
Unit – 5

SQL
(Structured Query Language)

• SQL also known as SEQUEL, stands for Structured Query Language which is a

database computer language for storing, manipulating and retrieving data stored in

a relational database.

• SQL was developed in the 1970s by IBM Computer Scientists and became a

standard of the American National Standards Institute (ANSI) in 1986, and the

International Organization for Standardization (ISO) in 1987.

• SQL is the standard language to communicate with Relational Database Systems.

All the Relational Database Management Systems (RDMS) like MySQL, MS

Access, Oracle, Sybase, Informix, Postgres and SQL Server use SQL as their

Standard Database Language.

Background/Introduction:

SQL is widely popular because it offers the following advantages −

• Allows users to access data in the relational database management systems.

• Allows users to describe the data.

• Allows users to define the data in a database and manipulate that data.

• Allows to embed within other languages using SQL modules, libraries & pre-

compilers.

• Allows users to create and drop databases and tables.

• Allows users to create view, stored procedure, functions in a database.

• Allows users to set permissions on tables, procedures and views.

Why SQL?

Database Languages

02

• A DBMS has appropriate languages and interfaces to express database

queries and updates.

• Database languages can be used to read, sore and update the data in the

database.

Types of Database Languages:

There are mainly four types of database languages which are listed below:

1. Data Definition Language (DDL)

2. Data Manipulation Language (DML)

3. Data Control Language (DCL)

4. Transaction Control Language (TCL)

Data Definition Language (DDL):

02

• DDL is a set of SQL commands used to create, modify, and delete

database structures but not data.

• These commands are normally not used by a general user, who should be

accessing the database via an application.

• Data Definition Language (DDL) commands:

 CREATE to create a new table or database.

 ALTER for alteration.

 TRUNCATE to delete data from the table.

 DROP to drop a table.

 RENAME to rename a table.

Data Manipulation Language (DML):

02

• DDL is a set of SQL commands which enables insert, delete, update and

retrieve operation on data from database.

• DML statements are converted into equivalent low-level statement by DML

compiler.

• SQL supports following DML commands:

 SELECT : It is used to retrieve data from tables..

 INSERT : It is used to insert data into a table.

 UPDATE : It is used to update existing data withing a table.

 DELETE : It is used to delete records from a table.

Data Control Language (DCL):

02

• DCL commands are used to retrieve the stored or saved data.

• DCL execution is transactional.

• DCL commands:

 GRANT : It is used to give user access privileges to a database.

 REVOKE : It is used to take back permission from the user.

Transaction Control Language (TCL):

• TCL commands are used to manage transactions in the database. These are

used to manage the changes made to the data in a table by DML statements.

• TCL commands:

 COMMIT : It is used to save the transaction on the database.

 ROLLBACK : It is used to restore the database to original since

the last commit.

8

Rollback Commit

Rollback command is used to undo the changes

made by the DML commands

The commit command is use to save the

modifications done to the database values by

the DML commands.

It rollbacks all the changes of the current

transaction.

It will make all the changes permanent that

cannot be rolled back.

Syntax:

DELETE FROM table_name ROLLBACK

Syntax:

COMMIT:

Difference between Rollback and Commit Commands

-

• Char

• Varchar

• Int

• Decimal

• Date

• Text

Domain Types in SQL

● A schema is a collection of database objects like tables, triggers, stored procedures, etc.

● A schema is connected with a user which is known as the schema owner.

● Database may have one or more schema. SQL Server have some built-in schema, for

example: dbo, guest, sys, and INFORMATION_SCHEMA.

Schema Definition in SQL:

Shadow Copy Scheme :
In the shadow-copy scheme, a transaction that wants to update the database first creates a

complete copy of the database. All updates are done on the new database copy, leaving the

original copy, the shadow copy, untouched. If at any point the transaction has to be aborted,

the system merely deletes the new copy.

• A JOIN clause is used to combine multiple tables present in a database on the basis of

some common attributes present in those tables.

• The purpose of JOINs in SQL is to access data from multiple tables based on logical

relationships between them. JOINS are used to fetch data from database tables and

represent the result dataset as a separate table.

