+

<4

Unit -6

Transaction Processing, Concurrency
Control and Recovery Technigues

S



Transaction in DBMS

Transactions refer to a set of operations that are used for performing a set of
logical work possibly update various data items.

A transaction includes one or more database access operations — these can include
Insertion, deletion, modification or retrieval operations.

Usually, a transaction means the data present in the DB has changed.

Transaction Management

Transaction Management refers to the tasks of processing multiple transactions
Issued by various clients of a database server in such a way that the ACID contract
can be fulfilled, that is, the properties of atomicity, consistency

preservation, isolation, and durability of each individual transaction can be
guaranteed.



Transaction Prcoessing

Transaction processing is the computerized system that handles and records
transactions, ensuring they are completed reliably and accurately.

Transaction Processing System

A transaction processing system allows application programmers to concentrate

on writing code that supports the business, by shielding application programs
from the details of transaction management.

It manages the concurrent processing of transactions.
It enables the sharing of data. It ensures the integrity of data.



Simple Transaction Example

Read your account balance

Deduct the amount from your balance .

Write the remaining balance to your account
Read your friend’s account balance

Add the amount to his account balance

Write the new updated balance to his account .

S 01k

This whole set of operations can be called a transaction.



In DBMS, we write the above 6 steps transaction like this:
Let’s say your account is A and your friend’s account is B, you
are transferring 10000 from A to B, the steps of the transaction
are:

R(A);

A=A -10000;

W(A);

R(B);

B =B + 10000;

6. W(B);

In the above transaction R refers to the Read operation and W
refers to the write operation.

SAREE A



Desirable Properties of Transaction : ACID

To ensure the integrity of data during a transaction, the database system should possess
several properties, often called ACID properties.
ACID stands for Atomicity Consistency Isolation and Durability.

Atomicity:

- A transaction is an atomic unit of processing. It is either performed in its entirely or not
performed at all.
It is the responsibility of the transaction recovery subsystem of a DBMS.
If a transaction fails to complete for some reason, such as system crash in the midst of
transaction execution, the recovery technigue must undo any effects of the transaction on

the database.



ACID Properties:

Consistency preservation:

A correct execution of transaction must take the database from one consistent state
to another.

The preservation of consistency is generally considered to be the responsibility of
the programmers who write the database programs or of the DBMS module that
enforces integrity constraints.

A consistent state of the database satisfies the constraints specified in the schema
as well as any constraints on the database that should hold.



ACID Properties:

Isolation:
A transaction should not make its update visible to other transactions until it is
committed; this property, when enforced strictly, solves the temporary update
problem and makes cascading rollbacks of transaction unnecessary.
It is forced by the concurrency control sub-system of the DBMS.

Durability or permanency:
Once a transaction changes the database and the changes are committed, these
changes must never be lost because of subsequent failure.
It is the responsibility of the recovery sub-system of the DBMS.



ACID Properties in DBMS

o A =Atomicity s The entire transaction takes place
at once or doesn't happen at all.

w The database must be consistent
before and after the transaction.

Multiple transactions occur
independently without interference.

| = Isolation — [

~ » The changes of a successful
D = Durability g transaction occures even if the

system failure occurs.




Implementation of Atomticity and Durability

The simplest way to enforce Atomicity is for the DBMS to refuse to start any
transaction until the previous one has committed. Unfortunately, this can be too
restrictive, especially if the transaction needs to interact with a user. While one
user is dithering, several other users could be served.

Durability can be achieved by flushing the transaction's log records to non-
volatile storage before acknowledging commitment. In distributed transactions, all
participating servers must coordinate before commit can be acknowledged. This is
usually done by a two-phase commit protocol.



Transaction States:

o States through which a transaction goes during its lifetime.

* These are the states which tell about the current state of the
Transaction and also tell how we will further do the processing in
the transactions. These states govern the rules which decide the fate
of the transaction whether it will commit or abort.

* They also use Transaction log.

 Transaction log Is a file maintain by recovery management
component to record all the activities of the transaction. After
commit is done transaction log file is removed.

11



These are different types of Transaction States :

1. Active State

When the instructions of the transaction are running then the transaction is in active state. If all
the ‘read and write’ operations are performed without any error then it goes to the “partially
committed state”; if any instruction fails, it goes to the “failed state”.

2. Partially Committed

After completion of all the read and write operation the changes are made in main memory or
local buffer. If the changes are made permanent on the database, then the state will change to
“committed state” and in case of failure it will go to the “failed state”.

3. Failed State

When any instruction of the transaction fails, it goes to the “failed state” or if failure occurs in
making a permanent change of data on database.

