
1 
 

Recursion 
Recursion is a process by which a function calls itself repeatedly until some condition has been 
satisfied. For problems to be solved recursively, two conditions must be satisfied. 
a. The problem must be expressed in recursive form. 
b. The problem statement must include a terminating or stopping condition. 

 
Þ A function that calls itself is called recursive function. 

 
Note: At least one statement inside a function must be of type non recursive type 
 
Þ Each time a function is called, a number of words (such as variables, return address and other 

arguments and its data) are pushed onto the program stack.  
Þ When the function returns, this frame of data is popped off the stack.  
Þ Recursion of course is an elegant programming technique, but not the best way to solve a 

problem, even if it is recursive in nature. This is due to the following reasons:  
• It requires stack implementation.  
• It makes inefficient utilization of memory, as every time a new recursive call is made 

a new set of local variables is allocated to function.  
• Moreover, it also slows down execution speed, as function calls require jumps, and 

saving the current state of program onto stack before jump.  
• If proper precautions are not taken, recursion may result in non-terminating 

iterations.  

Þ Recursion is one of the most powerful programming tools.  
Þ Recursion provides a natural way to solve many problems.  
Þ Recursion makes algorithms and its implementation more compact and simpler  

 
Recursion versus Iteration: 
 Iteration Recursion 

1  
It is a process of executing a statement or a set 
of statements repeatedly, until some specified 
condition is specified.  

Recursion is the technique of defining anything 
in terms of itself.  

2  
Iteration involves four clear-cut Steps like 
initialization, condition, execution, and 
updating.  

There must be an exclusive if statement inside 
the recursive function, specifying stopping 
condition.  

3  Any recursive problem can be solved 
iteratively.  Not all problems have recursive solution.  

4  
Iterative counterpart of a problem is more 
efficient in terms of memory utilization and 
execution speed.  

Recursion is generally a worse option to go for 
simple problems, or problems not recursive in 
nature.  
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A recursive definition consists of two parts. 

• Anchor or Ground case: The basic elements that are building blocks of the other elements 
of the set are listed in anchor case. 

• Recursive or Inductive case: In the recursive case, rules are given that allow for the 
construction of new object. 

The factorial of a number n can be defined recursively as: 

n! =      1  if n = 0 (anchor) 

          n*(n-1)!     if n>0 (inductive step) 

Using this definition, we can compute the factorial of a given number, generate the sequence of 
numbers of Fibonacci series, calculate product of natural numbers, etc. 

 
Types of Recursions:  

1. Direct Recursion 
2. Indirect Recursion 
3. Tail Recursion 
4. Non-tail Recursion 

 

1. Direct Recursion 

Þ If the function call is within its body, then the recursion is direct.  
 
Example: 

 int factorial(int n) 
 { 
  if(n==0) 
   return 1; 

 else  
 return(n*factorial(n-1)); 

 } 
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2. Indirect Recursion: 

Þ If the function calls another function which in turn calls itself, then such recursion is indirect. 
Þ A recursive function need not call itself directly. Rather, it may call itself indirectly, as in the 

following example. 

int fun1(int x)    
{       

  if(x <= 0)      
 return 1; 
else 
 return fun2(x);     

} 
int fun2(int y) 
{  

  return fun1(y-1); 
} 

Þ In this example, method fun1 calls fun2, which may in turn call fun1, which may again call 
fun2. Thus, both fun1 and fun2 are recursive, since they indirectly call themselves.  

 
3. Tail recursion:  
Þ Tail recursion has recursive call as the last statement in the method.  
Þ In other words, when the call is made, there are no statements left to be executed by the 

method.  
Þ Recursive call is not only the last statement but there are no earlier recursive calls, direct or 

indirect.  
Þ For example, the following method tail() is a tail recursion: 
 
 void tail(int n) 
 { 

  if(n < 0) 
   return; 
  else 

  System.out.println(n+ “ ”); 
  tail(n-1); 

  } 
 } 
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4. non-tail recursion:  

Þ Recursive methods that are not tail recursive are called non-tail recursive. 
Example: 

 int factorial(int n) 
 { 
  if(n==0) 
   return 1; 
  else  
   return(n*factorial(n-1)); 
 } 
Is the following program tail recursive?  
void prog(int i)  
{ 
 if (i>0)  
 { 
  prog(i-1);  
  System.out.println (i+" ");  
  prog(i-1);  
 }  
} 

• No, because there is an earlier recursive call other than the last one. 

Advantages of recursive function 

i. Although at most of the times a problem can be solved without recursion, but in some 
situations in programming, it is a must to use recursion. For example, a program to display 
a list of all files of the system cannot be solved without recursion. 

ii. The recursion is very flexible in data structure like stacks, queues, linked list and quick 
sort. 

iii. Using recursion, the length of the program can be reduced. 
 
