¢
Unit =5

SQL
(Structured Query Language)

Background/Introduction:

SQL also known as SEQUEL, stands for Structured Query Language which is a
database computer language for storing, manipulating and retrieving data stored in
a relational database.

SQL was developed in the 1970s by IBM Computer Scientists and became a
standard of the American National Standards Institute (ANSI) in 1986, and the
International Organization for Standardization (1SO) in 1987.

SQL is the standard language to communicate with Relational Database Systems.
All the Relational Database Management Systems (RDMS) like MySQL, MS
Access, Oracle, Sybase, Informix, Postgres and SQL Server use SQL as their
Standard Database Language.

Why SQL?

SQL is widely popular because it offers the following advantages —
Allows users to access data In the relational database management systems.
Allows users to describe the data.
Allows users to define the data in a database and manipulate that data.
Allows to embed within other languages using SQL modules, libraries & pre-
compilers.
Allows users to create and drop databases and tables.
Allows users to create view, stored procedure, functions in a database.
Allows users to set permissions on tables, procedures and views.

Database Languages

« A DBMS has appropriate languages and interfaces to express database
queries and updates.

« Database languages can be used to read, sore and update the data in the
database.

Types of Database Languages:

There are mainly four types of database languages which are listed below:
1. Data Definition Language (DDL)

2. Data Manipulation Language (DML)

3. Data Control Language (DCL)

4. Transaction Control Language (TCL)

Data Definition Language (DDL):

DDL is a set of SQL commands used to create, modify, and delete
database structures but not data.
These commands are normally not used by a general user, who should be
accessing the database via an application.
Data Definition Language (DDL) commands:

v' CREATE to create a new table or database.

v' ALTER for alteration.

v TRUNCATE to delete data from the table.

v" DROP to drop a table.

v RENAME to rename a table.

Data Manipulation Language (DML):

DDL is a set of SQL commands which enables insert, delete, update and
retrieve operation on data from database.
DML statements are converted into equivalent low-level statement by DML
compiler.
SQL supports following DML commands:

v' SELECT : Itis used to retrieve data from tables..

v' INSERT : It is used to insert data into a table.

v' UPDATE : It is used to update existing data withing a table.

v DELETE : It is used to delete records from a table.

Data Control Language (DCL):

« DCL commands are used to retrieve the stored or saved data.

« DCL execution is transactional.

« DCL commands:
v GRANT : It is used to give user access privileges to a database.
v' REVOKE : It is used to take back permission from the user.

Transaction Control Language (TCL):

« TCL commands are used to manage transactions in the database. These are
used to manage the changes made to the data in a table by DML statements.
 TCL commands:
v' COMMIT : Itis used to save the transaction on the database.
v" ROLLBACK : Itis used to restore the database to original since
the last commit.

Difference between Rollback and Commit Commands

Rollback

Rollback command is used to undo the changes
made by the DML commands

It rollbacks all the changes of the current
transaction.

Syntax:
DELETE FROM table_name ROLLBACK

Commit

The commit command is use to save the
modifications done to the database values by
the DML commands.

It will make all the changes permanent that
cannot be rolled back.

Syntax:
COMMIT:

Domain Types in SQL

e Char

* Varchar
* Int
 Decimal
e Date

e Text

Schema Definition in SQL.:

A schema is a collection of database objects like tables, triggers, stored procedures, etc.
A schema is connected with a user which is known as the schema owner.

Database may have one or more schema. SQL Server have some built-in schema, for
example: dbo, guest, sys, and INFORMATION_SCHEMA.

Shadow Copy Scheme :

In the shadow-copy scheme, a transaction that wants to update the database first creates a
complete copy of the database. All updates are done on the new database copy, leaving the
original copy, the shadow copy, untouched. If at any point the transaction has to be aborted,
the system merely deletes the new copy.

Joms In SQL

A JOIN clause is used to combine multiple tables present in a database on the basis of
some common attributes present in those tables.

The purpose of JOINs in SQL is to access data from multiple tables based on logical
relationships between them. JOINS are used to fetch data from database tables and
represent the result dataset as a separate table.

Syntax : SELECT Column_Name From Table Name1 NATURAL JOIN Table Name2;

For Example : Consider two tables student_details and student _resuit.