Joins in SQL

12

Types of Joins in SQL

13

SQL Basic Queries #1
• path : xampp/mysql/bin

• mysql -u root -p

• password:

- show databases;  To display the database list

- create database database_name;  To create new database

- use database_name;  To use the database

- show tables;  To display all the availabe tables

- desc/describe table_name;  To see the structure(columns) of the table

- drop database database_name;  To delete the database

14

SQL Basic Queries #2

- To create table:

 Syntax:

 CREATE TABLE table_name(column1 datatype(size) contraints,column2

 datatype(size) contraints, ..);

Create table student(

 id int(10),

 name varchar(15),

 address varchar(40)

);

15

SQL Basic Queries #2

- To create table:

 Syntax:

 CREATE TABLE table_name(column1 datatype(size) contraints,column2

 datatype(size) contraints, ..);

- To Insert data in table:

 Syntax:

 INSERT INTO table_name(columns...) values (value1,value2,..);

- To view the inserted data of the table:

 Syntax:

 SELECT *FROM table_name;

16

 Constraints are used to limit the type of data that can go into a table.
 Constraints can be specified when a table is created (with the CREATE TABLE statement)

or after the table is created (with the ALTER TABLE statement).
 Here are the most important constraints:

SQL Constraints

17

PRIMARY KEY :

The PRIMARY KEY constraint uniquely identifies each record in a database table

18

19

FOREIGN KEY :
A FOREIGN KEY in one table points to a PRIMARY KEY in another table.

20

21

22

The CREATE TABLE statement is used to create a table in a database.

The data type specifies what type of
data the column can hold.

ALTER command:

Alter command can perform following task:

• Add column/s

• Remove column/s

• Modify data type

• Modify datatype length

• Add constraints

• Remove constraints

• Rename column/table

Create table employee
(
 id int,
 name varchar(10)
);

Now, we can make changes in the above table using ALTER command as follows:

• ALTER table employee add address varchar(10); To add etc . column

• ALTER table employee drop column address; To delete the column

• ALTER table employee modify id varchar(30); To change the data type

• ALTER table employee change column id eid int; To rename the column for older version

(ALTER table employee rename column id to eid; will work for higher version of mariadb)

• ALTER table employee rename to emp; To rename the table name

• ALTER table employee add primary key (roll_no); To add constraints

INSERT Command:

Syntax:

INSERT INTO table_name (column1, column2, column3,etc) VALUES (value1,
value2, value3, etc);

26

1

DDL &
DML

Commands With Examples

• It is used to define database structure.

• It work on database and table.

• It is used by DBA (Database Administrator).

• Some DDL commands :

 CREATE

 ALTER

 TRUNCATE

 DROP

 RENAME

DDL (Data Definition Language)

1

CREATE

• It is use to create database and table.

• Syntax:

 CREATE DATABASE DATABASE_NAME;

•Syntax

 CRATE TABLE TABLE_NAME

 (Column 1 Data_type(size) constraint,

 Column 2 Data_type(size) constraint,

 Column 3 Data_type(size) constraint);

CREATE

1

ALTER

• It is use to modify existing database objects.

Add Column

• Syntax

 ALTER TABLE TABLE_NAME ADD COLUMN_NAME DATATYPE(SIZE);

1

Drop Column

• Syntax

 ALTER TABLE TABLE_NAME DROP COLUMN COLUMN_NAME;

Modify Column

• Syntax

 ALTER TABLE TABLE_NAME MODIFY COLUMN_NAME DATATYPE(SIZE);

Rename Table Name

• Syntax

 ALTER TABLE TABLE_NAME(OLD) RENAME TO TABLE_NAME(NEW);

Rename Column Name

• Syntax

 ALTER TABLE TABLE_NAME CHANGE COLUMN COLUMN_NAME(OLD)

 COLUMN_NAME(NEW) DATATYPE(SIZE);

 ALTER TABLE TABLE_NAME RENAME COLUMN COLUMN_NAME(OLD)

 TO COLUMN_NAME(NEW); (Work only on higher version of mariadb)

Add Constraint

• Syntax

 ALTER TABLE TABLE_NAME ADD CONSTRAINT_NAME (COLUMN_NAME);

Drop Constraint

• Syntax

 ALTER TABLE TABLE_NAME DROP CONSTRAINT COLUMN_NAME;

TRUNCATE

• It is use to quickly remove all rows from a table.

• Syntax:

 TRUNCATE TABLE TABLE_NAME;

DROP
• It is use to delete database and tables.

• Syntax:

 DROP TABLE TABLE_NAME;

•Syntax

 DROP DATABASE DATABASE_NAME;

DML (Data Manipulation Language)

1

• It is used to manage data in table.

• It work on tables data.

• Some DDL commands :

 SELECT

 INSERT

 UPDATE

 DELETE

INSERT
• It is use to insert data into table.

• Syntax

 INSERT INTO TABLE_NAME VALUES ('value-1','value-2','value-3’);

• Syntax

 INSERT INTO TABLE_NAME (‘column-1’, ‘column-2’, ‘column-3’)

 VALUES (‘value-1’,‘value-2’,‘value-3’),

 (‘value-1’,‘value-2’,‘value-3’);

DELETE

• It is use to delete data from table.

• Syntax

 DELETE FROM TABLE_NAME WHERE CONDITION;

UPDATE
• It is use to update data from table.

• Syntax

 UPDATE TABLE_NAME SET COLUMN1 = VALUE1, COLUMN2 = VALUE2

 WHERE CONDITION;

SELECT

• It is use fetch data from table.

