Kriti's

Solution Manual of
 Principles of MATHEMATICS

Grade XII

| | | Kriti Publication Pvt.Ltd.
 Putalisadak, Kathmandu
 Phone: 01-4249924, 4243956
 Email: kritipublicationpvt@gmail.com |
| :--- | :--- | :--- | :--- |

CHAPTER 1

PERMUTATION AND COMBINATION

EXERCISE 1.1

1. There are 5 air flights and 15 buses per day to travel from Bhairahawa to Kathmandu. In how many ways can a man travel from Bhairahawa to Kathmandu per day?

Solution:

Total no. of air flights $\left(\mathrm{n}_{1}\right)=5$
Total no. of buses $\left(\mathrm{n}_{2}\right)=15$
As from the addition rule
The no. of ways to travel from Bhairahawa to Kathmandu $=5+15=20$ Hence, there are 20 ways to travel.
3. There are 5 routes from station A to station B and 4 routes from station B to C. Answer the questions
a. How many different routes are possible from station A to station C?
b. In how many ways can a person travel from A to C and come back from C to A?
c. In how many ways can a person travel from A to C and return back to A by using different routes?

Solution:

If there are 5 routes from station A to station B and 4 routes from station B to C then, the no. of possible routes from A to B is 5 and from B to C is 4 .
a. Here,
\therefore The no. of possible routes from A to C is $5 \times 4=20$ routes.
b. Here,

The no. of possible routes from A to C is 20 and so as to return from C to A there is also 20 routes (i.e. 4×5).
Hence, the no. of required ways $=20 \times 20=400$ ways
c. Here, the no. of routes to travel from A to C is 20 . If the same route is not used more than once, the-n the no. of ways to travel and return back is $20 \times 12=240$ ways
4. How many numbers of three different digits can be made by using the digits 1 , $2,3,4,5,6$? How many of them are even?

Solution:

The no. of digits = 6
So, hundred place can be arranged in 6 ways
Tens place can be arranged in 5 ways
Units place can be arranged in 4 ways
\therefore Required numbers $=6 \times 5 \times 4=120$
Next, If these numbers formed must be even, the digit in the units place can be arranged in 3 ways
Ten's place can be arranged in 5 ways
Hundred place can be arranged in 4 ways
\therefore Required number's place $=3 \times 5 \times 4=60$ ways
5. How many 4 digit numbers are possible by using the digits $0,1,2,3,4,5$? If (a) the repetition of the digits is not allowed? (b) if the repetition of the digits is allowed?

2 Kriti's Principles of Mathematics-XII

Solution:

The no. of digits = 6
a. As we know, units place can never be filled by zero, so units place can be filled by 5 ways
Tens place can be filled by 5 ways
Hundred place can be filled by 4 ways
Thousand place can be filled by 3 ways
\therefore The required no.s of 4 digit when repetition is not allowed

$$
=5 \times 5 \times 4 \times 3=300 \text { ways }
$$

b. If the repetition is allowed, the unit place can be arranged/filled by 5 ways and then after all remaining places can be filled by 6 ways.
\therefore The required no.s of 4 digit when repetition is allow $=5 \times 6 \times 6 \times 6=1080$ ways
6. How many positive numbers less than 100 are possible by using the digits 0,1 , 2,3 ? If the repetition of the digits is not allowed, how many such numbers are possible?

Solution:

The given digits are $0,1,2,3$
If the digits may repeat: then
For 1 digits: For the units place, number of way $=4$
For the ten's place, number of ways $=3$
\therefore Number of ways $=4 \times 3=12$
For 1 digit: The number of ways $=3$
So, total number of ways $=12+3=15$ ways
If the digits may not repeat:
For 1 digit: Number of ways = 3
For two digits $=$ Number of ways in tens place $=3$
Number of ways in ones place $=3$
\therefore Number of ways $=3 \times 3=9$
So, total number of ways $=3+9=12$ ways
7. How many even numbers are possible between 2000 and 3000 by using the digits $0,1,2,3,4$, only once?
Solution:
The no. of digits = 5
The number must lies between 2000 and 3000 and so each no. should be started with 2. As the formed no. should be even each no. must be ended with
0 , or 2 but here digits can be used only once.
So, units place can be filled by 1 ways
Tens place can be filled by 4 ways
Hundred place can be filled by 3 ways
Thousand place can be filled by 1 ways
\therefore Required no. of digits $=1 \times 4 \times 3 \times 1=12$ ways
8. How many numbers of three digits can be formed from the integres $2,3,4$ 5,6 ? How many of them will be divisible by 5 ?

Solution:

Here, the number of given digits $=5$
And, the number of digits to be selected $=3$
The hundred digit of a number can be choosen in 5 ways
The ten digits of a number can be choosen in ($5-1$) ways $=4$ ways
The unit of digit of a number can be choosen in $(5-2)$ ways $=3$ ways
\therefore By basic principle of counting, the total no. of ways $=5 \times 4 \times 3=60$ ways

Again, for the numbers divisible by 5 , we fix the digit 5 in the units place. So, there is only one choice for filling up the unit place. There are 4 ways of filling up the ten's place and 3 ways of filling up the hundred's place. So, the number of digits that are divisible by $5=1 \times 4 \times 3=12$ ways.

EXERCISE 1.2

1. Solve for n, if $\frac{(n+1)!}{(n-1)!}=12$ where, n is whole number.

Solution

We have, $\frac{(n+1)!}{(n-1)!}=12$
or, $\frac{(n+1) n(n-1)!}{(n-1)!}=12$
or, $n(n+1)=12$
or, $n^{2}+n-12=0$
or, $n^{2}+4 n-3 n-12=0$
or, $(n+4)(n-3)=0$
either $\mathrm{n}=-4$
or, $\mathrm{n}=3$
Since, $n \neq-4$, so $n=3$
2. If $P(5, r)=5$ find the value of r.

Solution:

We have, $P(5, r)=5$
$r=1 \quad[\because$ if $P(n, r)=n$, then $r=1)$
3. How many numbers of 4 digits can be formed from the digits $0,1,2,3,4,5$
a. If the repetition of the digits is allowed.
b. If the repetition of the digits is not allowed.

Solution:

The no. of digits $(\mathrm{n})=6$
a. Units place can be filled only by 5 digits but the remaining 3 places can be filled 6 digits as the repetition is allowed.
\therefore The required no. of 4 digits $=5 \times 6 \times 6 \times 6=1080$
b. Unit first place can be filled by 5 digit as the repletion not allowed.
$2^{\text {nd }}$ first place can be filled by 5 digit
$3^{\text {rd }}$ first place can be filled by 4 digit
$4^{\text {th }}$ first place can be filled by 3 digit
\therefore The required no. of 4 digit $=5 \times 5 \times 4 \times 3=300$ ways
4. In how many ways can 4 boys and 3 girls be seated in a row containing 7 seats if they sit anywhere? If they seat alternately how many such arrangements are possible?

Solution:

There are 4 boys and 3 girls be seated in a row containing 7 seats.
$\therefore \quad$ Required arrangement is $p(7,7)=\frac{7!}{(7-7)!}=\frac{7!}{0!}=5040$
Again,
If they seat alternatively, then 4 boys can set in 4 ! ways and 3 girls can seat in 3 ! ways.
\therefore Required arrangement is $=4!\times 3!=24 \times 6=144$ ways

4 Kriti's Principles of Mathematics-XII

5. How many 6 digits numbers can be formed by using the digits 0 to 9 only once? How many such arrangements are divisible by 10 ?

Solution:

The total no. of digits $=10$
The first digit can be chosen from only 1 to 9 so there is only 9 choices for first digit. The remaining 5 digits can be chosen from remaining 9 digits in $p(9,5)$ ways
i.e. $\frac{9!}{(9-5)!}=\frac{15}{20}$ ways
\therefore The total numbers of 6 digits is 9×15120 ways $=136080$ ways
Next: For the divisible by 10. Last digit must be zero, so the last digit can be chosen from 0 , so there is 1 choice for last digit. The remaining 5 digits can be chosen from 9 digits in $p(95)$ way
i.e. $\frac{9!}{(9-5)!}=15120$ ways
6. How many even numbers of at most 2 digits can be formed by using the digits $1,2,3,4,5$?

Solution:

The numbers given in the question is $1,2,3,4,5$
For one digit: No. of ways for even = 2
For two digits: No. of ways for ones place = 2
Number of ways for ten's place $=4$
\therefore Total no. of ways $2+2 \times 4=10$
7. In how many ways can 9 different colour beads be set in a bracelet?

Solution:

In a bracelet, beads are arrangement in circular form and the anticlockwise and clockwise arrangements are not different.
Here the total number of beds $\mathrm{n}=9$
They can be arranged in $\frac{(n-1)!}{2}$ ways $=\frac{1}{2} \times 8!$ ways $=20160$
8. How many numbers lying between 100 and 1000 can be formed with the digits $0,1,2,3,4,5$ if the repetition of the digits is not allowed?
Solution:
The no. lying between 100 and 1000 is of 3 digit. In which at unit place can be chosen only from 5 digit and hundred place can only be chosen from 5 digit where as remaining tens place can be chosen from remaining 4 digit.
$\therefore \quad$ The no. formed between 100 and $1000=\frac{5!}{(5-1)!} \times \frac{4!}{(4-1)!} \times \frac{5!}{(5-1)!}$

$$
=\frac{5 \times 4!}{4!} \times \frac{4 \times 3!}{3!} \times \frac{5 \times 4!}{4!}=5 \times 4 \times 5=100 \text { ways }
$$

9. In how many ways can a man post 5 post cards if 4 post boxes are available?

Solution:

Each post cards can be posted in 4 ways
Hence, required number of ways $=n^{r}=5^{5}=1024$
10. In how many ways can letters of following words be arranged without any restriction?
a. PERMUTATION
b. INTERMEDIATE
c. EXAMINATION

Solution:

a. Here,

PERMUTATION
Total no. of letters $(\mathrm{n})=11$
No. of letter 'T' $(p)=2$
\therefore Total number of way of arrangement $=\frac{\mathrm{n}!}{\mathrm{p}!}=\frac{11!}{2!}$
b. INTERMEDIATE

Here, the total number of letters $(n)=12$
No. of letter 'l' (p) = 2
No. of letter 'T' (q) = 2
No. of letter ' E ' (r) = 3
\therefore The total no. of arrangement $=\frac{n!}{p!q!r!}=\frac{12!}{2!2!3!}$
c. EXAMINATION

Here, the total number of letter $(\mathrm{n})=11$
No. of letters 'A' $(p)=2$
No. of letters 'l' (q) = 2
No. of letters 'N' $(\mathrm{r})=2$
\therefore Total no. of arrangement $=\frac{\mathrm{n}!}{\mathrm{p}!\mathrm{q}!\mathrm{r}!}=\frac{11!}{2!2!2!}$
11. In how many ways can the letters of the word 'ARRANGE' be arranged? How many such arrangements are having two R's together? How many of them are not having two R's together?

Solution:

In 'ARRANGE'
Total no. of letters $(\mathrm{n})=7$
No. of letter ' A ' $(p)=2$
No. off letter 'R' (q)=2
\therefore Total no. of ways of arrangement $=\frac{\mathrm{n}!}{\mathrm{p}!\mathrm{q}!}=\frac{7!}{2!2!}=1260$ ways
If we suppose (RR) as one letter, then the no. of letters will be 6
\therefore The no. of ways of arrangement when R comes together $=\frac{n!}{\mathrm{p}!}=\frac{6!}{2!}=360$ ways
Thus, the required no. of ways of arrangement when two R not comes together $=1260-360=900$ ways
12. In how many ways can the letters of the word "SUNDAY" be arranged? How many of these arrangements donot begin with S ? How many begin with S and donot end with Y ?

Solution:

Total number of letters in the word 'SUNDAY' = 6.
Since each of the letters is distinct, they can be arranged in 6! ways. i.e. 720 ways. If the arrangements do not begin with S , the beginning letter can be chosen in 5 ways.
The remaining successive letters can be arranged in 5 ! ways.
So, the total number of ways $=5 \times 5!=600$.
If it is to be begun with S the first letter can be chosen in 1 ways. If it doesn't end with Y, the last letter can be chosen in 4 ways and the remaining middle 4 letters can be chosen in 4 ! ways.
So, total number of ways $=1 \times 4 \times 4!=96$ ways.

6 Kriti's Principles of Mathematics-XII

13. In how many ways can the letters of the word 'UNIVERSITY' be arranged? How many such arrangements begin with 'U'? How many of these begin with U but do not end with Y ?

Solution:

In UNIVERSITY'
The no. of letters $(\mathrm{n})=10$
No. of letter 'l' (p) = 2
\therefore Total no. of arrangement $=\frac{\mathrm{n}!}{\mathrm{p}!}=\frac{10!}{2!}=1814400$ ways
Since the arrangement begin with U there is only. Nine letters to arrange. So, the nine letters can be arranged in $=\frac{\mathrm{n}!}{\mathrm{p}!}=\frac{9!}{2!}=181440$
\therefore Required no. of arrangement $=1 \times 181440=181440$ ways
Next: The total no. of ways in which the arrangement begin with U but do not end with
$' Y '=4 \times p(8,8)=4 \times \frac{8!}{0!}=161280$ ways
14. If 8 secretary level representatives of SAARC countries sit in round table conference, how many arrangements are possible? If Nepali and Indian secretary level sit always together, how many such arrangements will be there?

Solution:

Total no. of countries (n) $=8$
If they sit in round table then they form a circle, so its arrangement is $=(n-1)!=7$!
$=5040$ ways
If Nepali and Indian always sit together, then we take it as one. Then the total
no. will be 6 . So, the arrangement $(n-r+1)!=(7-2+1)!=6!=720$
If they sit together, then they also can interchange there seat between themselves in 2 ways.
Hence, the required no. of arrangement $=21 \times 720=1440$ ways
15. How many arrangements are possible using the letters of the word 'EQUATION' only once? If all vowels come together how many arrangements are possible?

