one for each subarray. The four subarrays are created
because each subarray obtained in first phase is now divided into two segments. This
process of partitioning is carried down until there are only one cell arrays that do not need
to be sorted at all.

void quicksort (a[], Ib,ub)

{
if(Ib < ub)
{
loc = partition(a, Ib, ub);
quicksort(a, Ib, loc-1);
quicksort(a, loc+1, ub);
}
}
int partition(a[], Ib,ub)
{
pivot = a[lb];
start =1b; end = ub;
while(start <= end)
{
while(a[start] <= pivot && start < end)
{
start = start + 1;
}
while(a[end] > pivot)
{
end=end-1;
}
if(start < end)
{
swap(a[start], a[end]);
}
}
a[lb] = a[end];
alend] = pivot;
return end,
}

NIMESH POKHREL

Example: Consider the following array: 7,1, 3,5, 2, 6, 4

e Choose any element of an array as a pivot element. Say the last element 4 as
pivot element. So, Pivot = 4.

e Now, rearrange the array in such a way that all the elements smaller than 4 are
placed at the left of 4 and all the elements larger than 4 are placed at the right of
4.

e Apply the partition algorithm again and again until all the element are sorted

e First apply the partition to the left of 4. Pivot = 2 (since 2 is the last element).

e Now apply the partition to the right of 4. Pivot = 6.

The Time complexity of Quick sort is O(nlogn)

NIMESH POKHREL

2. Heap Sort:

Heap sort was invented by John Williams and uses the approach inherent to selection
sort. Selection sort finds among the n elements the one that precedes all other n-1
elements, then the least element among those n-1 items, and so forth, until the array
is sorted. To have the array in ascending order, heap sort puts the largest element at
the end of the array, then the second largest in front of it, and so on. Heap sort starts from
the end of the array by finding the largest elements, whereas selection sort starts from
the beginning using the smallest element. The final order in both cases is indeed the
same.

A heap is a binary tree with the following two properties.

e Thevalue of each node is not less than the values stored in each of its children.

e The tree is perfectly balanced and the leaves in the last level are all in the leftmost
positions.

Elements in a heap are not perfectly ordered. It is known only that the largest element is
in the root node and that, for each other node, all its descendants are not greater than the
element in this node. Heap sort thus starts from the heap, puts the largest element at the
end of the array, and restores the heap that now has one less element. From the new
heap, the largest element is removed and put in its final position and then the heap
property is restored for the remaining elements. Thus, in each round, one element of the
array ends up in its final position, and the heap becomes smaller by this one element. The
process ends with exhausting all elements from the heap.

Pseudocode for Heap Sort
heapsort (data[])
transform data[] into a heap
for i = data.length-1 down to 2
swap the root with the element in position i
restore the heap property for the tree data[0],...,data[i-1];

Example: data[] = {2, 8, 6, 1, 10, 15, 3, 12, 11}
At first, transform data[] into a heap tree as below:

2 2 2
8 6 8 S I 15
/ N\ /' N\ / N\ / N\ / N\ / N\
1 10 (15 3 12 (10 (15 3 12 (10 6 3
C/N\ /N /N
12 (11 1 11 1 11
[2]8]6]1]10[15]3 [12]11] [2]8]6]12]10]15] 3] 1]11] [2]8]1s[12]10] 6 [3] 1 [11]
e p—— ~ 7
(a) (b) (c)
2 2
12 15 12 15
/ \ / N\ / N\ / N\
8 10 6 3 11 (10 6 3
/ N\ /N
1 11 1 8
[212]15] 8 |10[6 [3|1 [11] [2]12]15][11]10]6 3] 1] 8]
A ————— g
@ ©)
15 15
12 2 12 6
/N C/N /\ /\
11 10 6 3 11 (10 (2 3
/ N\ / N\
1 8 1 8
[15[12] 2 [11]10] 6 [3 |1 [8] [15[12] 6 [11]10][231 [8]
® (2

NIMESH POKHREL

Then, Sort the above heap tree as below:

15
N\ /// \\\
12 6
/ \ / \ / \ / \
11 10 2 3 2 3
/ \ / \
1 '8 1) (15
15[12] 6 [11]10] 2318 81261110231!1—51:
_—_F’/ -
() (b)
1 11
11 6 10 6
/ \ / \ / \ / \
0 2 3 1 (2 (3
'/l \\‘ '/' \\‘
12 15 12 (15
i | |