• Syntax

 SELECT *FROM TABLE_NAME;

47

Some important CLAUSES in SQL are:

48

COUNT() function

The SQL COUNT function returns the number of rows in a table satisfying the

criteria specified in the WHERE clause.

Eg: SELECT COUNT(*) FROM product WHERE price>=50;

SUM() function

The SQL SUM() function returns the sum of all selected column.

Example : SELECT SUM(salary) FROM employee;

AVG() function

The SQL AVG function calculates the average value of a column of numeric type.

It returns the average of all non NULL values.

Example : SELECT AVG(salary) FROM employee;

MAX() function

• The aggregate function SQL MAX() is used to find the maximum value or

highest value of a certain column.

• This function is useful to determine the largest of all selected values of a

column.

• Example : SELECT MAX(age) FROM employee;

MIN() function

• The aggregate function SQL MIN() is used to find the minimum value or

lowest value of a column or expression.

• This function is useful to determine the smallest of all selected values of a

column.

• Example : SELECT MIN(age) FROM employee;

SELECT name, COUNT(*) AS number_of_students
FROM details GROUP BY name;

52

Comparison

Basis

MySQL Oracle

Definition It is an open-source, cross-platform relational

database management system built by Swedish

Company MYSQL AB and currently supported by

the Oracle.

Oracle is a relational database system (RDBMS) that

implements object-oriented features. It allows to store

and retrieve data quickly and safely. It can handle a

large amount of data.

Release It was released in 1995. It was released in 1980.

Cost
It is free and open-source. It is licensed under the

GNU.

It is licensed for commercial purposes, but it provides

the express edition for free which is recommended for

students only.

Scalability MySQL database is used for small and big

businesses.

Oracle database is used for very large-scale

deployments.

Security It requires a username, password, and host to access

the database.

It requires a username, password, and profile

validation to access the database.

Null Value MySQL supports the null value. Oracle does not support the null value.

Character MySQL support only two characters that are CHAR

and VARCHAR.

Oracle supports four different characters that are

CHAR, VARCHAR2, NCHAR, and NVARCHAR2.

MySQL v/s Oracle

53

Views
• Views in SQL are kind of virtual tables.

• A view also has rows and columns as they are in a real table in the database.

• It is generally used to focus, simplify, and customize the perception each user has

of the database.

• Views can be used as security mechanisms by letting users access data through the

view, without granting the users permissions to directly access the underlying base

tables of the view.

 OR

• Views can help control and restrict access to sensitive data, providing a layer of

security and ensuring that users can only see the data they are authorized to access.

• We can create a view by selecting fields from one or more tables present in the

database.

• A View can either have all the rows of a table or specific rows based on certain

condition. Views can represent a subset of the data contained in a table.

54

Views
• Syntax:

 CREATE VIEW view_name

 AS

 SELECT column1, column2.....

 FROM table_name

 WHERE condition;

• Example:

Create a view that hides sensitive data

Example:

CREATE VIEW employee_public_info AS

SELECT id, first_name, last_name, email

FROM employee_details;

To retieve data of view: (same as normal table)

SELECT * FROM employee_public_info;

56

Alter view: To modify an existing view, you can use the

CREATE OR REPLACE VIEW statement

Example:

CREATE OR REPLACE VIEW employee_summary AS

SELECT id, first_name, last_name, email, salary, address

FROM employee_details;

To Drop View:

Example:

DROP VIEW employee_summary;

Other Important Concepts of SQL

Developing Stored Procedures, DML
Triggers and Indexing

Stored Procedures
• A stored procedure is a collection of pre-compiled SQL statements stored

inside the database.

• It is a subroutine or a subprogram in the regular computing language.

• A procedure always contains a name, parameter lists, and SQL statements.

delimiter //
MariaDB [deepa]> CREATE PROCEDURE expensive_book()

-> BEGIN
-> select book_cost from books order by book_cost desc;
-> END//

Query OK, 0 rows affected (1.516 sec)

MariaDB [deepa]> delimiter ;

MariaDB [deepa]> call expensive_book;

delimiter //
MariaDB [deepa]> create procedure table_creation_demo()

-> begin
-> create table td
-> (
-> id int primary key auto_increment,
-> name varchar(20)
->);
-> end//

Query OK, 0 rows affected (1.594 sec)

create procedure findEmp(in ename varchar(20))
-> begin
-> select *from employee where name=ename;
-> end;
-> /

call findEmp('Deepa');

Creating Triggers
• An SQL trigger is a database object that is associated with a

table and automatically executes a set of SQL statements when a

specific event occurs on that table.

• Triggers are used to enforce business rules, maintain data

integrity, and automate certain actions within a database.