Solution:

In 'EQUATION'
The no. of total letters (n) $=8$
\therefore The total no. of arrangement $=8!=40320$
Next, The no. of vowels = 5
When we take all vowels as one then there will be total letters left $=4$. Also the vowel letters be arranged themselves in 5 ways.
\therefore The required no. of arrangement $=4!\times 5!=2880$

EXERCISE 1.3

1. Find the value of n and r if possible
a. If $C(n, 10)=C(n, 12)$ find ' n ' and hence $C(n, 6)$
b. If $C(n, 8)=C(n, 6)$, find $C(n, 2)$.
c. If $C(n, 30)=C(n, 4)$ find the value of $C(n, 30)+C(n, 4)$
d. If $C(9,2 r)=C(9,3 r-1)$, find the value of r.

Solution:

a. Here, $c(n, 10)=(\ln , 12)$
$\Rightarrow \frac{n!}{(n-10)!10!}=\frac{n!}{(n-12)!2!}$
$\Rightarrow \frac{(n-12)!12!}{(n-10)!10!}=\frac{n!}{n!}$
$\Rightarrow \frac{(n-12)!12 \times 11 \times 10!}{(n-10)(n-11)(n-12)!10!}=1$
$\Rightarrow \frac{12 \times 11}{(\mathrm{n}-10)(\mathrm{n}-11)}=1$
$\Rightarrow 132=n^{2}-11 n-10 n+110$
$\Rightarrow \mathrm{n}^{2}-21 \mathrm{n}-22=0$
$\Rightarrow \mathrm{n}^{2}-22 \mathrm{n}+\mathrm{n}-22=0$
$\Rightarrow \mathrm{n}(\mathrm{n}-22) 11(\mathrm{n}-22)=0$
$\Rightarrow(\mathrm{n}-22)(\mathrm{n}+1)=0$
either $\mathrm{n}=22$
or, $\mathrm{n}=-1$ (This is not possible, so rejected)
$\therefore \mathrm{n}=22$
Next C(n, 6) $=C(22,6)=\frac{22!}{(22-6)!6!}=\frac{22!}{16!16!}$
b. Here, $\mathrm{C}(\mathrm{n}, 8)=\mathrm{C}(\mathrm{n}, 6)$

Then, $n=8+6=14$
Now, $C(14,2)=\frac{14!}{12!2!}=91$ ways
c. Given, $C(n, 30)=C(n, 4)$
$\Rightarrow C(n, r)=C\left(n, r^{1}\right)$
$\Rightarrow r+r^{1}=n$
Then, $30+4=n$
$\therefore \mathrm{n}=34$
Now, $C(n, 30)+C(n, 4)=\frac{34!}{(34-4)!14!}+\frac{34!}{20!14!}$
$C(n, 30)+C(n, 4)=\frac{34!}{4!30!}+\frac{34!}{30!4!}=46376+46376=92752$ ways
d. Given, $c(9,2 r)=c(9,3 r-1)$
$\Rightarrow 2 r+3 r-1=9\left[\because C(n, r)=C\left(n, r^{1}\right)=r+r^{1}=n\right]$
$\Rightarrow 5 r=10$
$\Rightarrow r=2$ or, $2 r=3 r-1$
$\Rightarrow r=1$
$\therefore r=1$ or 2
2. In an advertisement of 3 workers in a factory, if 10 applicants apply, how many ways can the selection be made?

Solution:

The no. of workers required in 3 where total applicant is 10
\therefore The selection be made as $c(10,3)=\frac{10!}{7!3!} \quad\left[\because c(n, r)=\frac{n!}{(n-n!r!)}\right]$

$$
\text { = } 120 \text { Ans. }
$$

3. In a class of 25 girls and 20 boys, a boy and a girl are to be chosen for debate competition. In how many ways can the selection be made?

Solution:

8 Kriti's Principles of Mathematics-XII

The no. of girls and boys are 25 and 20 respectively. If a boy and a girl are to be chosen for debate competition, then
The no. of ways of selection would be $25 \times 20=500$ ways.
4. A person has 12 friends of whom 8 are relatives. In how many ways can be invite 7 guests such that 5 of may be relatives?

Solution:

To invite 7 guests out of 12 friends

Relatives (8)	Non-relative (4)	Selection
5	2	$\mathrm{c}(8,5) \times \mathrm{c}(4,2)$

\therefore The required selection is $6(8,9) \times \mathrm{c}(4,2)=\frac{8!}{3!5!} \times \frac{4!}{2!2!}=56 \times 6=336$ Ans.
5. There are 10 questions in group A of which 6 are to be solved. In group B there are only 6 questions of which 4 are to be solved. In how many ways an examinee can make up his choices?

Solution:

Here,

Group A (10)	Group B(6)	Selection
6	4	$\mathrm{c}(10,6) \times(6,4)$

$\therefore \quad$ The required selection is $c(10,6) \times c(6,4)=\frac{10!}{4!6!} \times \frac{6!}{2!4!}=210 \times 15=3150$
6. A bag contains 5 red balls. In how many ways can be selected at most 3 balls ?

Solution:

Total number of balls $=5$ and maximum number of balls to select $=3$.
Thus, we can select in $C(5,0)+C(5,1)+C(5,2)+C(5,3)=1+5+10+10=26$ ways.
7. Bidur has 4 different coins of 1 rupee, 2 rupee, 5 rupee and 10 rupee each. How many different sums can be made by using these coins?

Solution:

From the 4 coins, the sum can be made in the following ways:

$$
\begin{aligned}
C(4,1)+C(4,2)+C(4,3)+C(4,4) & =\frac{4!}{3!1!}+\frac{4!}{2!2!}+\frac{4!}{1!3!}+\frac{4!}{0!4!} \\
& =4+6+4+1=15
\end{aligned}
$$

8. There are 15 cricket players in a class. In how many ways can a team of 11 be made if
a. Two particular persons are always included
b. Two persons are always excluded.

Solution:

The no. of player in class $=15$
The no. of players taken in team $(r)=11$
\therefore Required no. of ways of selection $=C(15,11)=\frac{15!}{4!11!}=1365$
a. Here, if 2 particular persons are always included then there will be 13 players in class and 9 players required to be selected.
\therefore Required selection is $C(13,9)=\frac{13!}{4!9!}=715$
b. Here, If 2 persons are always excluded then there will be 13 players in class and 11 players to be selected.
$\therefore \quad$ Required selection $=C(13,11)=\frac{13!}{2!11!}=78$
9. Out of 5 members belonging to party A and 6 members belonging to party B, in how many ways can a committee of 8 members be formed so that party B has always majority in the committee?

Solution:

Party A(5)	Party B(6)	Selection
3	5	$(15,3) \times \mathrm{C}(6,5)$
2	6	$C(5,2) \times \mathrm{C}(6,6)$

$\begin{aligned} \therefore \text { Required selection } & =C(5,3) \times C(6,5)+C(5,2) \times C(6,6) \\ & =\frac{5!}{2!3!} \times \frac{6!}{1!5!}=\frac{5!}{3!2!} \times \frac{6!}{0!6!}=10 \times 6+10 \times 1=70 \text { Ans. }\end{aligned}$
10. In a paper of 2 groups of 5 questions each, in how many ways can 6 questions be answered if at least 2 questions from each group are to be attempted?

Solution:

Group A(5)	Group B(5)	Selection
2	4	$\mathrm{C}(5,2) \times \mathrm{C}(5,4)$
3	3	$\mathrm{C}(5,3) \times \mathrm{C}(5,3)$
4	2	$\mathrm{C}(5,4) \times \mathrm{c}(5,2)$

$\therefore \quad$ The required selection $=C(5,2) \times C(5,4)+C(5,3) \times C(5,3)+C(5,4) \times C(5,2)$

$$
\begin{aligned}
& =\frac{5!}{3!2!} \times \frac{5!}{1!4!}+\frac{5!}{2!3!} \times \frac{5!}{2!3!} \times \frac{5!}{1!4!} \times \frac{5!}{3!2!} \\
& =10 \times 5+10 \times 10+5 \times 10=50+100+50=200
\end{aligned}
$$

11. Out of 6 ladies and 8 gentle men a committee of 11 is to be formed. In how many ways can this be done if the committee contains (a) exactly 4 ladies (b) at least 4 ladies?

Solution:

a.

Ladies (6)	Gentle (8)	Selection
4	7	$\mathrm{c}(6,4) \times \mathrm{c}(8,7)$

\therefore Required selection is $C(6,4) \times C(8,7)=\frac{6!}{2!4!} \times \frac{8!}{1!7!}=15 \times 8=120$
b.

Ladies (6)	Gentle (8)	Selection
4	7	$\mathrm{C}(6,4) \times \mathrm{C}(8,7)$
5	6	$\mathrm{C}(6,5) \times \mathrm{C}(8,6)$
6	5	$\mathrm{C}(6,6) \times \mathrm{C}(8,5)$

$\therefore \quad$ Required selection $=\mathrm{C}(6,4) \times \mathrm{C}(8,7)+\mathrm{C}(6,5) \times \mathrm{C}(8,6)+\mathrm{C}(6,6) \times \mathrm{C}(8,5)$

$$
\begin{aligned}
& =\frac{6!}{2!4!} \times \frac{8!}{1!7!}+\frac{6!}{1!5!} \times \frac{8!}{2!6!}+\frac{6!}{6!1!} \times \frac{8!}{3!5!} \\
& =15 \times 8+6 \times 28+1 \times 56=120+168+56=344
\end{aligned}
$$

c.

Ladies (6)	Gentle (8)	Selection
4	7	$\mathrm{C}(6,4) \times \mathrm{C}(8,7)$
3	8	$\mathrm{C}(6,3) \times \mathrm{C}(8,8)$

$\therefore \quad$ Required selection $=\mathrm{C}(6,4) \times \mathrm{C}(8,7)+\mathrm{C}(6,3) \times \mathrm{C}(8,8)$

10 Kriti's Principles of Mathematics-XII

$$
\begin{aligned}
& =\frac{6!}{2!4!} \times \frac{8!}{1!7!}+\frac{6!}{3!3!} \times \frac{8!}{0!8!} \\
& =15 \times 8+20 \times 1=120+20=140
\end{aligned}
$$

12. There are 6 questions in a question paper. In how many ways can an examinee solve one or more questions?

Solution:

From the 6 question, a examinee can pass/solve one or more of questions in following ways.
A examinee can solve 1 or 2 or 3 or 4 or 5 or all
Thus, total no. of ways to solve $=C(6,1)+(6,2)+C(6,3)+C(6,4)+C(6,5)+$ C $(6,6)$
$=\frac{6!}{5!1!}+\frac{6!}{4!2!}+\frac{6!}{3!3!}+\frac{6!}{2!4!}+\frac{6!}{1!5!}+\frac{6!}{0!6!}=6+15+20+6+1=63$ Ans.
13. A candidate has to pass each of the five subjects to get through. In how many ways can the candidate fail?

Solution:

A candidate fails in an examination if he cannot pass either in 1 or 2 or 3 or 4 or 5 subjects
\therefore Total no. of ways by which he falls $=C(5,1)+C(5,2)+C(5,3)+C(5,4)+C(5,5)$
$=\frac{5!}{4!1!}+\frac{5!}{3!2!}+\frac{5!}{2!3!}+\frac{5!}{1!4!}+\frac{5!}{0!5!}=5+10+10+5+1=31$ ways

CHAPTER 2

BINOMIAL THEOREM

EXERCISE 2.1

1. Use binomial theorem to expand
a. $(3 x+2 y)^{5}$
b. $(2 x-3 y)^{6}$
c. $\left(x+\frac{1}{x}\right)^{6}$
d. $\left(x-\frac{1}{x}\right)^{7}$
e. $\left(\frac{2 x}{3}-\frac{3}{2 x}\right)^{6}$

Solution:

a. We know that,

$$
\begin{aligned}
(a+x)^{n}= & c(n, 0) a^{n}+c(n, 1) a^{n-1} x+c(n, 2) a^{n-2} x^{2}+. .+c(n, r) a^{n-r} x^{r}+\ldots+ \\
& c(n, n) x^{n} .
\end{aligned}
$$

$\therefore(3 x+2 y)^{5}=c(5,0)(3 x)^{5}+c(5,1)(3 x)^{4}(2 y)+c(5,2)(3 x)^{3}(2 y)^{2}+c(5,3)(3 x)^{2}$ $(2 y)^{3}+c(5,4)(3 x)^{1}(2 y)^{4}+c(5,5)(2 y)^{5}$

$$
=243 x^{5}+810 x^{4} y+1080 x^{3} y^{2}+270 x^{2} y^{3}+240 x y^{4}+32 y^{5}
$$

b. $(2 x-3 y)^{6}={ }^{6} \mathrm{C}_{0}(2 \mathrm{x})^{6}+{ }^{6} \mathrm{C}_{1}(2 \mathrm{x})^{5}(-3 \mathrm{y})+{ }^{6} \mathrm{C}_{2}(2 \mathrm{x})^{4}(-3 \mathrm{y})^{2}+{ }^{6} \mathrm{C}_{3}(2 \mathrm{x})^{3}(-3 \mathrm{y})^{3}+{ }^{6} \mathrm{C}_{4}(2 \mathrm{x})^{2}(-$

$$
3 y)^{4}+{ }^{6} \mathrm{C}_{5}(2 x)(-3 y)^{5}+{ }^{6} \mathrm{C}_{6}(-3 y)^{6}
$$

$$
=64 x^{6}-576 x^{5} y+2160 x^{4} y^{2}-4320 x^{3} y^{3}+4860 x^{2} y^{4}-2916 x y^{5}+729 y^{6}
$$

c. $\left(x+\frac{1}{x}\right)^{6}=6 c_{0} x^{6}+6 c_{1} x^{5} \frac{1}{x}+6 c_{2} x^{4} \cdot \frac{1}{x^{2}}+6 c_{3} x^{3} \frac{1}{x^{3}}+6 c_{4} x^{2} \frac{1}{x^{4}}+6 c_{5} x \frac{1}{x^{5}}+6 c_{6} \frac{1}{x^{6}}$

$$
=x^{6}+6 x^{4}+15 x^{2}+20+\frac{15}{x^{2}}+\frac{6}{x^{4}}+\frac{1}{x^{6}}
$$