Query : SELECT * From student_details NATURAL JOIN student_result;

Output
Student_Details Student_Result Student_Detalls » Student_Result
Roll No. Name Address Roll No. Marks Roll No. | Name Address Marks
1 Anoop Delhi X 1 20 @ . . Anoop Delhi 20
2 Anurag Noida 2 30 2 Anurag | Noida 30

3 Ganesh uUpP 3 10 3 Ganesh upP 10

Types of Joins in SQL

SQL JOINS

INNER JOIN

NATURAL JOIN

LEFT OUTER JOIN

| IFLILL OUTER. JOIN

RIGHT OUTER JOIN

SQL Joins : Types

12

SQL Basic Queries #1

 path : xampp/mysqgl/bin
e mysql -u root -p
e password:

- show databases; = To display the database list

- create database database name; - To create new database

- use database _name; - To use the database

- show tables; = To display all the availabe tables

- desc/describe table_name; = To see the structure(columns) of the table
- drop database database _name; - To delete the database

13

SQL Basic Queries #2

- To create table:
Syntax:
CREATE TABLE table _name(columnl datatype(size) contraints,column2
datatype(size) contraints, ..);

Create table student(
id int(10),
name varchar(15),
address varchar(40)

);

14

SQL Basic Queries #2

- To create table:
Syntax:
CREATE TABLE table _name(columnl datatype(size) contraints,column2
datatype(size) contraints, ..);
- To Insert data in table:
Syntax:
INSERT INTO table_name(columns...) values (valuel,value2,..);
- To view the inserted data of the table:
Syntax:
SELECT *FROM table_name;

15

SQL Constraints

v Constraints are used to limit the type of data that can go into a table.

v Constraints can be specified when a table is created (with the CREATE TABLE statement)
or after the table is created (with the ALTER TABLE statement).

v Here are the most important constraints:

S Q L [nornuw |8 UNIQUE

| Constraint Constraint

Constraints

PRIMARY
KEY
Constraint J’%

DEFAULT
Constraint

16

PRIMARY KEY :
The PRIMARY KEY constraint uniquely identifies each record in a database table

Column level

Primary key

CREATE TABLE Employee
(

TD INT CONSTRAINT PK_TD PRIMARY KEV, |
NAME VARCHAR (50),
EMATL VARCHAR(6@)

CREATE TABLE Employee

(Table level
ID INT NOT NULL,

NAME VARCHAR (5@),
EMATL VARCHAR(60)

[CONSTRAINT PK_ID PRIMARY KEY(ID))
)

Primary key

17

CREATE TABLE [CUSTOMER]

(

)
GO

CustomerId int IDENTITY(1,1) PRIMARY KEY,
CustomerNumber int NOT NULL UNIQUE,
LastName wvarchar (50) NOT NULL,

FirstName varchar(50) NOT NULL,

AreaCode int NULL,

Address varchar (50) NULL,

Phone varchar (50) NULL,

As you see we use the “Primary Key” keyword to specify that a column should be the

Primary Key.

CustomerMumber LastMame FirstMame AreaCode Address Phone

Customerld

Primary Keys must contain unique

numbers like this

Structured Query Language (SQL)

18

FOREIGN KEY :
A FOREIGN KEY in one table points to a PRIMARY KEY in another table.

1 CREATE TABLE tracks

2 (track_id INT PRIMARY KEY,

3 track_name VARCHAR(5@) NOT NULL,
4 category VARCHAR(25)

SH)

6

/ CREATE TABLE genre

8 (genre_id INT PRIMARY KEY,

=, track id INT NOT NULL,

19 min_rating INT,

11 max_rating INT,

12 CONSTRAINT fk_inv_track_id

13 FOREIGN KEY (track_id)

14 REFERENCES tracks (track_id)

(==
LN

)

CustomerOrders

Foreign key link
int

Customers OrderDate
® CustomerID int

1D l Amout bigint

CustomerName

CustomerAge smallint _< Parent table ’

CustomerCountry

Child table

SCHOOL:

CREATE TABLE SCHOOL
(
SchoollId int IDEWNTITY(1l,1) PRIMARY EEY,
SchoolName wvarchar (50) NQOT NULL UNIQUE,
Description warchar(1000) NULL,
Address warchar (50) NULL,
Phone wvarchar(50) NULL,
PostCode warchar (50) NULL,
Posthddress warchar(50) NOUOLL,

)
GO

CLASS:

CREATE TABLE CLASS

(
ClassId int IDENTITY (1,1) PRIMARY KEY,

SchoolId int HOT NULL FOREIGN KEY REFEREMCES SCHOOL (SchoolId),
ClassName wvarchar(50) NOT NULL UNIQUE,
Description wvarchar (1000) NULL,

)
GO

The FOREIGN KEY constraint is used to prevent actions that would destroy links between

tables.