12



4. Aborted State

After having any type of failure, the transaction goes from “failed state” to
“aborted state” and since in previous states, the changes are only made to local
buffer or main memory and hence these changes are deleted or rolled-back.

5. Committed State
It is the state when the changes are made permanent on the Data Base and the
transaction 1s complete and therefore terminated in the “terminated state”.

6. Terminated State

If there 1sn’t any roll-back or the transaction comes from the “committed state”,
then the system is consistent and ready for new transaction and the old transaction
IS terminated.

13



Read /Write
operations

Failure

Partially Committed

State

Store

Aborted State

Transaction States in DBMS

Failure

Roll Back

Failed State

14



Schedule

« Schedule iIs a process of lining the transactions and executing them
one by one.

« When there are multiple transactions that are running in a concurrent
manner and the order of operation Is needed to be set so that the
operations do not overlap each other, Scheduling is brought into play
and the transactions are timed accordingly.



Schedule Types

Schedules

Non-Serial

Non-Serializable
Schedules

Serial
Schedules Schedules
Serializable
Schedules
Cpnﬂict View Recoverable
Serializable Serializable Schedules

Y

Non-Recoverable
Schedules




Serializability

 Serializability is the concept in a transaction that helps to identify which non-
serial schedule is correct and will maintain the database consistency. It relates to
the isolation property of transaction in the database.

 Serializability is the concurrency scheme where the execution of concurrent
transactions is equivalent to the transactions which execute serially.

It refers to the sequence of actions such as read, write, abort, commit are
performed in a serial manner.

Serializable Schedule

« Serializable schedule is a sequence of database actions (read and write operations)
that does not violate the serializability property.

» Serializability property ensures that each transaction appears to execute atomically
and Is isolated from other transactions' effects.



Basic Concept of Concurrency Control

« Concurrency Control:
« Manages simultaneous access to a database.
|t prevents two users from editing the same record at the same time and
also serializes transactions for backup and recovery.



What is Concurrency Control?

 Data concurrency is the ability to allow multiple users to affect
multiple transaction within a database.

e Concurrency Control in Database Management System is a
procedure of managing simultaneous operations without conflicting
with each other.

« Concurrent access Is quite easy If all users are just reading data.
There Is no way they can interfere with one another.

« Though for any practical Database, it would have a mix of READ
and WRITE operations and hence the concurrency is a challenge.

19



Need for Concurrency Control

|t ensures that Database transactions are performed concurrently and
accurately to produce correct results without violating data integrity of the
respective Database especially where two or more database transactions are
executed simultaneously, which require access to the same data..

« To apply Isolation through mutual exclusion between conflicting
transactions

« To resolve read-write and write-write conflict issues

« To preserve database consistency through constantly preserving execution
obstructions.

« Concurrency control helps to ensure serializability

« The system needs to control the interaction among the concurrent
transactions. This control Is achieved using concurrent-control schemes.



Concurrency Control Protocols

Different concurrency control protocols offer different benefits
between the amount of concurrency they allow and the amount of
overhead that they impose. Following are the most common
Concurrency Control technigues in DBMS:

* Lock-Based Protocols
« Two Phase Locking Protocol
« Timestamp-Based Protocols

21



_ocking Protocols

* Lock Based Protocols in DBMS is a mechanism in which a
transaction cannot Read or Write the data until it acquires an

appropriate lock.
 This helps in eliminating the concurrency problem by locking a

particular transaction to a particular user.



Transaction T4

LOCK S (A)

R(A)

Unlock (A)

|l Shared Lock on data “A”
/I Read Operation on data “A”

Il Unlock data “A”

T1 T2
LOCK-S(A)

LOCK-S(A)
LOCK-X(B)
UNLOCK(A)

LOCK-X(C)
UNLOCK(B)

UNLOCK(A)

UNLOCK(C)

23




Time Stamp Based Protocol

* Timestamp based Protocol in DBMS is an algorithm which uses
the System Time or Logical Counter as a timestamp to serialize
the execution of concurrent transactions.

« The Timestamp-based protocol ensures that every conflicting read
and write operations are executed In a timestamp order.

« The order of transaction is nothing but the ascending order of the
transaction creation.

* The priority of the older transaction is higher that's why it
executes first.



Two Phase Locking Protocol

A transaction is said to follow the Two-Phase Locking protocol if
Locking and Unlocking can be done in two phases.
1. Growing Phase — All the locks are issued in this phase. No locks
are released, after all changes to data-items are committed and then the
second phase (shrinking phase) starts.
2. Shrinking phase — No locks are issued in this phase, all the changes
to data-items are noted (stored) and then locks are released.
Lock Point : In the growing phase transaction reaches a point where all
the locks it may need has been acquired. This point is called LOCK
POINT. After the lock point has been reached, the transaction enters a

shrinking phase.