d. $\left(x-\frac{1}{x}\right)^{7}=x^{7}+{ }^{7} c_{1} x^{6}\left(-\frac{1}{x}\right)+{ }^{7} C_{2} x^{5}\left(-\frac{1}{x}\right)^{2}+{ }^{7} C_{3} x^{4}\left(-\frac{1}{x}\right)^{3}+{ }^{7} C_{4} x^{3}\left(-\frac{1}{x}\right)^{4}$ $+{ }^{7} \mathrm{C}_{5} \mathrm{x}^{2}\left(-\frac{1}{\mathrm{x}}\right)^{5}+{ }^{7} \mathrm{C}_{6} \mathrm{x}\left(-\frac{1}{\mathrm{x}}\right)^{6}+\left(-\frac{1}{\mathrm{x}}\right)^{7}$

$$
=x^{7}-7 x^{5}+21 x^{3}-35 x+35 \cdot \frac{1}{x}-21 \cdot \frac{1}{x^{3}}+7 \cdot \frac{1}{x^{5}}-\frac{1}{x^{7}}
$$

e. $\left(\frac{2 x}{3}-\frac{3}{2 x}\right)^{6}=\left(\frac{2 x}{3}\right)^{6}+{ }^{6} \mathrm{C}_{1}\left(\frac{2 \mathrm{x}}{3}\right)^{5} \cdot\left(\frac{-3}{2 x}\right)+{ }^{6} \mathrm{C}_{2}\left(\frac{2 \mathrm{x}}{3}\right)^{4}{ }^{6} \mathrm{C}_{3}\left(\frac{2 \mathrm{x}}{3}\right)^{3} \cdot\left(\frac{-3}{2 \mathrm{x}}\right)^{4}+{ }^{6} \mathrm{C}_{4}$

$$
\begin{aligned}
& \left(\frac{2 x}{3}\right)^{2} \cdot\left(\frac{-3}{2 x}\right)^{4}+{ }^{6} C_{5}\left(\frac{2 x}{3}\right) \cdot\left(\frac{-3}{2 x}\right)^{5}+\left(\frac{-3}{2 x}\right)^{6} \\
= & \frac{64 x^{6}}{729}-\frac{96}{81} x^{4}+\frac{20}{3} x^{2}-21+\frac{135}{4} \cdot \frac{1}{x^{2}}-\frac{243}{8} \cdot \frac{1}{x^{4}}+\frac{729}{64} \cdot \frac{1}{x^{6}}
\end{aligned}
$$

2. Find
a. the $7^{\text {th }}$ term in the expansion of $\left(\frac{2 x}{3}+\frac{3}{2 x}\right)^{6}$
b. the $10^{\text {th }}$ term in the expansion of $\left(\frac{x}{y}-\frac{2 y}{x^{2}}\right)^{6}$
c. the fifth term in the expansion of $(2 x+y)^{12}$

12 Kriti's Principles of Mathematics-XII

d. the fifth term in the expansion of $\left(2 x^{2}+\frac{1}{x}\right)^{8}$
e. the $6^{\text {th }}$ tern in the expansion of $\left(x-\frac{1}{x}\right)^{7}$

Solution:

a. We know that the general term t_{r+1} of expansion of $(a+x)^{n}$ is given by $t_{r+1}=n_{C_{r}}$
$a^{n-r} x^{r}$
Here,
$(a+x)^{n} \Rightarrow\left(\frac{2 \mathrm{x}}{3}+\frac{3}{2 \mathrm{x}}\right)^{6}$
$\therefore \quad a \Rightarrow \frac{2 x}{3}, x \Rightarrow \frac{3}{2 x}$ and $n \Rightarrow 6$
For $7^{\text {th }}$ term, put $r=6$
$t_{6+1}={ }^{6} C_{6}\left(\frac{2 x}{3}\right)^{6-6}\left(\frac{3}{2 x}\right)^{6}$
$\therefore \quad \mathrm{t}_{7}=1.1 \cdot \frac{729}{64 \mathrm{x}^{6}}=\frac{729}{64 \mathrm{x}^{6}}$
b. The total number of terms of the expansion of $\left(\frac{x}{y}-\frac{2 y}{x^{2}}\right)^{6}$ is 7 .

So, there is no $10^{\text {th }}$ term.
c. For $5^{\text {th }}$ term, put $r=4$.
$t_{r+1}=t_{4+1}=12 C_{4}(2 x)^{2-4} y^{4}=495 \times 2^{8} x^{8} y^{4}=126720 x^{8} y^{4}$
d. Given,
$\left(2 x^{2}+\frac{1}{x}\right)^{8}$
Which is in the form of $(a+b)^{n}$; where $a=2 x^{2}, b=\frac{1}{x}, n=8$
We know that, $t_{r+1}=n_{C_{r}} a^{n-r} x^{r}$
$t_{5}=t_{4+1}=8 C_{4}\left(2 x^{2}\right)^{4}\left(\frac{1}{x}\right)^{4}=1120 x^{4}$
e. $\left(x-\frac{1}{x}\right)^{7}$
$t_{6}=t_{5+1}={ }^{7} C_{5} x^{7-5}\left(-\frac{1}{x}\right)^{5}=21 x^{2}\left(-\frac{1}{x^{5}}\right)=-\frac{21}{x^{3}}$
3. Find the general term in the expansion of
a. $\left(x^{2}-y\right)^{6}$
b. $\left(x^{2}-\frac{1}{x}\right)^{12}$
c. $\left(\frac{x}{b}-\frac{b}{x}\right)^{10}$
d. $\left(x-\frac{1}{x}\right)^{12}$

Solution:

a. $\left(x^{2}-y\right)^{6}$

Here, $n=6$
The general term $\left(t_{r+1}\right)={ }^{6} C_{r}\left(x^{2}\right)^{6-r}(-y)^{r}=(-1)^{r}{ }^{6} C_{r} x^{12-2 r} y^{r}$
b. Given, $\left(x^{2}-\frac{1}{x}\right)^{12}$

Here, $\mathrm{n}=12$
The general term $\left(t_{r+1}\right)={ }^{12} C_{r}\left(x^{2}\right)\left(-\frac{1}{x}\right)^{r}=(-1)^{r}{ }^{r} C_{r} x^{24-3 r}$
c. Here, $\mathrm{n}=10$

The general term $\left(t_{r+1}\right)={ }^{10} C_{r}\left(\frac{x}{b}\right)^{10-r}\left(-\frac{b}{x}\right)^{r}=(-1)^{r 10} C_{r}\left(\frac{x}{b}\right)^{10-2 r}$
d. Given, $\left(x-\frac{1}{x}\right)^{12}$

The general term $\left(t_{r+1}\right)={ }^{12} C_{r}(x)^{12-r}\left(-\frac{1}{x}\right)^{r}=(-1)^{r}{ }^{12} C_{r} x^{12-2 r}$
4. Find the coefficient of
a. x^{7} in the expansion of $\left(x^{2}+\frac{1}{x}\right)^{11}$ b. x^{5} in the expansion of $\left(x+\frac{1}{2 x}\right)^{7}$
c. x^{6} in the expansion of $\left(3 x^{2}-\frac{1}{3 x}\right)^{9} \quad$ d. x^{12} in the expansion of $\left(a x^{4}-b x\right)^{9}$
e. $\quad x^{-6}$ i.e. $\frac{1}{x^{6}}$ in the expansion of $\left(2 x-\frac{1}{3 x^{2}}\right)^{9}$

Solution:

a. The general term $\left(t_{r+1}\right)={ }^{11} C_{r}\left(x^{2}\right)^{11-r}\left(-\frac{1}{x}\right)^{r}=(-1)^{r}{ }^{12} C_{r} x^{12-2 r}$

For $x^{7}, 22-3 r=7$
$15=3 r$
$\therefore r=5$
\therefore the coeff. of x^{7} is $11_{C_{r}}$ i.e. ${ }^{11} C_{5}=462$
b. The general term $\left(t_{r+1}\right)={ }^{7} C_{r}(x)^{7-r}\left(\frac{1}{2 x}\right)^{r}={ }^{7} C_{r} \cdot \frac{1}{2^{r}} x^{7-2 r}$

For x^{5}, we must have
$7-2 r=5$
$r=1$
$\therefore \quad$ Coeff. $\mathrm{x}^{5}=7 \mathrm{C}_{1} \cdot \frac{1}{2}=\frac{7}{2}$
c. We have,
$t_{r+1}=9 c_{r}\left(3 x^{2}\right)^{9-r}\left(\frac{-1}{3 x}\right)^{r}=9 c_{r} \cdot 3^{9-2 r} \cdot x^{18-2 r-r} \cdot(-1)^{r}=(-1)^{r} 3^{9-2 r} \cdot 9 c_{r} x^{18-3 r}$
Here, $18-3 r=6$
$\therefore r=4$
\therefore The coeff. of x^{6} is $(-1)^{4} 3^{9-8} .9 \mathrm{C}_{4}=3 \times 9 \mathrm{C}_{4}=378$
d. The general term $\left.\left.\left(t_{r+1}\right)={ }^{9} \mathrm{C}_{\mathrm{r}}(\mathrm{ax})^{4}\right)^{9-r}(-b x)^{r}={ }^{9} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{9-r}(-\mathrm{b})^{r} \mathrm{x}^{36-3 r}\right]$

For x^{12}, we must have
$36-3 r=12$
$\therefore r=8$
The required coeff. of x^{12} is ${ }^{9} \mathrm{C}_{8} \mathrm{a}^{9-8}(-\mathrm{b})^{8}=9 \mathrm{ab}^{8}$
e. We have,
$t_{r+1}={ }^{9} C_{r}(2 x)^{9-r}\left(-\frac{1}{3 x^{2}}\right)^{r}=(-1)^{r 9} C_{r} \frac{2^{9-r}}{3^{r}} x^{9-3}$
For $x^{-6}, 9-3 r=-6, \quad 9+6=3 r$
$\therefore r=5$
Coeff. of $x^{-6}=(-1)^{5}{ }^{9} C_{5} \frac{2^{9-5}}{3^{5}}=-\frac{2016}{243}=-\frac{224}{27}$

14 Kriti's Principles of Mathematics-XII

5. Find the term free (independent) of x in the expansion of
a. $\left(2 x-\frac{1}{3 x^{2}}\right)^{8}$
b. $\left(x+\frac{1}{x}\right)^{10}$
c. $\left(x^{2}-\frac{1}{x^{3}}\right)^{15}$
d. $\left(\frac{3 x^{2}}{2}-\frac{1}{3 x}\right)^{10}$
e. $\left(x^{2}-\frac{1}{x^{2}}\right)^{14}$

Solution:

a. The general term $\left(\mathrm{t}_{\mathrm{r}+1}\right)={ }^{8} \mathrm{C}_{\mathrm{r}}(2 \mathrm{x})^{8-r}\left(-\frac{1}{3 x^{2}}\right)^{r}={ }^{8} \mathrm{C}_{\mathrm{r}}\left(-\frac{1}{3}\right)^{r} 2^{8-r} x^{8-3 r}$

For the independent of x,
we must have $8-3 r=0$
$\therefore r=\frac{8}{3}$ (not possible)
\therefore There is no term which is free from x .
b. $\left(x+\frac{1}{x}\right)^{10}$

Here, $t_{r+1}=10 c_{r} x^{10-r}\left(\frac{1}{x}\right)^{r}=10 c_{r} x^{10-2 r}$
For free from $x, 10-2 r=0$
$\therefore r=5$
$\therefore \quad t_{r+1}=t_{5+1}=t_{6}$ is the required term.
c. $t_{r+1}=15 c_{r}\left(x^{2}\right)^{15-r}\left(-\frac{1}{x^{3}}\right)^{r}=15 c_{r}(-1)^{r} x^{30-4 r}$

$$
\begin{aligned}
\therefore & 30-4 r=0 \\
& r=\frac{15}{2} \text { (not possible) }
\end{aligned}
$$

\therefore no term has free from x
d. $\mathrm{t}_{\mathrm{r}+1}=10 \mathrm{c}_{\mathrm{r}}\left(\frac{3 \mathrm{x}^{2}}{2}\right)^{10-r}\left(-\frac{1}{3 \mathrm{x}}\right)^{r}=(-1) r 10 \mathrm{c}_{\mathrm{r}} \frac{3^{10-2 r}}{2^{10-r}} \mathrm{x}^{20-3 r}$

For $x^{0}, 20-3 r=0$

$$
r=\frac{20}{3} \text { (not possible) }
$$

\therefore No term is free from x .
e. The general term $\left(t_{r+1}\right)=14 c_{r}\left(x^{2}\right)^{14-r}\left(-\frac{1}{x^{2}}\right)^{r}=(-1)^{r} 14 c_{r} x^{24-4 r}$
\therefore For free of x, we have $24-4 r=0$
$\therefore \quad 7^{\text {th }}$ term is required term.
6. Find the middle term in the expansion of
a. $(3+x)^{6}$
b. $\left(x-\frac{1}{2 y}\right)^{10}$
c. $\left(1-\frac{x^{2}}{2}\right)^{14}$
d. $\left(x^{2}-\frac{2}{x}\right)^{10}$
e. $\left(a x-\frac{1}{a x}\right)^{2 n}$
f. $\left(2 x^{2}+\frac{1}{x}\right)^{8}$

Solution:

a. $(3+x)^{6}$

Here $\mathrm{n}=6$, there is a single middle term.
\therefore Middle term is

$$
\frac{\mathrm{n}}{2}+1+\mathrm{t}_{3+1}=\mathrm{t}_{4}
$$

Using $t_{r+1}=n_{c_{r}} a^{n-r} n^{r}$

$$
t_{3+1}=6 c_{3} 3^{6-3} x^{3}=6 c_{3} 3^{3} x^{3}=540 x^{3}
$$

b. $\left(x-\frac{1}{2 y}\right)^{10}$

Since $\mathrm{n}=10$ (even), there is a single middle term
\therefore Middle term is
$t \frac{n}{2}+1=t_{5+1}=10 c_{5}(x)^{10-5}\left(-\frac{1}{2 y}\right)^{5}=10 c_{5} x^{5}\left(-\frac{1}{2}\right)^{5} \frac{1}{y^{5}}=-\frac{3}{8}\left(\frac{x}{y}\right)^{5}=\frac{-3}{8} \cdot \frac{x^{5}}{y^{5}}$
c. $\left(1-\frac{x^{2}}{2}\right)^{14}$