The FOREIGN KEY constraint also prevents that invalid data from being inserted into the

foreign key column, because it has to be one of the values contained in the table it points to.

21

The CREATE TABLE statement is used to create a table in a database.

Syntax : -

CREATE TABLE table name

(

Column namel data_type (size) [cqustraints|
Column name?2 data type (size) [constraints
Column name3 data type (size) [constraints]

);

-

-

The data type specifies what type of
data the column can hold.

CREATE TABLE Apps (
AppID int,
AppName varchar(255),

CreatorName varchar(255),

AppCategory varchar(255),

AppPrice int

ALTER command:

Alter command can perform following task:
e Add column/s

e Remove column/s

* Modify data type

* Modify datatype length

* Add constraints

* Remove constraints

 Rename column/table

Create table employee

C
id int,
name varchar(10)

);

Now, we can make changes in the above table using ALTER command as follows:

« ALTER table employee add address varchar(10); To add etc . column

* ALTER table employee drop column address; To delete the column

* ALTER table employee modify id varchar(30); To change the data type

* ALTER table employee change column id eid int; To rename the column for older version
(ALTER table employee rename column id to eid; will work for higher version of mariadb)
e ALTER table employee rename to emp; To rename the table name

 ALTER table employee add primary key (roll_no); To add constraints

INSERT Command:
Syntax:

INSERT INTO table_name (columnl, column2, column3,etc) VALUES (valuel,
value2, value3, etc);

INSERT INTO Apps (AppID, AppName , CreatorName' , AppCategory , AppPrice)
VALUES

‘Escrow s ' BVVME, “Fashions, 608),

'KGB', 'MJ', 'Music', 70),

'‘Moscow', 'Mayor', 'Area', 80),

'‘MoneyControl', 'Mukesh', 'Investment', 90),

‘Investing', °*BillY, 'Stocks’', 100)

SELECT

The SELECT statement 1s used to select data from a database and retrieve the

information.
1. Select all columns from the table

Syntax: - SELECT * FROM table name;
Ex: - SELECT * FROM my tab;

2. Select Particular columns from the table

Syntax: - SELECT column namel, column namel,....

FROM table name;
Ex: - SELECT name, mobile
FROM my tab;

Name Roll Mobile
Rahul 01 8753
John 02 6534

26

DDL
P DML

Commands With Examples

DDL (Data Definition Language)

* It is used to define database structure.
« It work on database and table.
* It is used by DBA (Database Administrator).
« Some DDL commands :
CREATE
ALTER
TRUNCATE
DROP
RENAME

MariaDB [(none)]> show databases;

attendance
bca_tth_sem

bishal

filters
final-project
imperial_college
information_schema
libsystem

mysql
performance_schema
phpmyadmin

e [tis use to create database and table.
« Syntax:
CREATE DATABASE DATABASE_NAME;

attendance
bca_uth_sem

bishal

filters
final-project
imperial_college
information_schema
libsystem

mysql
performance_schema
phpmyadmin

test

MariaDB [(none)]> CREATE DATABASE test;

Query OK, 1 row affected (0.004 sec)

*Syntax
CRATE TABLE TABLE_NAME
(Column 1 Data_type(size) constraint,
Column 2 Data_type(size) constraint,
Column 3 Data_type(size) constraint);

MariaDB [test]> show tables;
Empty set (0.001 sec)

MariaDB [test]> SHOW TABLES;

MariaDB [test]> CREATE TABLE student

-> (id INT(10) PRIMARY KEY AUTO_INCREMENT,
—> name VARCHAR(30),
—-> address VARCHAR(30),
-> email VARCHAR(30) UNIQUE);
Query OK, © rows affected (0.024 sec) 1 row in set (6.861 sec)

« It is use to modify existing database objects.

