
 Unit – 4

 Database Normalization

1. Making sure that the Semantics of the Attributes is clear in the schema

• It ensure that each attribute's meaning is unambiguous.

• To achieve this, we can use descriptive names, document definitions, maintain

consistency.

2. Reducing the Redundant Value in Tuples.

• It is crucial for optimizing database storage and improving efficiency.

• By normalizing the database schema, eliminating repeating groups, and breaking down

complex attributes, redundant values can be minimized.

3. Reducing Null values in Tuples.

• It is important to improves data integrity, query efficiency and storage.

• By using not null constraints and default value we can reduce it.

4. Dissallowing the property of generating spurious (unwanted/incorrect) Tuples.

• It helps to ensure that query results are accurate and meaningful.

• By enforcing proper join conditions, constraints, and data validation rules, the

occurrence of spurious tuples can be minimized.

Informal Design Guidelines for Relational Schemas

Functional Dependencies:

02

• Functional dependency in DBMS refers to a relationship that is present

between attributes of any table that are dependent on each other.

• It plays a key role in differentiating good database design from bad database

design.

• If R is a relation with attributes X and Y, a functional dependency between

attributes is represented as X Y, which specifies Y is functionally dependent

on X. Here X is a determinant set and Y is a dependent attribute.

Advantages of Functional Dependencies

02

• The benefits of functional dependency in a database management

system can help businesses, organizations and companies prevent

data redundancy.

• Functional dependency helps ensure the same data doesn't exist

repetitively across a database or network of databases.

• Maintain the quality and integrity of data.

• It plays a key role in differentiating good database design from

bad database design.

Types of Functional Dependency

02

There are many types of functional dependencies, depending on

several criteria

• Trivial functional dependency

• Non-trivial functional dependency

• Fully functional dependency

• Partial functional dependency

• Transitive dependency

• Multivalued dependency.

Trivial functional dependency:

02

• The dependency of an attribute on a set of attribute is known as trivial functional

dependency if the set of attributes includes that attribute.

• Symbolically: A B is trivial functional dependency if B is a subset of A.

• Example 1:

 Consider a table with two columns student_id and student_name.

 {student_id , student_name}  student_id is a trivial functional dependency as

 student_id is a subset of {student_id , student_name}

• Example 2:

Consider relation R(A,B,C)

The functional dependency

(A,B)  A is trivial because A (the right-hand side) is a subset of (A,B) (the

left-hand side).

Similarly, A  A and B B is trivial because A is a subset of itself.

Non-trivial functional dependency

02

• If a functional dependency X Y holds true where Y is not a subset of X, then

this dependency is called non-trivial functional dependency.

• Example:

Consider a table employee with three attributes: {emp_id, emp_name,emp_address}

The following functioan dependencies are non-trivial:

 emp_id emp_name (emp_name is not a subset of emp_id)

 emp_id  emp_address (emp_address is not a subset of emp_id)

Fully functional dependency

02

• An attribute is fully functionally dependent on second attribute if and only if it is

functionally dependent on the second attribute but not on any subset of the

second attribute.

• For a relation R, in a functional dependency XY, Y is said to be fully

functional dependent on X if ZY is false for all Z ⊂ X.

ProjectID

ProjectCos
t

001

1000

001

5000

EmpID

ProjectID

Days

E099

001

320

E056

002

190

{EmpID, ProjectID}  (Days)

Partial functional dependency

02

• An attribute is partial functionally dependent on second attribute if and only if it is

functionally dependent on the second attribute and also dependency occur on any subset

of the attributes of the composite determinant to identify its object

• For a relation R, in a functional dependency XY, Y is said to be partial functional

dependent on X if by removal of some attributes from X and the dependency still holds.

name roll_no course

Ravi 2 DBMS

Tim 3 OS

John 5 Java

Here, the dependency,

{name,roll_no} course is partial because namecourse also holds.

Transitive dependency

02

• A functional dependency is said to be transitive if it is indirectly formed by two

functional dependencies.

• For example, XZ is a transitive dependency if the following three functional

dependencies hold true:

• X Y

• Y Z

• X Z

• Let’s take an example of a table with following attributes

Movie_id Listing_id Listing_type DVD-Price

M08 L09 Crime 180

M03 L05 Drama 250

M05 L09 Crime 180

Movie_id  Listing_id

Listing_id  Listing_type

Also, Movie_id Listing_type

Multivalued dependency

02

If there are more than one independent multi-valued attributes in a relation, that is

called multivalued dependency.