Here, $\mathrm{n}=14$ (even), there is a single middle term
$t \frac{n}{2}+1=t_{7+1}$

$$
\begin{aligned}
\therefore \quad t_{7+1} & =14 c_{7}(1)^{14-7}\left(-\frac{\mathrm{x}^{2}}{2}\right)^{7} \quad\left(\because \mathrm{t}_{\mathrm{r}+1}=\mathrm{n}_{\mathrm{c}_{\mathrm{r}}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{x}^{2}\right) \\
& =-14 \mathrm{c}_{7} \frac{\mathrm{x}^{14}}{2^{1}}=-\frac{429}{16} \mathrm{x}^{14}
\end{aligned}
$$

d. Since $\mathrm{n}=10$, there is a middle term.
$t_{5+1}=10_{C_{5}}\left(x^{2}\right)^{5}\left(-\frac{2}{x}\right)^{5}=-2^{5} \cdot 10_{C_{3}} x^{5}=-8064 x^{5}$
e. Since $2 n$ is even, there is single middle term
$t \frac{2 n}{2}+1$ i.e. t_{n+1}
$\left.=2 n_{c_{n}}(a n)^{n}\left(-\frac{1}{a n}\right)^{n}=2 n_{c_{n}}(-1)^{n}=(-1)^{n} \frac{(2 n)!}{n!n!}\right)$
$=(-1)^{n} \frac{1 \cdot 2 \cdot 3 \ldots \cdot(2 n-2)(2 n-1) \cdot 2 n}{n!n!}$
$=\frac{(-1)^{n} 2^{n}(1 \cdot 2 \cdot 3 \ldots n)(1 \cdot 3.5 \ldots .(2 n-1))}{n!n!}=\frac{(-2)^{n}\{1.3 .5 \ldots(2 n-1)}{n!}$
f. There is a single middle term
$t \frac{n}{2}+1=t_{4+1}=8 C_{4}\left(2 x^{2}\right)^{4}\left(\frac{1}{x}\right)^{4}=8 C_{4} 2^{4} \cdot x^{4}=1120 x^{4}$
7. Find the middle terms in the following expansion
a. $\left(x^{2}+a^{2}\right)^{5}$
b. $\left(x^{4}-\frac{1}{x^{3}}\right)^{11}$
c. $\left(x-\frac{1}{x}\right)^{13}$
d. $\left(2 x+\frac{1}{x}\right)^{17}$
e. $\left(x+\frac{1}{x}\right)^{2 n+1}$

Solution:

a. Here, $\mathrm{n}=5$ (odd), there are two middle terms.
i.e. $\frac{n-1}{2}+1$ and $\frac{n+1}{2}+1$
i.e. t_{2+1} and t_{3+1}
$t_{2+1}=5 c_{2}\left(x^{2}\right)^{3}\left(a^{2}\right)^{2}=10 x^{6} a^{4}$
$t_{3+1}=5 c_{3}\left(x^{2}\right)^{2}\left(a^{2}\right)^{3}=10 x^{4} a^{6}$

16 Kriti's Principles of Mathematics-XII

b. Here, $\mathrm{n}=11$ (odd), there are two middle terms.
i.e. $\frac{\mathrm{n}-1}{2}+1$ and $\frac{\mathrm{n}+1}{2}+1$
i.e t_{5+1} and t_{6+1}

Now, $t_{5+1}=11_{C_{5}}\left(x^{4}\right)^{11-5}\left(-\frac{1}{x^{3}}\right)^{5}=(-1)^{5} 11 C_{C_{5}} x^{9}=-462 x^{9}$
$t_{6+1}=11 c_{6}\left(x^{4}\right)^{11-6}\left(-\frac{1}{x^{3}}\right)^{6}=11 c_{6} x^{2}=462 x^{2}$
c. Here, $\mathrm{n}=13$ (odd), there are two middle terms.
$\mathrm{t} \frac{\mathrm{n}-1}{2}+1$ and $\frac{\mathrm{n}+1}{2}+1$ i.e. t_{6+1} and t_{7+1}
Now, $t_{6+1}=13 c_{6}(x)^{7}\left(-\frac{1}{x}\right)^{6}=13 c_{6} x=1716 x$
$t_{7+1}=13 c_{7} x^{6}\left(-\frac{1}{x}\right)^{7}=-\frac{1716}{x}$
d. Given, $\left(2 x+\frac{1}{x}\right)^{17}$

Since $n=17$, there are two middle terms.

$$
\mathrm{t} \frac{\mathrm{n}-1}{2}+1 \text { and } \frac{\mathrm{n}+1}{2}+1
$$

i.e. t_{8+1} and t_{9+1}

$$
\begin{aligned}
& t_{8+1}=17 c_{8}(2 x)^{9}\left(\frac{1}{x}\right)^{8}=2^{9} \cdot c(17,8) x=144446720 x \\
& t_{9+1}=17 c_{9}(2 x)^{8}\left(\frac{1}{x}\right)^{9}=2^{8} c(17,9) \cdot \frac{1}{x}=\frac{6223360}{x}
\end{aligned}
$$

e. Here, $\left(x+\frac{1}{x}\right)^{2 n+1}$

Since $(2 n+1)$ is odd, there are two middle terms.

$$
\frac{\mathrm{t} \frac{\mathrm{n}+1-1}{2}}{2}+1 \text { and } \frac{\mathrm{t} \frac{\mathrm{n}+1+1}{2}+1}{2}
$$

i.e. t_{n+1} and $t_{(n+1)+1)}$

Now, $t_{n+1}=2 n+1 c_{n}(x)^{2 n+1-n}\left(\frac{1}{x}\right)^{n}=2 n+1 c_{n} \cdot x$
$t_{(n+1)+1}=2 n+1 c_{n+1} x^{2 n+1-n-1}\left(\frac{1}{x}\right)^{n+1}=2 n+1 c_{n+1} \cdot x^{-1}$
8. Find the middle term or terms in the expansion of
a. $(1+\mathrm{x})^{2 \mathrm{n}}$
b. $\left(x-\frac{1}{x}\right)^{2 n}$
c. $\left(\frac{x}{y}-\frac{y}{x}\right)^{2 n+1}$

Solution:

a. $(1+x)^{2 n}$

Since $2 n$ is even for any n, there is a single middle term.
$\frac{\mathrm{n}}{2}+1$ i.e. $\frac{2 \mathrm{n}}{2}+1^{t_{n+1}}$
$\therefore \quad t_{n+1}={ }^{2 n} c_{n} x^{n}=c(2 n, n) x^{n}$.
b. Since $(2 n+1)$ is an odd number, there is only one middle term given by $t \frac{2 n}{2}+1$ i.e. t_{n+1}

We know $t_{r+1}=n_{c_{r}} a^{n-r} n^{r}$ where $a \Rightarrow x x-\frac{1}{x}$
$n \Rightarrow 2 n$
\therefore Using $\mathrm{r}=\mathrm{n}$ is above formula, we get

$$
\begin{aligned}
t_{n+1} & =2 n_{c_{n}} a^{2 n-n}\left(-\frac{1}{x}\right)^{n}=\frac{2 n!}{n!n!}(-1)^{n} \\
& =\frac{1 \times 2 \times 3 \times 4 \times 5 \times 6 \times \ldots \times(2 n-3) \times(2 n-2) \times(2 n-1) \times 2 n}{n!n!}(-1)^{n} \\
& =\frac{\{1 \times 3 \times 5 \times \ldots \times(2 n-1)\}[2 \times 4 \times 6 \times \ldots \times(2 n-2) \times 2 n]}{n!\times n!}(-1)^{n} \\
& =\frac{\{1 \times 3 \times 5 \times \ldots \times(2 n-1)\} \times 2^{n}\{1 \times 2 \times 3 \times \ldots(n-1) \times n\}}{n!n!}(-1)^{n} \\
& =\frac{1.3 .5 . \ldots(2 n-1)}{n!}(-2)^{n}
\end{aligned}
$$

c. $\left(\frac{x}{y}-\frac{y}{x}\right)^{2 n+1}$

Since $(2 n+1)$ is odd for any n, the number of terms of the expansion is $(2 n+2)$, which is even, so there are two middle terms, given by
$\mathrm{t} \frac{2 \mathrm{n}+1-1}{2}+1$ and $\mathrm{t} \frac{2 \mathrm{n}+1+1}{2}+1$
i.e. t_{n+1} and $t_{(n+1)+1}$

Now, $t_{n+1}=2 n+1 c_{n}\left(\frac{x}{y}\right)^{2 n+1-n}\left(-\frac{-y}{x}\right)=2 n+1 c_{n}\left(\frac{x}{y}\right)=c(2 n+1, n) \frac{x}{y}$
$t_{(n+1)+1}=c(2 n+1, n+1) \frac{y}{x}$
9. Prove that the middle term in the expansion of $(1+x)^{2 n}$ is $\frac{1.3 \cdot 5 \ldots(2 n-1)}{n!} 2^{n} \cdot x^{n}$.

Solution:

The number of terms in the expansion of $(1+x)^{2 n}$ is $(2 n+1)$ which is odd. So, there is only one mid-term, given by $t\left(\frac{2 n+1+1}{2}\right)$ i.e. $t_{(n+1)}$ term is mid-term. Now, $t_{n+1}={ }^{2 n} c_{n} \cdot(x)^{2 n-n}=\frac{2 n!}{n!n!} \cdot x^{n}$

$$
\begin{aligned}
& =\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \ldots(2 n-1) \cdot 2 n}{n!n!} x^{n}=\frac{[2 \cdot 4 \cdot 6 \ldots 2 n][1 \cdot 3 \cdot 5 \ldots[2 n-1]}{n!n!} \cdot x^{n} \\
& =\frac{n!\cdot 2^{n} \cdot[1 \cdot 3 \cdot 5-(2 n-1)] x^{n}}{n!n!}=\frac{\left[1 \cdot 3 \cdot 5 \cdot .(2 n-1) 2^{n} \cdot x^{n}\right.}{n!}
\end{aligned}
$$

10. In the expansion of $(1+x)^{n}$, the three successive (consecutive) coefficients are 462,330 and 165, respectively. Find the values of n and r.

Solution:

Let ${ }^{n} C_{r-1},{ }^{n} C_{r}$ and ${ }^{n} C_{r+1}$ be the three consecutive coefficients in the expansion of $(1+x)^{n}$.
Then,
$\mathrm{n}_{\mathrm{C}_{\mathrm{r}-1}}=165$
$\mathrm{n}_{\mathrm{r}}=330$
$\mathrm{n}_{\mathrm{C}_{\mathrm{r}+1}} 462$
Dividing (i) by (ii), we get,

18 Kriti's Principles of Mathematics-XII

$$
\begin{align*}
& \frac{n_{c_{r-1}}}{n_{c_{r}}}=\frac{165}{330} \\
& \Rightarrow \frac{n!}{(n-r+1)!(r-1)!} \times \frac{(n-r)!r!}{n!}=\frac{1}{2} \\
& \text { or, } \frac{(n-r)!r!}{(r-1)!(n-r+1)!}=\frac{1}{2} \\
& \text { or, } \frac{(n-r)!(r-1)!r}{(r-1)!(n-r+1)(n-r)!}=\frac{1}{2} \\
& \therefore \frac{r}{n-r+1}=\frac{1}{2} \\
& \text { or, } 2 r=n-r+1 \\
& 3 r=n+1 \ldots \ldots \ldots \text { (iv) } \tag{iv}\\
& \quad \frac{\text { Again, dividing (ii) by (iii) we get }}{n_{c_{r}}}=\frac{330}{462} \Rightarrow \frac{n!}{(n-r)!r!} \times \frac{(n-r-1)!(r+1)!}{n!}=\frac{5}{7} \\
& \text { or, } \frac{(n-r-1)!(r+1)!}{(n-r)!r!}=\frac{5}{7} \\
& \text { or, } \frac{(n-r-1)!r!(r+1)}{(n-r)(n-r-1)!r!}=\frac{5}{7} \\
& \text { or, } \frac{r+1}{n-r}=\frac{5}{7} \\
& \text { or, } 7 r+7=5 n-5 r \\
& 12 r=5 n-7 \ldots \ldots \ldots . .(v) \\
& \text { from (iv) and }(v) \text { we get } \\
& 4(n+1)=5 n-7 \tag{v}\\
& \therefore \quad n=11 \text { and } r=4
\end{align*}
$$

11. The coefficients of three successive terms in the expansion of $(1+x)^{n}$ are in the ratio 1:7:42. Find the value of n.

Solution:

Let $\mathrm{n}_{\mathrm{C}_{r-1}}, \mathrm{n}_{\mathrm{C}_{r}}$ and $\mathrm{n}_{\mathrm{C}_{r+1}}$ be three consecutive coefficients of the expansion of $(1+n)^{\mathrm{n}}$.
Acc ${ }^{r}$ to question $\mathrm{nc}_{\mathrm{C}_{\mathrm{r}-1}}: \mathrm{nc}_{\mathrm{r}}: \mathrm{n}_{\mathrm{c}_{\mathrm{r}+1}}=1: 7: 42$
Let $\mathrm{n}_{\mathrm{C}_{\mathrm{r}-1}} \mathrm{k}$

$$
\begin{equation*}
\text { (i) } \mathrm{n}_{\mathrm{r}}=7 \mathrm{k} \tag{iii}
\end{equation*}
$$

(ii) and $\mathrm{n}_{\mathrm{C}_{\mathrm{r}+1}}=42 \mathrm{k}$

Dividing (ii) by (i), $\frac{\mathrm{n}_{\mathrm{C}_{\mathrm{r}}}}{\mathrm{n}_{\mathrm{C}_{-1}}}=\frac{7 \mathrm{k}}{\mathrm{k}}$

$$
\frac{n!}{(n-r)!r!} \times \frac{(n-r+1)!(r-1)!}{n!}=7
$$

or, $\frac{(n-r+1)(n-r)!}{(n-r)!(r-1)!}=7$
or, $n-r+1=7 r$
$n+1=8 r$
Again, dividing (iii) by (ii)

$$
\begin{equation*}
\frac{\mathrm{n}_{\mathrm{c}_{\mathrm{r}+1}}}{\mathrm{n}_{\mathrm{c}_{\mathrm{r}}}}=\frac{42 \mathrm{k}}{7 \mathrm{k}} \tag{iv}
\end{equation*}
$$

$$
\frac{n!}{(n-r-1)!(r+1)!} \times \frac{(n-r)!r!}{n!}=6
$$

or, $\frac{(n-r)(n-r-1)!r!}{(r+1) r!(n-r-1)!}=6$
or, $n-r=6 r+6$

$$
\begin{equation*}
\mathrm{n}=7 \mathrm{r}+6 \tag{v}
\end{equation*}
$$

From (iv) and (v)
$7 r+6+1=8 r$
$7=r$
$\therefore r=7$
$\therefore \mathrm{n}=55$
12. In the expansion of $(1+x)^{2 x+1}$, the coefficient of x^{r} and x^{r+1} are equal. Find the value of r.