(Add Column)
e Syntax

ALTER TABLE TABLE_NAME ADD COLUMN_NAME DATATYPE(SIZE);

MariaDB [test]> DESC student;

o o o

| Field | Type

o o o
int(10) | NO

varchar(30) | YES
address | varchar(30) | YES
varchar(30) | YES

MariaDB [test]> DESC student;

MariaDB [test]> ALTER TABLE student ADD phone int(20); P P et ;
Query OK, 0 rows affected (0.019 sec) L
int(10)

Records: ® Duplicates: @ Warnings: © i
varchar(30) | YES
varchar(30) | YES
varchar(30) | YES
int(20) | YES

(Drop Column)

* Syntax
ALTER TABLE TABLE_NAME DROP COLUMN COLUMN_NAME;

MariaDB [test]> ALTER TABLE student DROP COLUMN phone;
Query OK, 0 rows affected (0.014 sec)
Records: ® Duplicates: ® Warnings: ©

MariaDB [test]> DESC student; MariaDB [test]> DESC student;

int(10)
varchar(30)
address varchar(360)

email varchar(30)
int(20)

int(10)

varchar(30) | YES
varchar(30) | YES
varchar(30) | YES

(Modify Column)

* Syntax
ALTER TABLE TABLE_NAME MODIFY COLUMN_NAME DATATYPE(SIZE);

MariaDB [test]> ALTER TABLE student MODIFY email varchar(30);
Query OK, @ rows affected (0.036 sec)
Records: ® Duplicates: ©® Warnings: ©

MariaDB [test]> DESC student; MariaDB [test]> DESC student;

int(10) i int(10)

varchar(30) | YES varchar(30) | YES
varchar(30) | YES varchar(30) | YES
int(5) varchar(30) | YES

(Rename Table Name)

* Syntax
ALTER TABLE TABLE_NAME(OLD) RENAME TO TABLE_NAME(NEW);

MariaDB [test]> ALTER TABLE student RENAME TO stu;
Query OK, @ rows affected (0.009 sec)

) MariaDB [test]> SHOW TABLES;
MariaDB [test]> SHOW TABLES;

1 row in set (0.002 sec) 1 row in set (0.001 sec)

C Rename Column Name)

* Syntax

ALTER TABLE TABLE_NAME CHANGE COLUMN COLUMN_NAME(OLD)
COLUMN_NAME(NEW) DATATYPE(SIZE);

MariaDB [test]> ALTER TABLE student CHANGE COLUMN adress address varchar(30);
Query OK, 0 rows affected (0.006 sec)
Records: @ Duplicates: ® Warnings: ©

MariaDB [test]> DESC student; MariaDB [test]> DESC student;
$————— $———————— - +

| Field | Type

+————— t———————— - +

| int(10) | int(10)

|
| varchar(30) | YES I name | varchar(30) | YES I
|

address | varchar(30) | YES

email | varchar(30) | YES |
I Fmmm PR +

| adress | varchar(30) | YES

varchar(30) | YES |
P — P —— P +

ALTER TABLE TABLE_.NAME RENAME COLUMN COLUMN_NAME(OLD)
TO COLUMN_NAME(NEW); (Work only on higher version of mariadb)

(Add Constraint)

* Syntax
ALTER TABLE TABLE_NAME ADD CONSTRAINT_NAME (COLUMN_NAME);

MariaDB [test]> ALTER TABLE student ADD UNIQUE(name);
Query OK, © rows affected (0.012 sec)
Records: © Duplicates: © Warnings: ©

MariaDB [test]> DESC student; MariaDB [test]> DESC student;

| Null | Key |

int(lB) i int(lﬂ)
varchar(30) | YES varchar(30) | YES
varchar(30) | YES varchar(30) | YES

(Drop Constraint)

* Syntax
ALTER TABLE TABLE_NAME DROP CONSTRAINT COLUMN_NAME;

MariaDB [test]> ALTER TABLE student DROP CONSTRAINT name;
Query OK, © rows affected (0.011 sec)
Records: © Duplicates: ® Warnings: ©

MariaDB [test]> DESC student; MariaDB [test]> DESC student;
————————————— +—————

| Null | Key |
————————————— +——————+———+
int(10) | NO | PRI | i int(10)
varchar(30) | YES | UNI | varchar(30) | YES

varchar(30) | YES | I varchar(30) | YES
varchar(30) | YES | UNI | varchar(30) | YES

« It is use to quickly remove all rows from a table.
e Syntax:

TRUNCATE TABLE TABLE_NAME;

MariaDB [test]> TRUNCATE TABLE student;
Query OK, © rows affected (0.017 sec)

) MariaDB [test]> SELECT *FROM student;
jariadp [rest]> SELECT »FROM =tudenti . BB Empty set (0.000 sec)

| id | name | address | email

PR, VO S mmmcmmee fmmememcmmeee e +
Techono | BTL | techno@gmail.com |
Anshu | BTL | anshu@gmail.com |

e [tis use to delete database and tables.
e Syntax:
DROP TABLE TABLE_NAME;

MariaDB [test]> DROP TABLE student;
Query OK, © rows affected (0.008 sec)

MariaDB [test]> SHOW TABLES;

MariaDB [test]> SHOW TABLES;
Empty set (0.001 sec)

*Syntax
DROP DATABASE DATABASE_NAME;

MariaDB [test]> DROP DATABASE test;
Query OK, 0 rows affected (0.006 sec)

MariaDB [test]> SHOW DATABASES; MariaDB [(none)]> SHOW DATABASES;

attendance
bca_udth_sem

bishal

filters
final-project
imperial_college
information_schema
libsystem

mysql
performance_schema
phpmyadmin

test

attendance
bca_tth_sem

bishal

filters
final-project
imperial_college
information_schema
libsystem

mysql
performance_schema
phpmyadmin

o [t is use to insert data into table.
* Syntax
INSERT INTO TABLE_NAME VALUES ('value-1','value-2','value-3");

MariaDB [test]> INSERT INTO student Values
-> (1, 'Techno', 'BTL', 'techno98@gmail.com');
Query OK, 1 row affected (0.002 sec)

MariaDB [test]> SELECT *FROM student;
MariaDB [test]> SELECT *FROM student; § +-———4-—————— e e e +
Empty set (0.001 sec) | id | name | address | email

e e ————— e e +

1 | Techno | BTL | techno98@gmail.com |
e e e o e L +

* Syntax
INSERT INTO TABLE_NAME (‘column-1', ‘column-2’, ‘column-3")
VALUES (‘value-1','value-2’,'value-3"),
(‘'value-1','value-2’,'value-3");

MariaDB [test]> INSERT INTO student (name,address,email)
—> VALUES ('Anshu','BTL', 'anshu89@gmail.com'),
—> ('Rawknee', 'BTL', 'rawkneel2@gmail.com');

Query OK, 2 rows affected (0.004 sec)

Records: 2 Duplicates: © Warnings: ©

. MariaDB [test]> SELECT *FROM student;
MariaDB [test]> SELECT *FROM student; PO PR e e +

S A — e A El | name | address | email

| id | name | address | email P PR I +

to———tm——— L —— - + | Techno | BTL | techno98@gmail.com |
1 | Techno | BTL | techno98@gmail.com | | Anshu | BTL | anshu89@gmail.com |

| Rawknee | BTL | rawkneel2@gmail.com |
U R e +

It is use to delete data from table.
* Syntax

DELETE FROM TABLE_NAME WHERE CONDITION;

MariaDB [test]> DELETE FROM student WHERE id=3;
Query OK, 1 row affected (0.005 sec)

(EEEER WS SEEAST VALY SETHE , | MariaDB [test]> SELECT *FROM student;

id | name | address | email S L A *

e PO e + | id | name | address | email

| techno98@gmail.com | e ————— Fm———— e +

| BTL | anshu89@gmail.com | .
Rawknee | BTL | rawkneel2@gmail.com | I ; I I:;:ED I EI:: I ;:z:zggggzgiilésﬁm I

e e e +

« It is use to update data from table.

* Syntax
UPDATE TABLE_NAME SET COLUMN1 = VALUET, COLUMNZ = VALUEZ2
WHERE CONDITION;

MariaDB [test]> UPDATE student SET address='BHW' WHERE id=2;
Query OK, 1 row affected (0.006 sec)
Rows matched: 1 Changed: 1 Warnings: ©

MariaDB [test]> SELECT *FROM student; MariaDB [test]> SELECT *FROM student;
N R — T — e + { P peeeeee e i e e +

| id | name | address | email | | id | name | address | email
T W —— o ——— —_—————— + R P pe e LSS RS EEE S SIS S S I IS +

| 1] Techno | BTL | techno98@gmail.com | | 1| Techno | BTL I techno98@gm§il.com I
2 | Anshu | BTL | anshu89@gmail.com 2 | Anshu | BHW | anshu89@gmail.com