 Bike_model Manuf_year Color

M1001 2007 Black

M1001 2007 Red

M2012 2008 Black

M2012 2008 Red

M2222 2009 Black

M2222 2009 Red

Here columns manuf_year and color are independent of each other and dependent on bike_model.

In this case these two columns are said to be multivalued dependent on bike_model. These

dependencies can be represented as:

Bike_model manuf_year

Bike_model  color

-

1. Reflexive Rule (IR1)

• In the reflexive rule, if Y is a subset of X, then X determines Y.

• If X ⊇ Y then X → Y

• Example:

X = {a, b, c, d, e}

Y = {a, b, c}

2. Augmentation Rule (IR2)

• The augmentation is also called as a partial dependency. In augmentation, if

X determines Y, then XZ determines YZ for any Z.

• If X → Y then XZ → YZ

• Example:

 For R(ABCD), if A → B then AC → BC

Functional Dependency Inference Rules (Armstrong’s Axioms)

-

3. Transitive Rule (IR3)

• In the transitive rule, if X determines Y and Y determine Z, then X must also

determine Z.

• If X → Y and Y → Z then X → Z

4. Union Rule (IR4)

• Union rule says, if X determines Y and X determines Z, then X must also

determine Y and Z.

• If X → Y and X → Z then X → YZ

-

5. Decomposition Rule (IR5)

• Decomposition rule is also known as project rule. It is the reverse of union

rule.

• This Rule says, if X determines Y and Z, then X determines Y and X

determines Z separately.

• If X → YZ then X → Y and X → Z

6. Pseudo transitive Rule (IR6)

• In Pseudo transitive Rule, if X determines Y and YZ determines W, then XZ

determines W.

• If X → Y and YZ → W then XZ → W

7. Composition Rule (IR7)

• If A→B and X→Y hold, then AX→BY holds.

• A database anomaly is an inconsistency(fault) in the data resulting from an

operation like an update, insertion, or deletion.

• There can be inconsistencies when a record is held in multiple places and not all

of the copies are updated.

• The anomalies mostly occurs due to the absence of normalization.

• There are three types of anomalies:

• Insertion Anomaly: An insertion anomaly is the inability to add data to the

database due to the absence of other data.

• Update Anomaly: An update anomaly is a data inconsistency that results from

data redundancy and a partial update.

• Deletion Anomaly: A deletion anomaly occurs when you delete a record that

may contain attributes that shouldn't be deleted.

Problems without Normalization (Anomalies)

• Normalization is a database design technique which organizes tables

in a manner that reduces redundancy and dependency of data.

• It divides larger tables to smaller tables and links them using

relationship.

Normalization

• Reduce the amount of storage needed to store the data.

• Avoids unnecessary data conflicts that may creep in because of

multiple copies of the same data getting stored.

Benefits of Normalization

-

 The degree of normalization is defined by normal forms. Each normal form is a

set of conditions on a schema that guarantees certain properties relating to

redundancy and update anomalies.

 In general, 3NF is considered good enough.

 The normal forms in an increasing level of normalization are :

• First Normal Form (1NF) : remove repeating groups

• Second Normal Form (2NF) : remove partial dependencies

• Third Normal Form (3NF) : remove transitive dependencies

• Boyce-Codd Normal Form (BCNF) : remove remaining functional

dependency anomalies

• Fourth Normal Form (4NF) : remove multi-valued dependency

• Fifth Normal Form (5NF) : remove remaining anomalies

Types of Normalization

1NF (First Normal Form)

If a relation contain composite or multi-valued attribute, it violates first normal form,

or a relation is in first normal form if it does not contain any composite or multi-

valued attribute.

Simply, A relation R is in 1NF if it holds the following two properties:

• If R has no multi-valued attributes

• If R has no composite attributes i.e.; it must have simple attributes

2NF (Second Normal Form)

A relation R(table) is said to be in 2NF if both the following conditions hold:

• Table is in 1NF

• No non-prime attributes of R fully depends upon the proper subset of any

 candidate key of table

An attribute that is not part of any candidate key is known as non-prime attribute.

Simply a relation is in 2NF if there are no partial dependencies between the

primary key and non-primary keys of given relation R.

3NF (Third Normal Form)

A table design is said to be in 3NF if both the following conditions hold:

• Table must be in 2NF

• No transitive functional dependency between the attributes of given table.