Solution:

Let us suppose that x^{r} and x^{r+1} occurs in the $(r+1)^{\text {th }}$ and $(r+2)^{\text {th }}$ terms in the expansion of $(1+x)^{2 n+1}$
Then,
$t_{r+1}=n_{c_{r}} a^{n-r} x^{r}$ and $t_{r+2}=n_{C_{r+1}} a^{n-r-1} x^{r+1}$
where $a \Rightarrow 1, x \Rightarrow x n \Rightarrow 2 n+1$
$\therefore \quad t_{r+1}={ }^{2 n+1} c_{r} 1^{2 n+1-r} x^{r}$ and $t_{r+2}={ }^{2 n+1} c_{r+1}(1)^{2 n+1-r-1} x^{r+1}$
$\Rightarrow \mathrm{t}_{\mathrm{r}+1}={ }^{2 \mathrm{n}+1} \mathrm{c}_{\mathrm{r}} \mathrm{x}$ and $\mathrm{t}_{\mathrm{r}+2}={ }^{2 \mathrm{n}+1} \mathrm{c}_{\mathrm{r}+1} \mathrm{x}{ }^{\mathrm{r}+1}$
Now, by question, coefficient $x^{r}=$ coefficient of x^{r+1}
$\Rightarrow{ }^{2 n+1} c_{r}={ }^{2 n+1} c_{r+1}$
or, $\frac{(2 n+1)!}{r!(2 n+1-r)!}=\frac{(2 n+1)!}{(r+1)!(2 n+1-r-1)!}$
or, $r!(2 n-r+1)!=(r+1)!(2 n-r)!$
or, $r!(2 n-r)!(2 n-r+1)=r!(r+1)(2 n-r)!$
or, $2 n-r+1=r+1$

$$
2 n=2 r
$$

$\therefore r=n$
13. Prove that the coefficient of the middle term of the expansion of $(1+x)^{2 n}$ is equal to the sum of the coefficients of the two middle terms of the expansion of $(1+x)^{2 n-1}$.

Solution:

Since the number of terms in the expansion of $(1+x)^{2 n}$ is $2 n+1$, odd number. So there is only one middle term given by $\frac{2 n}{2}+1$ i.e. t_{n+1}.
Now, coefficient of $(\mathrm{n}+1)^{\text {th }}$ term $={ }^{2 n} \mathrm{c}_{3} \mathrm{~m}$
Again, the number of terms in the expansion of $(1+x)^{2 n-1}$ is $2 n-1+1=2 n$, even number. So, there are two middle terms given by $\frac{t 2 n-1+1}{2}, \frac{2 n-1+1}{2}+1$ i.e. t_{n}, t_{n+1}
Now, the coefficients of two middle terms are ${ }^{2 n-1} c_{n-1}$ and ${ }^{2 n-1} c_{n}$
$\therefore{ }^{2 n-1} c_{n-1}+{ }^{2 n-1} c_{n}=\frac{(2 n-1)!}{(n-1)!n!}+\frac{(2 n-1)!}{n!(n-1)!}=\frac{2(2 n-1)!}{n!(n-1)!}=\frac{2 n(2 n-1)!}{n!n(n-1)!}=\frac{(2 n)!}{n!n!}=2 n c_{n}$
Hence proved
14. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+C_{3} x^{3}+\ldots+C_{r} x^{r}+\ldots+C_{n} x^{n}$, prove that
a. $C_{1}-2 C_{2}+3 C_{3}-\ldots+n(-1)^{n-1} \cdot C_{n}=0$
b. $\mathrm{C}_{1}+2 \mathrm{C}_{2}+3 \mathrm{C}_{3}+\ldots+\mathrm{nC}=\mathrm{n} .2^{\mathrm{n}-1}$
c. $\mathrm{C}_{0}+2 \mathrm{C}_{1}+3 \mathrm{C}_{2}+\ldots+(\mathrm{n}+1) \mathrm{C}_{\mathrm{n}}=(\mathrm{n}+2) 2^{\mathrm{n}-1}$
d. $C_{0} C_{n}+C_{1} C_{n-1}+C_{2} C_{n-2}+\ldots+C_{n} C_{0}=\frac{(2 n)!}{n!. n!}$.
e. $C_{0}^{2}+C_{1}^{2}+C_{2}^{2}+\ldots+C_{n}^{2}=\frac{(2 \mathrm{n})!}{\mathrm{n}!\cdot \mathrm{n}!}$

20 Kriti's Principles of Mathematics-XII

f. $C_{0} C_{1}+C_{1} C_{2}+\ldots+C_{n-2} C_{n-1}+C_{n-1} C_{n}=\frac{(2 n)!}{(n-1)!.(n+1)!}$
g. $C_{0} C_{2}+C_{1} C_{3}+C_{2} C_{4}+\ldots+C_{n-2} C_{n}=\frac{(2 n)!}{(n-2)!\cdot(n+2)!}$
h. $C_{0} C_{r}+C_{1} C_{r+1}+\ldots+C_{n-r} C_{n}=\frac{(2 n)!}{(n-r)!.(n+r)!}$

Solution:

Since $(1+x)^{n}=n_{0}+n_{C_{1}} x+n_{C_{2}} x^{2}+\ldots . .+n_{n} x^{n}$
Using $x=1$ and -1 , we get
$(1+1)^{n}=\mathrm{n}_{\mathrm{C}_{0}}+\mathrm{n}_{\mathrm{C}_{1}}+\mathrm{n}_{\mathrm{C}_{2}}+\ldots \ldots .+\mathrm{n}_{\mathrm{C}}$
$(1-\mathrm{n})^{\mathrm{n}}=\mathrm{n}_{\mathrm{C}_{0}}-\mathrm{n}_{\mathrm{C}_{1}}+\mathrm{n}_{\mathrm{C}_{2}}-\ldots \ldots . .+\mathrm{n}_{\mathrm{C}_{\mathrm{n}}}$
Again, $(1+x)^{n-1}={ }^{n-1} c_{0}+{ }^{n-1} c_{1} x^{1}+{ }^{n-1} c_{2} x^{2}+\ldots \ldots .+{ }^{n-1} c_{n-1} x^{n-1}$
Using $x=1$ and -1 , we get
$(1+1)^{n-1}={ }^{n-1} c_{0}+{ }^{n-1} c_{1}+{ }_{n-1}^{n-1} c_{2}+\ldots \ldots \ldots . .+{ }^{n-1} c_{n-1}$
$(1-1)^{n-1}={ }^{n-1} c_{0}-{ }^{n-1} c_{1}+{ }^{n-1} c_{2}+$. \qquad $+(-1)^{n-1}$
a. $C_{1}-2 . C_{2}+3 . C_{3}-\ldots . .+n(-1)^{n-1} C_{n}$
$=n-2 \frac{n(n-1)}{2!}+3 \cdot \frac{n(n-1)(n-2)}{3!}-\ldots . .+n \cdot(-1)^{n-1} \cdot 1$
$=n\left[1-\frac{(n-1)}{1!}+\frac{(n-1)(n-2)}{2!}-\ldots \ldots+(-1) n-1\right]=$
$n\left[{ }^{n-1} c_{0}-{ }^{n-1} c_{1}+{ }^{n-1} c_{2}-\ldots . .+(-1)^{n-1}{ }^{n-1} c_{n-1}\right]$
$=n(1-1)^{n-1}$ (By using formula (${ }^{* * * *}$) above) $=\mathrm{n} \times 0=0$ Hence, proved
b. $\mathrm{C}_{1}+2 . \mathrm{C}_{2}+3 . \mathrm{C}_{3}+$ \qquad $+n . C_{n}$
$\mathrm{n}+2 \cdot \frac{\mathrm{n}(\mathrm{n}-1)}{2!}+3 \cdot \frac{\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)}{3!}+\ldots .+\mathrm{n} .1=\mathrm{n}\left[{ }^{\mathrm{n}-1} \mathrm{c}_{0}+{ }^{\mathrm{n}-1} \mathrm{c}_{1}+{ }^{\mathrm{n}-1} \mathrm{c}_{2}+\ldots \ldots+{ }^{\mathrm{n}-1} \mathrm{c}_{\mathrm{n}-1}\right]$
$=n(1+1)^{n-1}$ (Using formula (***) above) $=n .2^{n-1}$ Hence proved
c. $C_{0}+2 \cdot C_{1}+3 \cdot C_{2}+\ldots . .+(n+1) . C_{n}$
$=\left(C_{0}+C_{1}+C_{2}+\ldots \ldots+C_{n}\right)+\left(C_{1}+2 C_{2}+3 C_{3}+\ldots . .+n . C_{n}\right)$
$=(1+1)^{n}+\left[n+\frac{n(n-1)}{1!}+\frac{n(n-1)(n-2)}{2!}+\ldots . .+n\right]=2^{n}+$

$$
n\left[1+\frac{(n-1)}{1!}+\frac{(n-1)(n-2)}{2!}+\ldots \ldots+1\right]
$$

$=2^{n}+n\left[{ }^{n-1} c_{0}+{ }^{n-1} c_{1}+{ }^{n-1} c_{2}+\ldots .+{ }^{n-1} c_{n-1}\right]$
$=2^{n}+n \cdot(1+1)^{n-1}$ (By using formula *** above)
$=2^{n}+n \cdot 2^{n-1}=2^{n-1} \cdot 2+n \cdot 2^{n-1}=(n+2) 2^{n-1}$ Hence proved
d. Since $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots . .+C_{n} x^{n}$
$\therefore(1+x)^{2 n}=\left(C_{0}+C_{1} x+C_{2} x^{2}+\ldots . . C_{n} x^{n}\right)\left(C_{0}+C_{1} x+C^{2} x^{2}+\ldots . .+C_{n} x^{n}\right)$
$\therefore{ }^{2 n} c_{0}+{ }^{2 n} c_{1} x+{ }^{2 n} c_{2} x^{2}+\ldots \ldots .+{ }^{2 n} c_{n} x^{n}+\ldots . .+{ }^{2 n} c_{2 n} x^{2 n}=(")(")$
Equating the coefficient of x^{n} in both sides.
Coefficient of x^{n} in LHS $={ }^{2 n} C_{n}=\frac{(2 n)!}{n!n!}$
Coefficient of x^{n} in RHS $=C_{0} C_{n}+C_{1} C_{n-1}+C_{2} C_{n-2}+\ldots+\ldots+C_{n} C_{0}$
Equating (i) and (ii), we get
$C_{0} C_{n}+C_{1} C_{n-1}+\ldots \ldots+C_{n} C_{0}=\frac{(2 n)!}{n!n!}$ Hence proved
e. Since $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+$ \qquad $+C_{n} x^{n}$
$(x+1)^{n}=C_{0} x^{n}+C_{1} x^{n-1}+C_{2} x^{n-2}+$ \qquad $+\mathrm{C}_{\mathrm{n}}$ \qquad
Multiplying (i) and (ii), we get
$(1+x)^{2 n}=\left(C_{0}+C_{1} x+C_{2} x^{2}+\ldots . .+C_{n} x^{n}\right)\left(C_{0} x^{n}+C_{1} x^{n-1}+\ldots . .+C_{n}\right)$

Equating the coefficient of x^{n} both sides, we get
Coefficient of x^{n} in LHS $={ }^{2 n} c_{n}=\frac{(2 n)!}{n!n!}$
Coefficient of x^{n} in RHS $=C^{2}+C_{1}{ }^{2}+C_{2}{ }^{2}+\ldots \ldots+C_{n}{ }^{2}$
Equating (iii) and (iv), we get,
$\mathrm{C}_{0}{ }^{2}+\mathrm{C}_{1}{ }^{2}+\mathrm{C}_{2}{ }^{2}+\ldots \ldots+\mathrm{C}_{\mathrm{n}}{ }^{2}=\frac{(2 \mathrm{n})!}{\mathrm{n}!\mathrm{n}!}$ Hence proved
f. Since $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots . .+C_{n} x^{n}$
$(x+1)^{n}=C_{0} x^{n}=C_{1} x^{n-1}+C_{2} x^{n-2}+\ldots \ldots+C_{n} \ldots .$. (ii)
Multiplying (i) and (ii), we get
$(1+x)^{2 n}=\left(C_{0}+C_{1} x+C_{2} x^{2}+\ldots . .+C_{n} x^{n}\right)\left(C_{0} x^{n}+C_{1} x^{n-1}+\ldots \ldots .+C_{n}\right)$
Equating the coefficient of x^{n-1} both sides,
Coeff. of x^{n-1} in LHS $={ }^{2 n} C_{n-1}=\frac{(2 n)!}{(2 n-n+1)!(n-1)!}=\frac{(2 n)!}{(n+1)!(n-1)!}$
Coefficient of x^{n-1} in RHS $=C_{0} C_{1}+C_{1} C_{2}+\ldots .+C_{n-2} C_{n-1}+C_{n-1} C_{n}$
Equating (iii) and (iv), we get
$\mathrm{C}_{0} \mathrm{C}_{1}+\mathrm{C}_{1} \mathrm{C}_{2}+\ldots . .+\mathrm{C}_{\mathrm{n}-2} \mathrm{C}_{\mathrm{n}-1}+\mathrm{C}_{\mathrm{n}-1} \mathrm{C}_{\mathrm{n}}=\frac{(2 \mathrm{n})!}{(\mathrm{n}+1)!(\mathrm{n}-1)!}$ Proved.
g. Since, $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots \ldots .+C_{n} x^{n} \ldots \ldots$. (i)
$(x+1)^{n}=C_{0} x^{n}+C_{1} x^{n-1}+C_{2} x^{n-2}+$ \qquad $+\mathrm{C}_{\mathrm{n}}$
Multiplying (i) and (ii)
$(1+x)^{2 n}=\left(C_{0}+C_{1} x+C_{2} x^{2}+\ldots \ldots+C_{n} x^{n}\right)\left(C_{0} x^{n}+C_{1} x^{n-1}+C_{2} x^{n-2}+\ldots . .+C_{n}\right)$
This is identify, so coeff. of any power of x in LHS and coeff. of same power of x in RHS must be equal.
Coeff. of x^{n-2} in LHS $={ }^{2 n} c_{n-2}=\frac{(2 n)!}{(n+2)!(n-2)!}$
Coeff. of x^{n-2} in RHS $=\mathrm{C}_{0} \mathrm{C}_{2}+\mathrm{C}_{1} \mathrm{C}_{3}+$ \qquad $+\mathrm{C}_{n-2} \mathrm{C}_{n}$
Equating (iii) and (iv) we get
$\mathrm{C}_{0} \mathrm{C}_{2}+\mathrm{C}_{1} \mathrm{C}_{3}+\ldots . .+\mathrm{C}_{\mathrm{n}-2} \mathrm{C}_{\mathrm{n}}=\frac{(2 \mathrm{n})!}{(\mathrm{n}-2)!(\mathrm{n}+2)!}$ Hence proved
h. Equating the coeff. of x^{n-r} in both sides as in above question g.