It is use fetch data from table.
* Syntax
SELECT *FROM TABLE_NAME;

MariaDB [test]> SELECT *FROM student;
F————t—————— F———————— e +

| id | name | address | email

. e ————— e +

| 1 | Techno | BTL | techno98@gmail.com |

2 | Anshu | anshu89@gmail.com |
L e e T = +

Some important CLAUSES in SQL are:

FUNCTION
1 from Choose and join tables to get base data.
2 where Filters the base data.
3 group by Aggregates the base data.
4 having Filters the aggregated data.
5 select Returns the final data.
6 order by Sorts the final data.
7 limit Limits the returned data to a row count.

SQL AGGREGATE FUNCTIONS

= SQL provides serval built-in numeric functions

®= COUNT: The number of rows containing non-null
values

"= MIN: The minimum attribute value encountered in a
given column

= MAX: The maximum attribute value encountered in a
given column
= SUM: The sum of all values for a givenColumn

= AVG: The arithmetic mean (average) for a specified
column

COUNT() function
The SQL COUNT function returns the number of rows in a table satisfying the
criteria specified in the WHERE clause.

Eg: SELECT COUNT(*) FROM product WHERE price>=50;

SUM() function
The SQL SUM() function returns the sum of all selected column.
Example : SELECT SUM(salary) FROM employee;

AVG() function

The SQL AVG function calculates the average value of a column of numeric type.
It returns the average of all non NULL values.

Example : SELECT AVG(salary) FROM employee;

MAX() function

« The aggregate function SQL MAX() is used to find the maximum value or
highest value of a certain column.

« This function is useful to determine the largest of all selected values of a
column.

« Example : SELECT MAX(age) FROM employee;

MIN() function

« The aggregate function SQL MIN() is used to find the minimum value or
lowest value of a column or expression.

« This function is useful to determine the smallest of all selected values of a
column.

« Example : SELECT MIN(age) FROM employee;

SELECT name, COUNT(*) AS number_of students
FROM details GROUP BY name;

ariaDB [deepa]> SELECT name, COUNT(*) AS number_of students from details group by name;

rows in set (0.000 sec)

MySQL v/s Oracle

Comparison
Basis

Definition

Release
Cost
Scalability
Security

Null Value
Character

MySQL

It is an open-source, cross-platform relational
database management system built by Swedish
Company MYSQL AB and currently supported by
the Oracle.

It was released in 1995.

It is free and open-source. It is licensed under the
GNU.

MySQL database is used for small and big
businesses.

It requires a username, password, and host to access
the database.

MySQL supports the null value.

MySQL support only two characters that are CHAR
and VARCHAR.

Oracle

Oracle is a relational database system (RDBMS) that
implements object-oriented features. It allows to store
and retrieve data quickly and safely. It can handle a
large amount of data.

It was released in 1980.

It is licensed for commercial purposes, but it provides
the express edition for free which is recommended for
students only.

Oracle database is used for very large-scale
deployments.

It requires a username, password, and profile
validation to access the database.

Oracle does not support the null value.

Oracle supports four different characters that are
CHAR, VARCHAR2, NCHAR, and NVARCHARZ2,

52

Views

Views in SQL are kind of virtual tables.
A view also has rows and columns as they are in a real table in the database.
It is generally used to focus, simplify, and customize the perception each user has
of the database.
Views can be used as security mechanisms by letting users access data through the
view, without granting the users permissions to directly access the underlying base
tables of the view.

OR
Views can help control and restrict access to sensitive data, providing a layer of
security and ensuring that users can only see the data they are authorized to access.
We can create a view by selecting fields from one or more tables present in the
database.
A View can either have all the rows of a table or specific rows based on certain
condition. Views can represent a subset of the data contained in a table.