Time T1 T2
Time1 Lock-5 (A)
T1 Growing :
Time2 Lock-S (A
Phase A)
Time3 Lock-X (B)
Lock Point ke T2 Growing
of T1 Time4 U (A) Phase
Time5 Unlock (A)
T1 Shrinking Time6 Lock-X (C)
Phase e - Lock Point
Time? | Unlock (B) Of T2
Time8 Unlock (A) T2 Shrinking
Time9 Unlock (C) Fhase

2-PL Locking Example

26



Types of failures

« Catastrophic failure

« Catastrophic failure is a type of database failure that is severe and often
results in the loss of a significant amount of data.

* Inthese cases, it may not be possible to recover the database using
traditional methods, such as restoring from a backup or repairing the
database.

« The only guaranteed method of recovering from catastrophic failure is
through database backup

« Examples:

v Complete system outage
v Natural disasters

v’ Security breaches

v Nuclear accidents



Types of failures
Non-Catastrophic

It refers to a failure or error in a system that does not lead to a complete and
irreversible loss of functionality or data.
Non-catastrophic failures are typically less severe and may be recoverable
with minimal impact on the overall system.
Examples:

v Temporary network interruptions or slowdowns.

v’ Software bugs that cause certain features to malfunction but do not
crash the entire system.
Disk errors that result in the corruption of some data.
Hardware malfunctions.
Resource exhaustion issues, such as running out of memory or disk
space, which can impact performance but are not necessarily
catastrophic.

AN



Recovery Concepts

Recovery refers to the set of techniques and processes used to restore a
database to a correct, consistent state after a failure.

Failures can range from system crashes, power outages, hardware
malfunctions, to software errors, and even human-induced errors.

The goal of recovery is to ensure data integrity and consistency by undoing the
effects of incomplete transactions and bringing back the database to a state that
existed before the failure occurred.

The aim is to minimize data loss, correct errors, and ensure that the database
can be used normally after an unexpected incident.

Some methods by which we can recover database from failure state are:

Log Based Recovery

Caching (Buffering) o Disk blocks

Write-Ahead Logging

Checkpointing



NO-UNDO/ REDO Recovery Based on Deferred Update

Deferred Upadte is a technique for the maintenance of the transaction log
files of the DBMS.

It is also called NO-UNDO/REDO technique.

It is used for the recovery of transaction failures that occur due to power,
memory, or OS failures.

The log file contains all the changes that are to be applied to the database.
The changes are not applied immediately to the database.

In this method of recovery, firstly the changes carried out by a transaction on
the data are done in the log file and then applied to the database on commit.



Recovery Technique Based on Immediate Update

It is a technique in which whenever any transaction is executed, the updates
are made directly to the database and the log file is also maintained which
contains both old and new values. Once the commit is done, all the changes
get stored permanently in the database, and records in the log file are thus
discarded.

The log file contains both old as well as new values.

Concept of shadow paging is used in immediate update method.



Shadow Paging

« Shadow Paging is a technique which involves maintaining two page tables
during the transaction process: the current page table and the shadow page
table.

« The shadow page table remains unchanged throughout the transaction and acts
as a backup, while the current page table is updated.

 If a transaction fails, the system can revert to the shadow page table, ensuring
data consistency.



Database Backup from Catastrophic Failures.

Database backup is a crucial aspect of disaster recovery planning. The following

methods can help for database backup :

« Regular Backups: Implement a regular backup schedule to ensure that
critical data is backed up at frequent intervals.

« Offsite Storage: Store backup copies of the database in offsite locations or
on geographically distributed servers.

« Encryption: Encrypt backup data to protect it from unauthorized access or
tampering.

« Versioning: Maintain multiple versions of backup copies to manage the
lifecycle of backup data.



Database Recovery from Catastrophic Failures.

Recovering a database from catastrophic failures involves restoring the database to

a consistent and usable state.

the steps involved in database recovery from catastrophic failures:

« Assessment of Damage: After a catastrophic failure, identify the cause of the
failure and any potential points of failure in the system.

 ldentify Recovery Point: Determine the recovery point, which is the point in
time to which the database needs to be restored.

« Restore from Backup: If backups are available, restore the database from the
most recent backup to the desired recovery point.

« Data Validation: Validate the restored data to ensure its accuracy and
completeness.



End!