Coeff. of x^{n-r} in LHS $={ }^{2 n} c_{n-r}=\frac{(2 n)!}{(n+r)!(n-r)!}$
Coeff. of x^{n-r} in RHS $=C_{0} C_{r}+C_{1} C_{r+1}+$ \qquad $+C_{n-r} C_{n}$
Equating (iii) and (iv), we get
$\mathrm{C}_{0} \mathrm{C}_{\mathrm{r}}+\mathrm{C}_{1} \mathrm{C}_{\mathrm{r}+1}+\ldots \ldots+\mathrm{C}_{n-\mathrm{r}} \mathrm{C}_{\mathrm{n}}=\frac{(2 \mathrm{n})!}{(\mathrm{n}-\mathrm{r})!(\mathrm{n}+\mathrm{r})!}$ Proved.

EXERCISE 2.2

1. State the condition of validity of expansion and expand the following up to four terms.
a. $(2-3 x)^{-3}$
b. $(2+3 x)^{\frac{5}{2}}$
c. $\frac{1}{\sqrt{5+4 x}}$
d. $\frac{1}{\left(3-2 x^{2}\right)^{\frac{2}{3}}}$

Solution:

a. $(2-3 x)^{-3}=2^{-3}\left(1-\frac{3}{2} x\right)^{-3}$

22 Kriti's Principles of Mathematics-XII

The expansion is valid when $\left|\frac{3}{2} x\right|<1$ i.e. $|x|<\frac{2}{3}$
Now, $(2-3 x)^{-3}=2^{-3}\left(1-\frac{3}{2} x\right)^{-3}$
$=\frac{1}{2^{3}}\left[1+(-3)\left(-\frac{3}{2} x\right)+\frac{(-3)(-3-1)}{2!}\left(-\frac{3}{2} x\right)^{2}+\frac{(-3)(-3-1)(-3-2)}{3!}\left(-\frac{3}{2} x\right)^{3}+\ldots\right.$ to $\left.\infty\right]$
$=\frac{1}{2^{3}}\left[1+\frac{9}{2^{2}} x+\frac{27}{2} x^{2}+\frac{135}{4} x^{3}+\ldots\right.$ to $\left.\infty\right]$
$=\frac{1}{8}\left(1+\frac{9 x}{2}+\frac{27}{2} x^{2}+\frac{135}{4} x^{3}+\ldots\right.$ to $\left.\infty\right)$
b. Here $(2+3 x)^{5 / 2}$
$2^{5 / 2}\left(1+\frac{3}{2} x\right)^{5 / 2}$
The expansion is valid when $\left|\frac{3 x}{2}\right|<1$ i.e. $|x|<\frac{2}{3}$
We know that,
$(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} n^{2}+\frac{n(n-1)(n-2)}{3!} n^{3}+\ldots$
Now, $2^{5 / 2}\left(1+\frac{3}{2} x\right)^{5 / 2}$
$=2^{5 / 2}\left[1+\left(\frac{5}{2}\right)\left(\frac{3}{2} x\right)+\frac{\frac{5}{2}\left(\frac{5}{2}-1\right)}{2!}\left(\frac{3 x}{2}\right)^{2}+\frac{\frac{5}{2}\left(\frac{5}{2}-1\right)\left(\frac{5}{2}-2\right)}{3!}\left(\frac{3}{2} x\right)^{3}+\ldots\right]$
$=2^{5 / 2}\left[1+\frac{15}{4} \mathrm{x}+\frac{135 \mathrm{x}^{2}}{64}+\frac{135 \mathrm{x}^{3}}{128}+\ldots\right.$ to $\left.\infty\right]$
c. $(5+4 \mathrm{x})^{-1 / 2}$
$5^{-1 / 2}\left[1+\frac{4}{5} x\right]^{-1 / 2}$
This expansion is valid when $\left|\frac{4 x}{5}\right|<1$ i.e. $|x|<\frac{5}{4}$
$5^{-1 / 2}\left[1+\left(-\frac{1}{2}\right) \frac{4}{5} x+\frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)}{2!}\left(\frac{4 x}{5}\right)^{2}+\frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)\left(\frac{-1}{2}-2\right)}{3!}\left(\frac{4 x}{5}\right)^{3}+\ldots\right]$
$=\frac{1}{\sqrt{5}}\left[1-\frac{2 x}{5}+\frac{6 x^{2}}{25}-\frac{4 x^{3}}{25}+\ldots\right.$ to $\left.\infty\right]$
d. $\left(3-2 x^{2}\right)^{-2 / 3}$
$3^{-2 / 3}\left(1-\frac{2}{3} x^{2}\right)^{-2 / 3}$
The expansion is valid when $\left|\frac{2 x^{2}}{3}\right|<1$ i.e. $\left|x^{2}\right|<\frac{3}{2}$
Now, $3^{-2 / 3}\left[1-\frac{2}{3} x^{2}\right]^{-2 / 3}$
$=3^{-2 / 3}\left[1+\left(\frac{-2}{3}\right)\left(-\frac{2}{3} x^{2}\right)\right]+\frac{\left(-\frac{2}{3}\right)\left(-\frac{2}{3}-1\right)}{2!}\left(\frac{-2}{3} x^{2}\right)^{2}+\ldots$ to $\left.\infty\right)$

$$
=3^{-2 / 3}\left[1+\frac{4 x^{2}}{9}+\frac{20 x^{4}}{81}+\ldots \text { to } \infty\right]
$$

2. Expand the following up to four terms.
a. $\sqrt{1+x}$
b. $\frac{1}{\sqrt{1+x^{2}}}$
c. $\sqrt[4]{1+x}$
d. $\frac{1}{\sqrt[3]{1-x^{2}}}$

Solution:

a. $(1+x)^{1 / 2}$

$$
1+\frac{1}{2} x+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right) x^{2}}{2!}+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{3!} x^{3}+\ldots=1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{1}{16} x^{3} \ldots \text { to } \infty
$$

b. $\left(1+x^{2}\right)^{-1 / 2}$

$$
\begin{aligned}
& 1+\left(\frac{-1}{2}\right) x^{2}+\frac{\left(\frac{-1}{2}\right)\left(-\frac{1}{2}-1\right)}{2!}\left(x^{2}\right)^{2}+\frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)\left(\frac{-1}{2}-2\right)}{3!}\left(x^{2}\right)^{3}+\ldots \\
& =1-\frac{x^{2}}{2}+\frac{3 x^{4}}{8}-\frac{5 x^{6}}{16}+\ldots \text { to } \infty
\end{aligned}
$$

C. $(1+x)^{1 / 4}$

$$
\begin{aligned}
& 1+\left(+\frac{1}{4}\right) x+\frac{\left(+\frac{1}{4}\right)\left(+\frac{1}{4}-1\right)}{2!} x^{2}+\frac{\left(\frac{+1}{4}\right)\left(+\frac{1}{4}-2\right)\left(\frac{1}{4}-2\right)}{3!} x^{3}+\ldots \\
& =1+\frac{x}{4}-\frac{3 x^{2}}{32}+\frac{7 x^{3}}{128}-\ldots \text { to } \infty
\end{aligned}
$$

d. $\left(1-x^{2}\right)^{-1 / 3}$

$$
1+\left(-\frac{1}{3}\right)\left(-x^{2}\right)+\frac{\left(-\frac{1}{3}\right)\left(-\frac{1}{3}-1\right)}{2!}\left(-x^{2}\right)^{2}+\ldots \text { to } \infty=1+\frac{1}{3} x^{2}+\frac{2 x^{4}}{9}+\ldots \text { to } \infty
$$

3. Calculate each of the following correct to three places of decimal places.
a. (1.03)-5
b. $(0.01)^{\frac{1}{2}}$
c. $\sqrt[3]{(28)}$
d. $\sqrt{17}$
e. $\sqrt[3]{\frac{96}{101}}$

Solution:

a. $(1.03)^{-5}$

$$
\begin{aligned}
& (1+0.03)^{-5} \\
& =1+(-5)(0.03)+\frac{(-5)(-5-1)(0.03)^{2}}{2!}+\frac{(-5)(-5-1)(-5-2)}{3!}(0.03)^{3}+\ldots \\
& =0.915
\end{aligned}
$$

b. $(0.01)^{1 / 2}$

$$
(1-0.99)^{1 / 2}=1+\frac{1}{2}(-0.99)+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{2!}(-0.99)^{2}+\ldots=0.1
$$

24 Kriti's Principles of Mathematics-XII

c. $(28)^{1 / 3}$

$$
(27+1)^{1 / 3}=3\left(1+\frac{1}{27}\right)^{1 / 3}=3\left[1+\frac{1}{3} \cdot \frac{1}{27}+\frac{\frac{1}{3}\left(\frac{1}{3}-1\right)}{2!}\left(\frac{1}{27}\right)^{2}+\ldots\right]=3.037
$$

d. $\sqrt{17}=(16+1)^{1 / 2}=4\left(1+\frac{1}{16}\right)^{1 / 2}=4\left[1+\frac{1}{2} \frac{1}{16}+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{2!}\left(\frac{1}{16}\right)^{2}+\ldots\right]=4.123$
e. $\left(\frac{96}{101}\right)^{1 / 3}=\left(1-\frac{5}{101}\right)^{1 / 3}=1+\frac{1}{3}\left(\frac{-5}{101}\right)+\frac{\frac{1}{3}\left(\frac{1}{3}-1\right)}{2!}\left(\frac{-5}{101}\right)^{2}+\ldots=0.983$
4. Prove that
a. $1+\frac{1}{4}+\frac{1.3}{4.8}+\frac{1.3 .5}{4.8 \cdot 12}+\ldots$ to $\infty=\sqrt{2}$
b. $1+\frac{1.2}{2.3}+\frac{1.3}{3.6}+\frac{1.3 .5}{3.6 .9}+\ldots$ to $\infty=\sqrt{3}$
c. $1-\frac{1}{6}+\frac{1.3}{6.12}-\frac{1.3 .5}{6.12 .18}+\ldots$ to $\infty=\frac{\sqrt{3}}{2}$ d. $1+\frac{1}{4}+\frac{1.4}{4.8}+\frac{1.4 .7}{4.8 \cdot 12}+\ldots$ to $\infty=(2)^{\frac{2}{3}}$
e. $1+\frac{1}{4}-\frac{1}{4} \cdot \frac{1}{8}+\frac{1 \cdot 1 \cdot 3}{4 \cdot 8 \cdot 12}-\frac{1 \cdot 1 \cdot 3 \cdot 5}{4 \cdot 8 \cdot 12 \cdot 16}+\ldots$ to $\infty=\sqrt{\frac{3}{2}}$

Solution:

a. Let $1+\frac{1}{4}+\frac{1.3}{4.8}+\frac{1.3 .5}{4.8 .2}+\ldots$ to $\infty=(1+x)^{n}$

Then, $1+\frac{1}{4}+\frac{1 \cdot 3}{4.8}+\frac{1 \cdot 3 \cdot 5}{4 \cdot 8 \cdot 12}+\ldots$ to $\infty=1+n x+\frac{n(n-1)}{2!} x^{2}+\ldots$
Equating corresponding term, we get,
$n \mathrm{x}=\frac{1}{4}$
$\therefore \quad x=\frac{1}{4 n} \ldots \ldots \ldots$ (i) and $\frac{n(n-1)}{2!} x^{2}=\frac{1.3}{4.8}$
or, $\frac{n(n-1)}{2} \frac{1}{(4 n)^{2}}=\frac{1.3}{4.8}$
$\frac{\mathrm{n}(\mathrm{n}-1)}{2.16 \mathrm{n}^{2}}=\frac{3}{32}$
$n-1=3 n$
$-2 n=1 \therefore n=-\frac{1}{2}$
from (i) $x=\frac{1}{4(-1 / 2)}=-\frac{1}{2}$
Hence, $(1+x)^{n}=\left(1-\frac{1}{2}\right)^{-1 / 2}=\left(\frac{1}{2}\right)^{-1 / 2}=2^{1 / 2}=\sqrt{2}$
$\therefore \quad 1+\frac{1}{4}+\frac{1.3}{4.8}+\frac{1.3 .5}{4.8 \cdot 12}+\ldots$ to $\infty=\sqrt{2}$
b. Let $(1+x)^{n}$ be equal to $1+\frac{1.2}{2.3}+\frac{1.3}{3.6}+\frac{1.3 .5}{3.6 .9}+\ldots$ to ∞
i.e. $1+n x+\frac{n(n-1)}{2!} x^{2}+\ldots$ to $\infty=1+\frac{1.2}{2.3}+\frac{1.3}{3.6}+\frac{1.3 .5}{3.6 .9}+\ldots$ to ∞