Views

Syntax:
CREATE VIEW view_name
AS
SELECT columnl, column2.....
FROM table _name
WHERE condition;

Example:

CREATE VIEW DetallsView AS

SELECT MAME, ADDRESS
FROM StudentDetails
WHERE 5 ID ¢ 5;

54

Create a view that hides sensitive data
Example:

CREATE VIEW employee public_info AS
SELECT id, first_name, last_ name, emalil
FROM employee details;

To retieve data of view: (same as normal table)
SELECT * FROM employee public_info;

Alter view: To modify an existing view, you can use the
CREATE OR REPLACE VIEW statement

Example:
CREATE OR REPLACE VIEW employee _summary AS

SELECT id, first_name, last_name, email, salary, address
FROM employee details;

To Drop View:
Example:
DROP VIEW employee summary;

Other Important Concepts of SQL

Developing Stored Procedures, DML
Triggers and Indexing

Stored Procedures

Astored procedure is a collection of pre-compiled SQL statements stored
Inside the database.

It is a subroutine or a subprogram in the regular computing language.
A procedure always contains a name, parameter lists, and SQL statements.

MariaDB [deepa]> SHOW PROCEDURE STATUS;

FESRS S SRS SR S e SRe O OrCr e ey SRS $o-e
----- S eSS
| Db | Name | Type | Definer | Modified | Created | Security type |
ment | character set client | collation_connection | Database Collation |
P P TR T T A F A $o-e
----- O C I S P O E e
| deepa | createTable | PROCEDURE | root@localhost | 2023-06-06 07:57:19 | 2023-06-06 €7:57:19 | DEFINER |

| cpsse | cp850 general ci | utfonb4 general ci |
| deepa | SP_CREATE TABLE | PROCEDURE | root@localhost | 2023-06-06 08:01:31 | 2023-06-06 €8:@1:31 | DEFINER |

| cp8se | cp850 general ci | utf8ub4 general ci |
P P TR T T A F A $o-e
----- L S

2 rows in set (1,538 sec)

MariaDB [deepa]> delimiter //
MariaDB [deepa]> create procedure table creation_demo()
-> begin
-> create table td
_')(
-> id int primary key auto_increment,
-> name varchar(20)
->);
-> end//f
Query OK, © rows affected (1.594 sec)

MariaDB [deepa]> delimiter ;
MariaDB [deepa]> call table creation_demo();
Query OK, © rows affected (1.678 sec)

MariaDB [deepa]> desc td;

F R T TR TR TR S +
| Field | Type | Null | Key | Default | Extra |
FR - T TR F— TR — O +
| id | int(11) | o | PRI | NULL | auto increment |
| name | varchar(20) | YES | | NULL | |

S NS oo oo oo o o . NS +----- T R L Ty +

delimiter //

MariaDB [deepa]> CREATE PROCEDURE expensive_book()
-> BEGIN

-> select book_cost from books order by book cost desc;
-> END//

Query OK, 0 rows affected (1.516 sec)

MariaDB [deepa]> delimiter ;

MariaDB [deepa]> call expensive_book;

delimiter //
MariaDB [deepa]> create procedure table creation_demo()
-> begin
-> create table td
-> (
-> id int primary key auto_increment,
-> name varchar(20)
->)
->end//
Query OK, O rows affected (1.594 sec)

create procedure findEmp(in ename varchar(20))
-> begin
-> select *from employee where name=ename;
-> end;

_>/

call findEmp('Deepa’);

Creating Triggers

« An SQL trigger is a database object that is associated with a
table and automatically executes a set of SQL statements when a
specific event occurs on that table.

 Triggers are used to enforce business rules, maintain data
Integrity, and automate certain actions within a database.

Creating Indexes

» Indexes are used to retrieve data from the database more quickly

than otherwise.
* The users cannot see the indexes, they are just used to speed up

searches/queries

To Create the index:

CREATE INDEX index_name ON
table_name(column_list);

To Show the indexes:
SHOW INDEXES FROM table _name;

To Delete the indexes:
DROP INDEX emp_in_asc ON employees;

ALTER TABLE table_name DROP INDEX index_name;

Other SQL Queries

How to Test for NULL Values?

It is not possible to test for NULL values with comparison operators,

such as =, <, or <>,
We will have to use the IS NULL and IS NOT NULL operators instead.

IS NULL Syntax SELECT CustomerName,
SELECT column names ContactName, Address

FROM table name FROM Customers
WHERE column name IS NULL; WHERE Address IS NULL;

SELECT CustomerName,
I S N OT N U LL Syntax ContactName, Address
SELECT column names FROM Customers

FROM table name
WHERE column name IS NOT NULL; WHERE Address IS NOT NULL;

String Functions in SQL

 CONCAT: Concatenates two or more strings together.

