Only for 2021 -2022 AD admitted Regular Students

TRIBHUVAN UNIVERSITY

FACULTY OF MANAGEMENT

Office of the Dean October 2023

Full Marks: 60 Pass Marks: 30

Time: 3 Hrs.

BIM / Second Semester / IT 233: Digital Logic

Candidates are required to answer the questions in their own words as far as practicable.

Group "A"

Brief Answer Questions:

 $/10 \times 1 = 101$

- What will be the value of x + xy according to Boolean rule?
- 2. Define Digital System.
- Prove any statement of Demorgan theorem for two variable using truth table. 3.
- 4. What is asynchronous counter?
- Differentiate between positive edge triggering and negative edge triggering. 5.
- 6. How the number of cell is determine in a K-map?
- 7. Define ROM.
- 8. Convert gray code: 1011 to binary.
- 9. Define POS.
- 10. Define shift register.

Group "B"

Short Answer Questions: (Attempt any FIVE Questions)

 $[5 \times 3 = 15]$

- Convert (2A31) 16 into decimal, binary and octal form 11.)
- Realize the property of NOT, NOR and AND gate using NAND gate.
- Compute $(-20)_{10} + (+30)_{10}$, using 2's complement method.
- 14. List out the design procedure of combinational circuit.
- Design 1 × 4 D- multiplexer.
- 16. Write the expression in SOP for the following Karnaugh Map:

AB/CD	00	01	11	10
00	pand	1	0	1
01	0	0	1	×
11	×	×	1	1
10	Family .	0	Control of the Contro	Х

Group "C"

Long Answer Questions: (Attempt any THREE Questions)

 $[3 \times 5 = 15]$

- 17. Design MOD-120 Asynchronous counter.
- 18. Design a circuit diagram for 3 bit binary adder,
- 19. What is bidirectional register? Explain with example.
- 20. Minimize the boolean function: $f(M, N, P, R) = \sum (0, 3, 5, 7, 9, 10, 12, 15,)$ with don't care condition $d(M, N, P, R) = \sum (2, 4, 6, 8)$ using K-map and design a circuit diagram with a simplified expression.

Group "D'

Comprehensive Answer / Case / Situation Analysis Questions:

 $12 \times 10 = 201$

- 21. Analyze the property of flip-flop which will have indeterminate state when set and reset inputs are "1" and illustrate the operational characteristics of flip-flop that solve the mention problem.
- 22. Design 8×3 Encoder. Analyze the number of don't care condition in the design of 8×3 encoder.

ರಕರ

ABL PRE PRE

2