Equating corresponding term, we get
$n x=\frac{1.2}{2.3} \Rightarrow x=\frac{1}{3 n} \ldots \ldots \ldots$ (i) and $\frac{n(n-1)}{2} x^{2}=\frac{1.3}{3.6}$
$\frac{n(n-1)}{2} \frac{1}{n^{2}}=\frac{1}{6}$
$n-1=3 n$
$-2 \mathrm{n}=1 \quad \therefore \mathrm{n}=-\frac{1}{2}$
from (i) $x=\frac{1}{3\left(\frac{-1}{2}\right)}=-\frac{2}{3}$
$\therefore(1+x)^{n}=\left(1-\frac{2}{3}\right)^{-1 / 2}=\left(\frac{1}{3}\right)^{-1 / 2}=3^{1 / 2}=\sqrt{3}$
c. Let $1-\frac{1}{6}+\frac{1.3}{6.12}+\frac{1.3 .5}{6.12 .18}+\ldots$ to $\infty=(1+x)^{n}$

$$
1-\frac{1}{6}+\frac{1.3}{6.12}+\frac{1.3 .5}{6.12 .18}+\ldots \text { to } \infty=(1+x)^{n}
$$

Equating corresponding term

$$
\begin{gather*}
n x=-\frac{1}{6} \therefore x=-\frac{1}{6 n} . \tag{i}\\
\frac{n(n-1)}{2} x^{2}=\frac{1.3}{6.12}
\end{gather*}
$$

or, $\frac{n(n-1)}{2}\left(\frac{-1}{6 n}\right)^{2}=\frac{1}{24}$

$$
\frac{n(n-1)}{2} \frac{1}{36 \cdot n^{2}}=\frac{1}{24}
$$

or, $n-1=3 n, n=-\frac{1}{2}$
from (i) $x=-\frac{1}{6\left(-\frac{1}{2}\right)}=\frac{1}{3}$
$\therefore(1+x)^{n}=\left(1+\frac{1}{3}\right)^{-1 / 2}=\left(\frac{4}{3}\right)^{-1 / 2}=\left(\frac{3}{4}\right)^{1 / 2}=\frac{\sqrt{3}}{2}$
d. Let $1+\frac{1}{4}+\frac{1.4}{4.8}+\ldots$ to $\infty=(1+x)^{n}$

$$
\begin{align*}
& 1+\frac{1}{4}+\frac{1.4}{4.8}+\ldots \text { to } \infty=1+n x+\frac{n(n-1)}{2} x^{2}+\ldots \\
& \therefore n x=\frac{1}{4} \text { and } \frac{n(n-1)}{2} x^{2}=\frac{1.4}{4.8} \\
& x=\frac{1}{4 n} \ldots \ldots \ldots \text { (i) } \quad \text { or, } \frac{n(n-1)}{2} \cdot \frac{1}{16 n^{2}}=\frac{1}{8} \tag{i}\\
& \therefore x=-\frac{3}{4} \quad \quad \text { or, } n-1=4 n \\
& \therefore(1+x)^{n}=\left(1-\frac{3}{4}\right)^{-1 / 3}=\left(\frac{1}{4}\right)^{-1 / 3}=4^{1 / 3}=2^{2 / 3} \text { proved. }
\end{align*}
$$

e. Let $1+\frac{1}{4}-\frac{1.1}{4.8}+\frac{1.1 .3}{4.8 .12}-\ldots=1+n x+\frac{n(n-1)}{2} x^{2}+\ldots$

Equating, $n x=\frac{1}{4}$

$$
\frac{n(n-1)}{2} x^{2}=-\frac{1}{32}
$$

$\therefore \quad x=\frac{1}{4 n}$

$$
\begin{equation*}
\frac{n(n-1)}{2} \cdot \frac{1}{16 n^{2}}=-\frac{1}{32} \tag{i}
\end{equation*}
$$

$$
\begin{aligned}
& \therefore \quad x=\frac{1}{2} \quad n-1=-n \\
& 2 n=1 \therefore n=\frac{1}{2} \\
& \therefore \quad(1+n)^{n}=\left(1+\frac{1}{2}\right)^{1 / 2}=\left(\frac{3}{2}\right)^{1 / 2}=\sqrt{\frac{3}{2}} \\
& \text { Hence, } 1+\frac{1}{4}-\frac{1 \cdot 1}{4.8}+\frac{1 \cdot 1 \cdot 3}{4.8 \cdot 12}-\frac{1 \cdot 1 \cdot 3 \cdot 5}{4 \cdot 8 \cdot 12 \cdot 16}+\ldots=\sqrt{\frac{3}{2}}
\end{aligned}
$$

EXERCISE 2.3

1. Find the values of
a. $e+\frac{1}{e}$
b. $e-\frac{1}{e}$

Solution:

a. We know
$e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!} \cdots \ldots$.
Putting $x=1$, we get,
$e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\frac{1}{6!}$
Again, putting $x=-1$, we get,

$$
\begin{equation*}
e^{-1}=1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}+\frac{1}{6!}-. \tag{ii}
\end{equation*}
$$

Adding (i) and (ii) we get,
$e+\frac{1}{e}=2+\frac{2}{2!}+\frac{2}{4!}+\ldots \ldots \ldots$
$\therefore e+\frac{1}{e}=2\left[1+\frac{1}{2!}+\frac{1}{4!} \cdots \cdots\right]$
b. To prove $\mathrm{e}-\frac{1}{\mathrm{e}}$, Subtracting (ii) from (i)

$$
e-\frac{1}{e}=2+\frac{2}{3!}+\frac{2}{5!}+\ldots \ldots \ldots=2\left[1+\frac{1}{3!}+\frac{1}{5!}+\ldots \ldots .\right]
$$

2. Expand in ascending power of x
a. $\left(\frac{e^{5 x}+e^{x}}{e^{3 x}}\right)$
b. $\frac{e^{7 x}+e^{x}}{2 e^{4 x}}$

Solution:

a. $\frac{e^{5 x}+e^{x}}{e^{3 x}}=e^{2 x}+e^{-2 x}$

We know that, $e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$ to ∞

$$
\begin{aligned}
& \therefore e^{2 x}+e^{-2 x}=\left(1+\frac{2 x}{1!}+\frac{(2 x)^{2}}{2!}+\frac{(3 x)^{3}}{3!}+\ldots \text { to } \infty\right)+\left(1-\frac{2 x}{1!}+\frac{(2 x)^{2}}{2!}\right)-\frac{(2 x)^{3}}{3!}+\ldots \\
& \quad \text { to } \infty)
\end{aligned}
$$

$$
=2+2 \frac{(2 x)^{2}}{2!}+2 \frac{(2 x)^{4}}{4!}+\ldots \text { to } \infty
$$

$$
=2\left(1+\frac{(2 x)^{2}}{2!}+\frac{(2 x)^{4}}{4!}+\ldots\right)=2\left(1+\frac{2^{2} \cdot x^{2}}{2!}+\frac{2^{4} \cdot x^{4}}{4!}+\frac{2^{6} \cdot x^{6}}{6!} \ldots+\infty\right)
$$

b. $\frac{e^{7 x}+e^{x}}{2 e^{4 x}}=\frac{1}{2}\left[e^{3 x}+e^{-3 x}\right]=\frac{1}{2}\left[\left(1+\frac{3 x}{1!}+\frac{(3 x)^{2}}{2!}+\frac{(3 x)^{3}}{3!}+\ldots\right)\right]+$

$$
\begin{aligned}
& \left(1-\frac{3 x}{1!}+\frac{(3 x)^{2}}{2!}-\frac{(3 x)^{3}}{3!}+\ldots\right) \\
& =\frac{1}{2}\left[2+\frac{2(3 x)^{2}}{2!}+2\left((3 x)^{4}, 4!\right)+\ldots\right]=1+\frac{(3 x)^{2}}{2!}+\frac{(3 x)^{4}}{4!}=1+\frac{3^{2} \cdot x^{2}}{2!}+\frac{3^{4} \cdot x^{4}}{4!}+\frac{3^{6} x^{6}}{6!}
\end{aligned}
$$

3. Find the value of
a. $\sqrt{\mathrm{e}}$ up to 4 places of decimals.
b. $\frac{1}{\sqrt{\mathrm{e}}}$ up to four places of decimals.

Solution:

a. $\sqrt{\mathrm{e}}=\mathrm{e}^{1 / 2}$

We know that $e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots$
Put $x=\frac{1}{2}$

$$
\begin{aligned}
e^{1 / 2} & =1+\frac{\frac{1}{2}}{1!}+\frac{\left(\frac{1}{2}\right)^{2}}{2!}+\frac{\left(\frac{1}{2}\right)^{3}}{3!}+\ldots=1+\frac{1}{2}+\frac{1}{8}+\frac{1}{48}+\ldots \\
& =1+0.5+0.125+0.0208+\ldots=1.6458
\end{aligned}
$$

b. $\frac{1}{\sqrt{\mathrm{e}}}=\mathrm{e}^{-1 / 2}=1-\frac{\frac{1}{2}}{1!}+\frac{\left(\frac{1}{2}\right)^{2}}{2!}-\frac{\left(\frac{1}{2}\right)^{3}}{3!}+\ldots=1-\frac{1}{2}+\frac{1}{8}-\frac{1}{48}+\ldots$

$$
=1-0.5+0.125-0.0208+\ldots=0.6042
$$

4. Show that
a. $\left(1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots\right.$ to $\left.\infty\right)\left(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\ldots\right.$ to $\left.\infty\right)=1$
b. $\frac{1+\frac{1}{2!}+\frac{1}{4!}+\frac{1}{6!}+\ldots \text { to } \infty}{1+\frac{1}{3!}+\frac{1}{5!}+\frac{1}{7!}+\ldots \text { to } \infty}=\frac{\mathrm{e}^{2}+1}{\mathrm{e}^{2}-1}$
c. $\frac{\frac{1}{2!}+\frac{1}{4!}+\frac{1}{6!}+\ldots . .}{\frac{1}{1!}+\frac{1}{3!}+\frac{1}{5!}+\ldots . .}=\frac{e-1}{e+1}$
d. $\frac{2}{1!}+\frac{4}{3!}+\frac{6}{5!}+\ldots$ to $\infty=e$
e. $\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\ldots$ to $\infty=1$
f $\frac{2}{3!}+\frac{4}{5!}+\frac{6}{7!}+\ldots$ to $\infty=\frac{1}{e}$

Solution:

a. $\quad\left(e_{0}^{1}\right) \cdot\left(e^{-1}\right)$
$\mathrm{e}^{0}=1$ proved.
b. We know, $1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$ to $\infty=e^{x}$

Putting $x=1$ and $x=-1$, we get

28 Kriti's Principles of Mathematics-XII

$1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots=e$
and $1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\ldots=\mathrm{e}^{-1}$.
Adding (i) and (ii), we get

$$
2+\frac{2}{2!}+\frac{2}{4!}+\ldots=e+\mathrm{e}^{-1}
$$

or, $2\left(1+\frac{1}{2!}+\frac{1}{4!}+\ldots\right)=e+e^{-1}$
or, $1+\frac{1}{2!}+\frac{1}{4!}+\ldots=\frac{e+e^{-1}}{2}$
$\therefore 1+\frac{1}{2!}+\frac{1}{4!}+\ldots=\frac{\mathrm{e}^{2}+1}{2 e}$
Subtracting (ii) from (i), we get
$2+\frac{2}{3!}+\frac{2}{5!}+\frac{2}{7!}+\ldots=e-e^{-1}$
$1+\frac{1}{3!}+\frac{1}{5!}+\frac{1}{7!}+\ldots=\frac{e^{2}-1}{2 e}$
Dividing (iii) by (iv), we get,
$\frac{1+\frac{1}{2!}+\frac{1}{4!}+\ldots}{}$
$\overline{1+\frac{1}{3!}+\frac{1}{5!}+\ldots}=$
c. We know,
$\frac{1}{2!}+\frac{1}{4!}+\frac{1}{6!}+\ldots \ldots .=\frac{1}{2}\left(e+\frac{1}{e}\right)-1$
and $1+\frac{1}{3!}+\frac{1}{5!}+\frac{1}{7!}+\ldots \ldots=\frac{1}{2}\left(e-\frac{1}{e}\right)$
Now, $\frac{\frac{1}{2!}+\frac{1}{4!}+\frac{1}{6!}+\ldots \ldots .}{1+\frac{1}{3!}+\frac{1}{5!}+\frac{1}{7!}+\ldots .}=\frac{e^{2}+1-2 e}{e^{2}-1}=\frac{(e-1)^{2}}{(e+1)(e-1)}=\frac{e-1}{e+1}$ proved.
d. $\frac{(1+1)}{1!}+\left(\frac{3+1}{3!}\right)+\frac{(5+1)}{5!}+\ldots$ to $\infty=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\ldots=e$
e. Here, $\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+\ldots$
$1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+\ldots=1$ proved.
f. $\frac{2}{3!}+\frac{4}{5!}+\frac{6}{7!}+\ldots$
$\frac{3-1}{3!}+\frac{5-1}{5!}+\frac{7-1}{7!}+\ldots$
$\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}+\frac{1}{6!}-\frac{1}{7!}+\ldots$
$1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}+\ldots=\mathrm{e}^{-1}$ proved.
5. Find the sum to infinity of the series whose general terms are given by
a. $t_{n}=\frac{n^{2}}{(n+1)!}$
b. $t_{n}=\frac{1}{(n+1)!}$
c. $t_{n}=\frac{1}{(n+2)!}$
d. $t_{n}=\frac{n^{3}}{n!}$
e. $t_{n}=\frac{n(n+1)}{n!}$

