Chapter 6: Differential Equations
Exercise 6(A)

1. Determine the order and degree of the following differential equations.
i) 4. $\frac{d^{2} y}{d x^{2}}+x=0$

The given differential equation is:

$$
4 \cdot \frac{d^{2} y}{d x^{2}}+x=0
$$

Its order is: 2
Its degree is: 1
ii) $\frac{d^{2} y}{d x^{2}}-3\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+2 y=0$

The given differential equation is:

$$
\frac{d^{2} y}{d x^{2}}-3\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+2 y=0
$$

Its order is'. 2
Its degree is: 2
iii) $y=x \cdot \frac{d y}{d x}+a \sqrt{a+\left(\frac{d y}{d x}\right)^{3}}$

The given differential equation is

$$
y=x \cdot \frac{d y}{d x}+a \sqrt{a+\left(\frac{d y}{d x}\right)^{3}}
$$

Squaring both/sides,

$$
\begin{aligned}
& y^{2}=x^{2} \cdot\left(\frac{d y}{d x}\right)^{2} /+a^{2} \cdot\left[a+\left(\frac{d y}{d x}\right)^{3}\right] \\
& \text { ar, } y^{2}=x^{2} \cdot\left(\frac{d y}{d x}\right)^{2}+a^{3}+a^{2}\left(\frac{d y}{d x}\right)^{3} \\
& \text { or, } y^{2}-x^{2}\left(\frac{d y}{d x}\right)^{2}=a^{3}+a^{2}\left(\frac{d y}{d x}\right)^{3} \\
& \text { or, }(y-
\end{aligned}
$$

or, $y-x \frac{d y}{d x}=a \cdot \sqrt{a+\left(\frac{d y}{d x}\right)^{3}}$
Squaring both sides

$$
\therefore\left(y-x \cdot \frac{d y}{d x}\right)^{2}=a^{2}\left(a+\left(\frac{d y}{d x}\right)^{3}\right)
$$

Its order is : 1
Its degree is: 3
iv) $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=0$

The given differential equation is:

$$
\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=0
$$

Its order is: 2
Its degree is: 1
v) $y=x \cdot \frac{d y}{d x}+\sqrt{a^{2}\left(\frac{d y}{d x}\right)^{2}+b^{2}}$

The given differential equation is

$$
y=x \cdot \frac{d y}{d x}+\int a^{2}\left(\frac{d y}{d x}\right)^{2}+b^{2}
$$

or, $y-x \cdot \frac{d y}{d x}=x a^{2}\left(\frac{d y}{d x}\right)^{2}+b^{2}$
Squaring both sides.
Ri: $\left(y-x \cdot \frac{d y}{d x}\right)^{2}=a^{2}\left(\frac{d y}{d x}\right)^{2}+b^{2}$
Its order is: 1
Its degree is: 2
vi) $\frac{d^{2} y}{d x^{2}}=\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}$

The given differential equation is

$$
\frac{d^{2} y}{d x^{2}}=\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}
$$

Its order is: 2
Its degree is: 1
vii) $\frac{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]}{\left(\frac{d^{2} y}{d x^{2}}\right)}=r$

The given differential equation is:

$$
1+\left(\frac{d y}{d x}\right)^{2}=r x\left(\frac{d^{2} y}{d x^{2}}\right)
$$

Its order is: 2
Its degree is: 1
viii) $t^{3} \frac{d y}{d t}+3 t y-6 t^{4}=0$

The given differential equation is:

$$
t^{3} \frac{d y}{d t}+3 t y-6 t^{4}=0
$$

Its order is. 1
Its degree is: 1
ix) $\left(\frac{d y}{d t}\right)^{3} a-2 y\left(\frac{d^{2} y}{d t^{2}}\right)=0$

The given differential equation is:

$$
\left(\frac{d y}{d t}\right)^{3}-2 y\left(\frac{d^{2} y}{d t^{2}}\right)=0
$$

Its order is: 2
Its degree is: 1
x) $\left(\frac{d y}{d t}\right)^{2}=\frac{t^{2}}{a+t}$

The given differential equation is:

$$
\left(\frac{d y}{d t}\right)^{2}=\frac{t^{2}}{a+t}
$$

Its order is : 1
Its degree is: 2
xi) $\left(\frac{d^{2} y}{d t^{2}}\right)^{2}=\left(\frac{d y}{d t}\right)^{3}+t y$

The given differential equation is:

$$
\left(\frac{d^{2} y}{d t^{2}}\right)^{2}=\left(\frac{d y}{d t}\right)^{3}+t y
$$

Its order is : 2
Its degree is: 2