 SUBSTRING: Extracts a substring from a larger
string.

 LENGTH: Returns the length of a string.

 LOWER: Converts a string to lowercase.

« UPPER: Converts a string to uppercase

 REPLACE : To replace a string with new string.

CONCAT
Suppose we have a table named customers with

columns firstName and lastName.
We want to create a new column called full _name that combines each customer’s

first and last names into a single string.

Ada Lovelace
Grace Hopper
Elizabeth Feinler
Maya Angelou

SELECT CONCAT (firstName, ' ', lastName) AS fullName
FROM bookshop customer;

The result is a new column called “fullName”
that contains the concatenated strings.

da Lovelace
ce Hopper

lizabeth Feinler

xEmMo >

aya Angelou

SUBSTRING

The SUBSTRING SQL string function extracts a substring or a
portion of a string from a larger string.

It takes three arguments: the string to be removed from, the
substring’s starting position, and the substring’s length. We can use

the SUBSTRING function in our SQL query:

SELECT SUBSTRING(lastName, 1, 3) AS firstName FROM
bookshop customer;

The SUBSTRING function extracts the first three
characters of the “lastName” column.

LOWER / UPPER

« The LOWER SQL string function converts all the characters of a string to lowercase.
It takes a single-string argument and returns a new string with all the characters in lowercase.

Here is an example of using the LOWER function:

We will look at the column email in the bookshop_customer table to convert all the email addresses to

lowercase.

The LOWER function in our SQL query is as follows:

SELECT LOWER(email) AS lowercase _email FROM bookshop customer;

In this example, the LOWER function converts all the characters in the email column to
lowercase. The result is a new column called lowercase_email containing lowercase

email addresses.

Ada Lovelace

Grace Hopper
Elizabeth Feinler
Maya Angelou

Annie Easley

Karen Sparck Jones

ada@coginiti.co
grace@coginiti.co
elizabeth@company
maya@company .co
annie@coginiti.co
karen@coginiti.co

. CO

SELECT UPPER(title) AS uppercase_name FROM
bookshop;

4 UPPERCASE_NAME
ADA LOVELACE

i | KAREN SPARCK JONES

CHAR_LENGTH String Funct.un

This string function returns the length of the specified word. It
shows the number of characters from the word.

Example 1: This example shows the number of characters of the
JavaTpoint word:

SELECT CHAR_LENGTH('JavaTpoint";
Output: 10

Example 2: This example uses CHAR_LENGTHY() with the Faculty Last Name
column of the above Faculty Info table.

SELECT Faculty Last Name, CHAR_LENGTH(Faculty Last Name) AS Length o
f Last Namecolumn FROM Faculty _Info;

This query shows the total number of characters of the last name of each faculty.

Faculty_Last_Name Length_of Last_ Namecolumn

Sharma

Roy

Roy

Singhania

Sharma

U oL | W | Ww|o

Besas

CHARACTER_LENGTH String Function
This string function returns the length of the given string. It shows

the number of all characters and spaces from the sentence.

Example 1: The following SELECT query shows the total number of characters
and spaces of the specified string:

SELECT CHARACTER_LENGTH('JavaTpoint is a good company’);

Output : 28

Example 2: The following SELECT query uses CHARACTER_LENGTH() with the
Faculty Addresss column of the above Faculty Info table.

SELECT Faculty _Address, CHARACTER _LENGTH(Faculty Address) AS Length_of Addr
ess_column FROM Faculty _Info;

This SQL statement shows the total number of characters and spaces of the address of each
faculty.

Output:

Faculty_Address Length_of_Address_column

Aman Vihar 10

Nirman Vihar 12

Sector 128 10

Vivek Vihar 11

Sarvodya Calony 15

Krishna Nagar 13

REPLACE String Function

 This string function replaces all occurrences of a substring within
a string, with a new substring.

 This function performs a case-sensitive replacement.

Example 1: This example uses REPLACE to replace the word “Engineer” with
“Eng” in the post column of a table.

SELECT REPLACE(post, “Engineer”, “Eng” FROM emp_details;

Nested Queries:

SELECT StudentName

FROM Students

WHERE

StudentID IN (SELECT StudentID FROM Grades
WHERE Subject = ‘Mathematics’ AND Score > 90

);

End!