[1]u]6]8]10[2]3 1121151

()
10
RN
8 6
/\ /N
1 (2
l/l ‘\-
1215
[10] 86]3] 1]2 1mn215)
®

[1110] 6] 8] 1]2]3 1121151

s gy |

(©)

2
RN
8 6
/ \ /N
1 10 11

ron
/N

12 115

POOBBTNEG

(h)

e The Time complexity of Heap Sort is O(nlogn)

12
RN
11 6

/ \
10

/ \
2 3

T 1
1!15}

/ \
1

sy

N
10 6

/N

12

15

/N
2

11

[N |

[3]tw[6]8]1]2 11in2115)

L_bl_a

12

1

15
12131618 110111(12]15]

P Yy YQYMFGYGYYQHQ —Y—

®

()

NIMESH POKHREL n

3. Merge Sort:

The problem with quick sort is that its complexity in the worst case is 0(n?) because it is difficult
to control the partitioning process. Different methods of choosing a bound attempt to make
the behavior of this process fairly regular; however, there is no guarantee that portioning
results in arrays of approximately the same size. Another strategy is to make portioning as
simple as possible and concentrate on merging the two sorted arrays. This strategy is
characteristic of merge sort. It was one of the first sorting algorithms used on a computer
was developed by John von Neumann.

The key process in merge sort is merging sorted halves of an array into one sorted array.
However, these halves have to be sorted first, which isaccomplished by merging the already
sorted halves of these halves. The process of dividing arrays into two halves stops when
the array has fewer than two elements. The algorithm is recursive in nature and can be
summarized in the following pseudocode:

mergesort(data, first, last)
if (first<last)
mid = (first+last)/2;
mergesort(data, first, mid);
mergesort(data, mid+1, last);

merge(data, first, last);

The complexity of Merge Sort is O(nlogn)

Example: data[]={1, 8, 6, 4, 10, 5, 3, 2, 22}

|1 8 6 4 105 3 2 22|

[1 4 6 8 10| |2 3 5 22|

[1 2 3 4 5 6 8 10 22|

NIMESH POKHREL

4. Radix Sort:

Radix sort is a popular way of sorting used in everyday life. To sort library cards, we may

create as many piles of cards as letters in the alphabet, each pile containing authors whose

names start with the same letter. Then, each pile is sorted separately using the same method;

namely, piles are created according to the second letter of the author’s names. This process

continues until the number of times the piles are divided into smaller piles equals the number

of letters of the longest name. This method is actually used when sorting mail in the post

office, and it was used to sort 80-column cards of coding information in the early days of

computers.

e When sorting integers, 10 piles numbered O through 9 are created, and initially,

integers are put in a given pile according to their rightmost digit so that 93 is put in pile
3. Then, piles are combined and the process is repeated, this time with the second
rightmost digit; in this case, 93 ends up on pile 9. The process ends after the leftmost
digit of the longest number is processed.

Algorithm:
radixsort()

for d = 1 to the position of the left most digit of longest number
distribute all numbers among piles 0 through 9 according to the d™ digit;
put all integers on one list;

data=[10123497234 6791817331977 3]

7
3 7234 197
10 9181 733 1234 67 9
piles: 0 1 2 3 4 5 6 7 8 9
pass 1
data=[1091817333 1234723467197 79]
9 7234
7 1234
3 10 733 67 9181 197
piles: 0 1 2 3 4 5 6 7 8 9
pass 2
data=[37910733 1234723467 9181 197]
piles: 67
10
9
7 197 7234 773
3 9181 1234
0 1 2 3 4 5 6 7 8 9
pass 3
data=[37910679181 197 1234 7234 733]
piles: 733
197
67
10
9
7
3 1234 7234 9181
0 1 2 3 1 5 6 7 8 9

pass 4
data=[3791067197 733 1234 7234 9181]

Question: Sort the following number: 1, 234, 456, 654, 697, 874, 243, 385, 902, 23

The time complexity of Radix sort is O(nlogn)

NIMESH POKHREL