Disadvantages 

i. It requires extra storage space. The recursive calls and automatic variables are stored on 
the stack. For every recursive calls separate memory is allocated to automatic variables 
with the same name. 

ii. If the programmer forgets to specify the exit condition in the recursive function, the 
program will execute out of memory. In such a situation user has to press Ctrl+ break to 
pause and stop the function. 

iii. The recursion function is not efficient in execution speed and time. 
iv. It is very difficult to trace and debug recursive function. 
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Fibonacci Sequence 
The Fibonacci sequence is the sequence of integers :0,1,1,2,3,5,8,13,21,34……………………………. 

• Each element in this sequence is the sum of the two preceding elements.  
• If we let fib(0)=0, fib(1)=1, and so on, then we may define the Fibonacci sequence by the 

following recursive definition: 

fib(n)=n    if n==0 or n==1. 
fib(n)=fib(n-1)+fib(n-2)  if n>=2. 

 

A method in Java to compute the sequence of Fibonacci number up to nth term is as shown 
below: 

public int fibonacci(int n) 
{ 
      if(n<=1) 
      return n;      
     else  
 return (fibonacci (n-1) + fibonacci (n-2));      
} 
 
Multiplication of Natural Numbers: 

The multiplication of two numbers can also be performed recursively. The product a*b where a 
and b are positive integers, may be defined as a added itself b times. This is iterative definition. 
An equivalent recursive definition is: 

a*b = a    if b==1 
a*b = a + a*(b-1)    if b>1 

 
The recursive method in Java for multiplication of two numbers is as shown below: 

public static int product(int a, int b) 
{ 

if(b == 1) 
     { 
             return a; 
     } 
     else 

{ 
      return (a + product (a, b-1)); 

} 
} 
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Method Calls and Recursion Implementation 
When method is called, the must know where to resume execution of the program after the 
method has finished. The information indicating where it has been called from has to be 
remembered by the system. For a method call, more information has to be stored than just a 
return a return address. Therefore, a dynamic memory allocation using the run time stack is a 
much better solution. The run time stack is maintained by a particular operating system. 
What information should be preserved when a method is called? 
First, local variables must be stored. If a method f1() declares variable x, calls method f2(), which 
locally declares the variable x. The system has to make a distinction between these two variables. 
This is more important when function call is recursive where f1 () and f2 () are same. 
The state of the each method, including main(), is characterized by the contents of all local 
variables, the values of the method’s parameters and the by the return address indicating where 
to restart its caller. The data area containing all this information is called activation record and is 
allocated on run time stack. It has short lifespan. The activation record usually contains the 
following information: 

• Values for all the parameters to the method. 
• The return address to resume control by the caller. 
• The dynamic link, which is a pointer to the caller’s activation record. 
• The returned value for a method not declared as void. 

Creating an activation record whenever a method is called allows the system to handle recursion 
properly. Recursion is calling a method that happens to have the same name as the caller. These 
invocations are represented by different activation records and are thus differentiated by the 
system. 

 

 

 

 

 

 

 

 

 

Figure: Contents of the run time stack when main () calls method f1 (), f1() calls f2(), and f2() calls 
f3(). 

  

Activation Record of f3() Parameters and local variables 
Dynamic Link 
Return Address 
Return value 

Activation Record of f2() Parameters and local variables 
Dynamic Link 
Return Address 
Return value 

Activation Record of f1() Parameters and local variables 
Dynamic Link 
 Return Address 
Return value 

Activation Record of main ()  
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Anatomy of a Recursive Call 

The function that defines raising any number x to a nonnegative integer power n is a good 
example of a recursive function. The most natural definition of this function is given by:  
xn = 1,  if n=0 
     = x*xn-1,       if n>0 
 
A java method for computing xn can be written directly from the definition of a power. 
 
double power (double x, int n) 
{ 
 if(n==0)  
       return 1.0; 

else 
       return x*power(x, n-1); 
} 

 
Nested Recursion 
A more complicated case of recursion is found in definitions in which a function is not only 
defined in terms of itself, but also is used as one of the parameters. The following definition is an 
example of such a nesting: 
h(n) = 0     if n = 0 
        = n     if n>4 
        = h(2+h(2n) if n≤4 
Function h has a solution for all n≥0. This fact is obvious for all n>4 and n=0, but it has to be 
proven for n=1, 2, 3 and 4. Thus, h(2) = h(2 + h(4)) 
          = h(2 + h(2 + h(8)))  
          = h(2 + h(2 + 8)) 
          = h(2 + h(10))  
          = h(2 + 10)  
          = h(12) 
          = 12 
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Excessive Recursion 