Creating Indexes

• Indexes are used to retrieve data from the database more quickly

than otherwise.

• The users cannot see the indexes, they are just used to speed up

searches/queries

CREATE INDEX index_name ON
table_name(column_list);

To Show the indexes:

SHOW INDEXES FROM table_name;

To Delete the indexes:
DROP INDEX emp_in_asc ON employees;

ALTER TABLE table_name DROP INDEX index_name;

To Create the index:

Other SQL Queries

How to Test for NULL Values?
It is not possible to test for NULL values with comparison operators,
such as =, <, or <>.
We will have to use the IS NULL and IS NOT NULL operators instead.

IS NULL Syntax
SELECT column_names

FROM table_name

WHERE column_name IS NULL;

IS NOT NULL Syntax
SELECT column_names

FROM table_name

WHERE column_name IS NOT NULL;

SELECT CustomerName,
ContactName, Address
FROM Customers
WHERE Address IS NULL;

SELECT CustomerName,
ContactName, Address
FROM Customers
WHERE Address IS NOT NULL;

String Functions in SQL

• CONCAT: Concatenates two or more strings together.

• SUBSTRING: Extracts a substring from a larger

string.

• LENGTH: Returns the length of a string.

• LOWER: Converts a string to lowercase.

• UPPER: Converts a string to uppercase

• REPLACE : To replace a string with new string.

CONCAT

Suppose we have a table named customers with

columns firstName and lastName.

We want to create a new column called full_name that combines each customer‟s

first and last names into a single string.

SELECT CONCAT(firstName, ' ', lastName) AS fullName

FROM bookshop_customer;

The result is a new column called “fullName”

that contains the concatenated strings.

SUBSTRING

The SUBSTRING SQL string function extracts a substring or a

portion of a string from a larger string.

It takes three arguments: the string to be removed from, the

substring‟s starting position, and the substring‟s length. We can use

the SUBSTRING function in our SQL query:

SELECT SUBSTRING(lastName, 1, 3) AS firstName FROM

bookshop_customer;

The SUBSTRING function extracts the first three

characters of the “lastName” column.

LOWER / UPPER

• The LOWER SQL string function converts all the characters of a string to lowercase.

• It takes a single-string argument and returns a new string with all the characters in lowercase.

Here is an example of using the LOWER function:

We will look at the column email in the bookshop_customer table to convert all the email addresses to

lowercase.

The LOWER function in our SQL query is as follows:

SELECT LOWER(email) AS lowercase_email FROM bookshop_customer;

In this example, the LOWER function converts all the characters in the email column to

lowercase. The result is a new column called lowercase_email containing lowercase

email addresses.

SELECT UPPER(title) AS uppercase_name FROM

bookshop;

CHAR_LENGTH String Function

This string function returns the length of the specified word. It

shows the number of characters from the word.

Example 1: This example shows the number of characters of the

JavaTpoint word:

SELECT CHAR_LENGTH('JavaTpoint');

Output: 10

This query shows the total number of characters of the last name of each faculty.

Faculty_Last_Name Length_of_Last_Namecolumn

Sharma 6

Roy 3

Roy 3

Singhania 9

Sharma 6

Besas 5

Example 2: This example uses CHAR_LENGTH() with the Faculty_Last_Name

column of the above Faculty_Info table.

SELECT Faculty_Last_Name, CHAR_LENGTH(Faculty_Last_Name) AS Length_o

f_Last_Namecolumn FROM Faculty_Info;

CHARACTER_LENGTH String Function

This string function returns the length of the given string. It shows

the number of all characters and spaces from the sentence.
Example 1: The following SELECT query shows the total number of characters

and spaces of the specified string:

SELECT CHARACTER_LENGTH('JavaTpoint is a good company');

Output : 28

Faculty_Address Length_of_Address_column

Aman Vihar 10

Nirman Vihar 12

Sector 128 10

Vivek Vihar 11

Sarvodya Calony 15

Krishna Nagar 13

This SQL statement shows the total number of characters and spaces of the address of each

faculty.

Output:

Example 2: The following SELECT query uses CHARACTER_LENGTH() with the

Faculty_Addresss column of the above Faculty_Info table.

SELECT Faculty_Address, CHARACTER_LENGTH(Faculty_Address) AS Length_of_Addr

ess_column FROM Faculty_Info;

Example 1: This example uses REPLACE to replace the word “Engineer” with

“Eng” in the post column of a table.

SELECT REPLACE(post, “Engineer”, “Eng” FROM emp_details;

REPLACE String Function

• This string function replaces all occurrences of a substring within

a string, with a new substring.

• This function performs a case-sensitive replacement.

Nested Queries:

SELECT StudentName

FROM Students

WHERE

StudentID IN (SELECT StudentID FROM Grades

WHERE Subject = „Mathematics‟ AND Score > 90

);

End!