In other words, 3NF can be explained like this: A table is in 3NF if it is in 2NF and

for each functional dependency X Y at least one of the following conditions hold:

• X is a super key of table

• Y is a prime attribute of table

BCNF (Boyce Codd Normal Form)

• It is an advance version of 3NF that’s why it is also referred as 3.5NF.

• BCNF is stricter than 3NF. A table complies with BCNF if it is in 3NF and

for every functional dependency X Y, X should be the super key of the

table.

-

Difference/Comparison of BCNF and 3NF

3NF BCNF

A table or a relation is considered to be in 3NF

only if the table is already inn 2NF and there is

no non-prime attribute transitively dependent on

the candidate key of a relation

BCNF is considered to be the stronger than 3NF. The

relation R to be in BCNF must be in 3NF. And

wherever a non-trivial functional dependency A B

holds in relation R, then A must be a super key of

relation R.

No non-prime attribute must be transitively

dependent on the candidate key.

For any trivial dependency in a relationship R say

X Y, X should be a super key of relation R.

3NF can be obtained without sacrificing all

dependencies.

Dependencies may not be preserved in BCNF.

Lossless decomposition can be achieved in 3NF. Lossless decomposition is hard to achieve in BCNF.

4NF (Fourth Normal Form)

A table design is said to be in 4NF if the following conditions hold:

• Table must be in BCNF or in 3NF

• If it contains no multi-valued attributes

Example

Here, Movies Rented column has multiple values.

1NF (First Normal Form) Rules
• Each table cell should contain a single value.

• Each record needs to be unique.

1NF

2NF (Second Normal Form) Rules

• Rule 1- Be in 1NF

• Rule 2- Single Column Primary Key that does not functionally dependent on any subset of candidate key

relation.

 Table 1 contains member

information.

 Table 2 contains information on

movies rented.

A transitive functional dependency is when changing a non-key column, might cause any of

the other non-key columns to change.

Consider the table 1. Changing the non-key column Full Name may change Salutation.

3NF (Third Normal Form) Rules
• Rule 1- Be in 2NF

• Rule 2- Has no transitive functional dependencies

-

• Decomposition is the process of breaking down in parts or elements.

• It replaces a relation with a collection of smaller relations.

• It breaks the table into multiple tables in a database.

• It should always be lossless, because it confirms that the information in the

original relation can be accurately reconstructed based on the decomposed

relations.

• It can be of two types:

• Loss less decomposition

• Lossy decomposition : When a relation gets decomposed into multiple

relational schemas, in such a way that retrieving the original relation leads

to a loss of information it is called lossy decomposition

Decomposition

Following are the properties of decomposition:

• Lossless Decomposition : The information should not get lost from the relation

that is decomposed. It gives guarantee that the join will result in the same

relation as it was decomposed.

• Dependency preservation : Functional dependencies should be maintained on

the tables which are being decomposed.

• Lack of data redundancy : According to this property, decomposition must not

suffer from data redundancy.

Properties of Decomposition:

43

EMP_ID EMP_NAM

E

EMP_AGE EMP_CITY DEPT_ID DEPT_NA

ME

22 Denim 28 Mumbai 827 Sales

33 Alina 25 Delhi 438 Marketing

46 Stephan 30 Bangalore 869 Finance

52 Katherine 36 Mumbai 575 Production

60 Jack 40 Noida 678 Testing

Example: Lossless Decomposition

EMPLOYEE_DEPARTMENT table

The above relation is decomposed into two relations EMPLOYEE and DEPARTMENT

44

EMP_ID EMP_NAME EMP_AGE EMP_CITY

22 Denim 28 Mumbai

33 Alina 25 Delhi

46 Stephan 30 Bangalore

52 Katherine 36 Mumbai

60 Jack 40 Noida

EMPLOYEE table

DEPT_ID EMP_ID DEPT_NAME

827 22 Sales

438 33 Marketing

869 46 Finance

575 52 Production

678 60 Testing

DEPARTMENT table

EMP_ID EMP_NAME EMP_AGE EMP_CITY DEPT_ID DEPT_NAME

22 Denim 28 Mumbai 827 Sales

33 Alina 25 Delhi 438 Marketing

46 Stephan 30 Bangalore 869 Finance

52 Katherine 36 Mumbai 575 Production

60 Jack 40 Noida 678 Testing

Now, when these two relations are joined on the common column "EMP_ID", then the resultant relation

will look like: Employee ⋈ Department with no information loss. So, it is lossless decomposition.

End!!