Logical simplicity and readability are used as an argument supporting the use of recursion. The 
price for using recursion is slowing down execution time and storing on run time stack more 
things than required in a non-recursive approach. If recursion is too deep, then we can run out 
of space on the stack and our program terminates abnormally by raising an unrecoverable 
StackOverflowError. But usually, the number of recursive call is much smaller, so danger of 
overflowing the stack may not be imminent. 
Consider Fibonacci numbers. A sequence of Fibonacci numbers is defined as follows: 

long Fib(long n) 
{ 

if(n<2) 
return n; 

else 
return Fib(n-2) + Fib(n-1); 

} 
 
The method is simple and easy to understand but extremely inefficient. Let us compute Fib(4). 
               Fib(4) 
       =  Fib(2)            +                   Fib(3)    
   = Fib(0)+Fib(1)              +      Fib(3) 
   = 0        +      1    +      Fib(1)   +    Fib(2) 
   =  0        +      1   +          1       +    Fib(0) +  Fib(1) 
   = 0        +       1   +          1       +     0        +  1  
         
              = 3  
 
It takes almost a quarter of a million calls to find the twenty -sixth Fibonacci number, and nearly 
3 million calls to determine the thirty first. This is too heavy a price for the simplicity of the 
recursive algorithm. 
We can prove that the number of additions required to find Fib(n) using a recursive definition is 
equal to Fib(n+1)-1. Counting two calls per one addition plus the very first call means that Fib() is 
called 2.Fib(n+1)-1 times to compute  Fib(n). This number can exceedingly large for fairly small 
ns, as in the following table. 

N Fin(N+1) Number of Additions Number of Calls 
6 13 12 25 
10 89 88 177 
15 987 986 1973 
20 10946 10945 21891 
25 121393 121392 242785 
30 1346269 1346268 2692537 

Figure: Number of addition operations and number of recursive calls to calculate Fibonacci 
numbers. 



9 
 

Tower of Hanoi Problem: 

We can use recursive technique to produce a logical and elegant solution to Tower of Hanoi 
problem. 
 
The initial setup of the problem is: 
• Three pegs (or towers) Source (say X), Intermediate (say Y) and Destination (say Z) exists.  
• There will be different sized disks. Each disk has a hole in the center so that it can be 

stacked on any of the pegs.  
• At the beginning, the disks are stacked on the X peg, that is the largest sized disk on the 

bottom and the smallest sized disk on top.  
 
 Objective: 
• We have to transfer all the disks from source peg X to the destination peg Z by using an 

intermediate peg Y. 
 

Conditions:  
• Transferring the disks from the source peg to the destination peg such that at any point of 

transformation no large size disk is placed on the smaller one.  
• Only one disk may be moved at a time.  
• Each disk must be stacked on any one of the pegs. 

 
Example: Three disks with different sizes are transfer from tower A to tower C: 
 
Number of steps required in TOH problem = 2n – 1, where n is number of disks 
                = 23 – 1 = 8 – 1 = 7 
 

 
Method to implement Tower of Hanoi Problem: 
 
void TOH(int n, char from_peg, char to_peg, char in_peg) 
{ 
        if (n == 1) 
        { 
             System.out.println("Take disk 1 from peg " +  from_peg + " to peg " + to_peg); 
             return; 
        } 
        TOH(n-1, from_peg, in_peg, to_peg); 
        System.out.println("Take disk " + n + " from peg " +  from_peg + " to peg " + to_peg); 
        TOH(n-1, in_peg, to_peg, from_peg); 
} 
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Example 1: with three disks 
 

 

 

 

Example 2:  with 4 disks
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Move	disk	A	from	the	peg	X	to	peg	Y	

	

Move	disk	B	from	the	peg	X	to	peg	Z	

 

Move	disk	A	from	the	peg	Y	to	peg	Z	

Move	disk	C	from	the	peg	X	to	peg	Y 

	

Move	disk	A	from	the	peg	Z	to	peg	X	
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Move	disk	B	from	the	peg	Z	to	peg	Y	

	

Move	disk	A	from	the	peg	X	to	peg	Y	

	

Move	disk	D	from	the	peg	X	to	peg	Z	

Move	disk	A	from	the	peg	Y	to	peg	Z	

Move	disk	B	from	the	peg	Y	to	peg	X	

	

Move	disk	A	from	the	peg	Z	to	peg	X	
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Move	disk	C	from	the	peg	Y	to	peg	Z	

	

Move	disk	A	from	the	peg	X	to	peg	Y	

	

Move	disk	B	from	the	peg	X	to	peg	Z	
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Greatest Common Divisor (GCD)/ HCF: 
 
• Greatest Common Divisor (GCD) of two numbers is the largest number that divides both of 

them. 
 
Recursive function to calculate GCD or HCF is as below: 
int hcf(int n1, int n2) 
{ 
        if(n2 == 0) 
             return n1; 
        else 
  return hcf(n2, n1 % n2);      
} 