Solution:

a. $t_{n}=\frac{n^{2}}{(n+1)!}=\frac{n^{2}-1+1}{(n+1)!}=\frac{\left(n^{2}-1\right)}{(n+1)!}+\frac{1}{(n+1)!}=\frac{(n-1)}{n!}+\frac{1}{(n+1)!}$

$$
\begin{aligned}
& =\frac{n}{n!}-\frac{1}{n!}+\frac{1}{(n+1)!}=\frac{1}{(n-1)!}-\frac{1}{n!}+\frac{1}{(n+1)!} \\
\Sigma t_{n} & =\Sigma \frac{1}{(n-1)!}-\Sigma \frac{1}{n!}+\Sigma \frac{1}{(n+1)!} \\
& =\left(1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots\right)-\left(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots\right)+\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots\right) \\
& =e-(e-1)+(e-2)=e-e+1+e-2=e-1
\end{aligned}
$$

b. $t_{n}=\frac{1}{(n+1)!}$

$$
\begin{aligned}
\Sigma t_{n} & =\sum_{1}^{\infty} \frac{1}{(n+1)!} \\
& =\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots=e-2
\end{aligned}
$$

c. $t_{n}=\frac{1}{(n+2)!}$

$$
\Sigma t_{n}=\sum_{1}^{\infty} \frac{1}{(n+2)!}=\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\ldots=\left(1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\ldots\right)-\frac{5}{2}=e-\frac{5}{2}
$$

d. $t_{n}=\frac{n^{3}}{n!}=\frac{n^{2}}{(n-1)!}=\frac{(n-1)(n+1)}{(n-1)!}+\frac{1}{(n-1)!}$

$$
\begin{aligned}
= & \frac{n+1}{(n-2)!}+\frac{1}{(n-1)!}=\frac{(n-2)}{(n-2)!}+\frac{3}{(n-2)!}+\frac{1}{(n-1)!}=\frac{1}{(n-3)!}+\frac{3}{(n-2)!}+\frac{1}{(n-1)!} \\
\Sigma t_{n}= & \Sigma \frac{1}{(n-3)!}+3 \Sigma \frac{1}{(n-2)!}+\Sigma \frac{1}{(n-1)!} \\
= & \left(\frac{1}{(-2)!}+\frac{1}{(-1)!}+\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\ldots\right)+3\left(\frac{1}{(-1)!}+\frac{1}{0!}+\frac{1}{1!}+\ldots\right)+ \\
& \left(\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\ldots\right) \\
= & e+3 e+e=5 e
\end{aligned}
$$

e. $t_{n}=\frac{n(n+1)}{n!}=\frac{n+1}{(n+1)!}=\frac{n-1}{(n-1)!}+\frac{2}{(n-1)!}=\frac{1}{(n-2)!}+\frac{2}{(n-1)!}$
$\Sigma t_{n}=\Sigma \frac{1}{(\mathrm{n}-2)!}+\Sigma \frac{2}{(\mathrm{n}-1)!}=\mathrm{e}+2 \mathrm{e}=3 \mathrm{e}$
6. Show that
a. $1+\frac{1+2}{2!}+\frac{1+2+2^{2}}{3!}+\frac{1+2+2^{2}+2^{3}}{4!}+\ldots$ to ∞
b. $1+\frac{1}{2!}+\frac{1.3}{4!}+\frac{1.3 .5}{6!}+\ldots$ to ∞
c. $\frac{1.2}{1!}+\frac{2.3}{2!}+\frac{3.4}{3!}+\ldots$ to ∞
e. $\frac{1^{2}}{1!}+\frac{2^{2}}{2!}+\frac{3^{2}}{3!}+\ldots$ to ∞
f. $1+\frac{1+2}{1!}+\frac{1+2+3}{2!}+\ldots$ to $\infty=\frac{7 \mathrm{e}}{2}$
g. $3+\frac{5}{1!}+\frac{7}{2!}+\frac{9}{3!}+\ldots$ to $\infty=5 \mathrm{e}$

Solution:

a. Let $\mathrm{n}^{\text {th }}$ term of above series be t_{n}

Then $\mathrm{t}_{\mathrm{n}}=\frac{1+2+2^{2}+\ldots+2^{n-1}}{n!}=\frac{1\left(2^{n}-1\right)}{\frac{2-1}{n!}}=\frac{2^{n}-1}{n!}$

$$
t_{n}=\frac{2^{n}}{n!}-\frac{1}{n!}
$$

Let S_{∞} be the required sum of the series.
Then, $s_{\infty}=\Sigma t_{n}=\Sigma\left(\frac{2^{n}}{n!}-\frac{1}{n!}\right)=\sum_{1}^{\infty} \frac{2^{n}}{n!}-\sum_{1}^{\infty} \frac{1}{n!}=\left(\frac{2}{1!}+\frac{2^{2}}{2!}+\frac{2^{3}}{3!}+\ldots\right)-\left(\frac{1}{1!}+\frac{1}{2!}+..\right)$

$$
=\left(e^{2}-1\right)-(e-1)=e^{2}-e
$$

b. $1+\frac{1}{2!}+\frac{1 \cdot 3}{4!}+\frac{1 \cdot 3 \cdot 5}{6!}+\ldots=1+\frac{1}{2}+\frac{1 \cdot 3}{1 \cdot 2 \cdot 3 \cdot 4}+\frac{1 \cdot 3 \cdot 5}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}+\ldots=1+\frac{1}{2}+\frac{1}{8}+\frac{1}{48}+\ldots$

$$
=1+\frac{\left(\frac{1}{2}\right)}{1!}+\frac{\left(\frac{1}{2}\right)^{2}}{2!}+\frac{\left(\frac{1}{2}\right)^{3}}{3!}+\ldots=e^{1 / 2}=\sqrt{\mathrm{e}}
$$

c. Let t_{n} be the $n^{\text {th }}$ term of the given series

Then $t_{n}=\frac{n(n+1)}{n!}=\frac{n^{2}+n}{n!}=\frac{n}{(n-1)!}+\frac{1}{(n-1)!}$

$$
=\frac{n+1}{(n-1)!}=\frac{(n-1)+2}{(n-1)!}=\frac{1}{(n-2)!}+\frac{2}{(n-1)!}
$$

\therefore The given series
$\Sigma t_{n}=\Sigma \frac{1}{(n-2)!}+\Sigma \frac{2}{(n-1)!}=\left(\frac{1}{(-1)!}+\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\ldots\right)+2\left(\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\ldots\right)$ but $(-1)!=\infty$ and $0!=1$
$\therefore \quad \Sigma t_{n}=\left(1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots\right)+2\left(1+\frac{1}{1!}+\frac{1}{2!}+\ldots\right)=e+2 e=3 e$
e. Let t_{n} be the $n^{\text {th }}$ term
$t_{n}=\frac{n^{2}}{n!}=\frac{n}{(n-1)!}=\frac{n-1+1}{(n-1)!}=\frac{1}{(n-2)!}+\frac{1}{(n-1)!}$
\therefore Sum of the series

$$
\sum_{1}^{\infty} t_{n}=\sum_{n}^{\infty} \frac{1}{(n-2)!}+\Sigma \frac{1}{(n-1)!}=e+e=2 e
$$

f. $n^{\text {th }}$ term of given series $\left(t_{n}\right)=\frac{1+2+3+\ldots+n}{(n-1)!}=\frac{\frac{n}{2}(n+1)}{(n-1)!}=\frac{n(n+1)}{2(n-1)!}$
g. $3+\frac{5}{1!}+\frac{7}{2!}+\frac{9}{3!}+\ldots$ to ∞

Let t_{n} be the $\mathrm{n}^{\text {th }}$ term of above series.
Then, $\mathrm{t}_{\mathrm{n}}=\frac{3+(\mathrm{n}-1) \mathrm{d}}{(\mathrm{n}-1)!}=\frac{3+(\mathrm{n}-1) \cdot 2}{(\mathrm{n}-1)!}=\frac{2 \mathrm{n}+1}{(\mathrm{n}-1)!}$
$t_{n}=\frac{2(n-1)+3}{(n-1)!}=\frac{2}{(n-2)!}+\frac{3}{(n-1)!}$

$$
\begin{aligned}
s_{n} & =\sum_{n=1}^{\infty} t_{n}=\sum_{n=1}^{\infty} \frac{2}{(n-2)!}+3 \sum_{n=1}^{\infty} \frac{1}{(n-1)!} \\
& =2\left(\frac{1}{(-1)!}+\frac{1}{0!}+\frac{1}{!}+\frac{1}{2!}+\ldots\right)+3\left(\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\ldots\right)=2 e+3 e=5 e
\end{aligned}
$$

7. Prove the following
a. $\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\ldots$ to $\infty=\ln 2$
b. $\frac{1}{1.3}+\frac{1}{2.5}+\frac{1}{3.7}+\ldots$ to $\infty=2-2 \ln 2$
c. $\frac{1}{3}+\frac{1}{3.3^{3}}+\frac{1}{5.3^{5}}+\frac{1}{7.3^{7}}+\ldots$ to $\infty=\frac{1}{2} \ln 2$
d. $1+\frac{1}{3.2^{2}}+\frac{1}{5.2^{4}}+\frac{1}{7.2^{6}}+\ldots$ to $\infty=\ln 3$
e. $\left(\frac{1}{3}-\frac{1}{2}\right)+\frac{1}{2} \cdot\left(\frac{1}{3^{2}}-\frac{1}{2^{2}}\right)+\frac{1}{3} \cdot\left(\frac{1}{3^{3}}-\frac{1}{2^{3}}\right)+\ldots$ to $\infty=0$

Solution:

a. We know that $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots$ to ∞

$$
\ln (1+1)=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\ldots
$$

$\ln 2=\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\ldots$

$$
=\left(\frac{2-1}{1.2}\right)+\frac{(4-3)}{3.4}+\left(\frac{6-5}{5.6}\right)+\ldots=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\ldots
$$

b. $\frac{1}{1.3}+\frac{1}{2.5}+\frac{1}{3.7}+\ldots$ to $\infty=2-2 \ln 2$

We have,
$\ln (1+x)=x-x \frac{2}{2}+x \frac{3}{3}-x \frac{4}{4}+x \frac{5}{5}-x \frac{6}{6}+x \frac{7}{7}-\ldots$
Putting $x=1$, we get,

$$
\begin{aligned}
& \ln (1+1)=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\ldots \\
& \Rightarrow \ln 2=1-\left(\frac{1}{2}-\frac{1}{3}\right)-\left(\frac{1}{4}-\frac{1}{5}\right)-\left(\frac{1}{6}-\frac{1}{7}\right)-\ldots \\
& \Rightarrow\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{6}-\frac{1}{7}\right)+\ldots=1-\ln 2 \\
& \Rightarrow\left(\frac{3-2}{2.3}\right)+\left(\frac{5-4}{4.5}\right)+\left(\frac{7-6}{6.7}\right)+\ldots=1-\ln 2 \\
& \Rightarrow \frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+\ldots=1-\ln 2
\end{aligned}
$$

Multiplying by 2 on both sides, we get
$\frac{1}{1.3}+\frac{1}{2.5}+\frac{1}{3.7}+\ldots=2(1-\ln 2)$
Hence, $\frac{1}{1.3}+\frac{1}{2.5}+\frac{1}{3.7}+\ldots=2-2 \ln 2$
c. We know that,

32 Kriti's Principles of Mathematics-XII

$$
\begin{align*}
& \ln _{e}(1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}-\ldots \text { to } \infty \ldots \tag{i}\\
& \ln _{e}(1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\frac{x^{5}}{5}-\ldots \text { to } \infty . \tag{ii}
\end{align*}
$$

Subtracting (ii) from (i)
$\ln _{e}(1+x)-\ln (1-x)=2 x+2 \frac{x^{3}}{3}+2 \frac{x^{5}}{5}+2 \frac{x^{7}}{7}+\ldots$
or, $\ln _{e}\left(\frac{1+x}{1-x}\right)=2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\frac{x^{7}}{7}+\ldots\right)$
$\frac{1}{2} \ln _{e}\left(\frac{1+x}{1-x}\right)=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\frac{x^{7}}{7}+\ldots$ to ∞
Put $x=\frac{1}{3}$
$\frac{1}{2} \ln \left(\frac{1+\frac{1}{3}}{1-\frac{1}{3}}\right)=\frac{1}{3}+\frac{\left(\frac{1}{3}\right)^{3}}{3}+\frac{\left(\frac{1}{3}\right)^{5}}{5}+\frac{\left(\frac{1}{3}\right)^{7}}{7}+\ldots$
$\frac{1}{2} \ln _{e}\left(\frac{\frac{4}{3}}{\frac{2}{3}}\right)=\frac{1}{3}+\frac{1}{3^{3} \cdot 3}+\frac{1}{3^{5} \cdot 5}+\frac{1}{3^{\prime} \cdot 7}+\ldots$
$\therefore \quad \frac{1}{2} \ln _{e}(2)=\frac{1}{3}+\frac{1}{3^{3} .3}+\frac{1}{5.3^{5}}+\frac{1}{7.3^{1}}+\ldots$
d. We know,
$\ln _{e}(1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}-\ldots$
$\ln (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\frac{x^{5}}{5}-\ldots$
$\therefore \ln (1+x)=\ln (1-x)=2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\frac{x^{7}}{7}+\ldots\right)$
$\ln \left(\frac{1+x}{1-x}\right)=2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\frac{x^{7}}{7}+\ldots\right)$
Put $x=\frac{1}{2}$
$\ln \binom{\frac{3}{2}}{\frac{1}{2}}=2\left(\frac{1}{2}+\frac{1}{3.2^{3}}+\frac{1}{5.2^{5}}+\frac{1}{7.2}+\ldots\right)$
$\ln 3=1+\frac{1}{3.2^{2}}+\frac{1}{5.2^{4}}+\frac{1}{7.2^{6}}+\ldots$
e. LHS. $\left(\frac{1}{3}-\frac{1}{2}\right)+\frac{1}{2}\left(\frac{1}{3^{2}}-\frac{1}{2^{2}}\right)+\frac{1}{3}\left(\frac{1}{3^{3}}-\frac{1}{2^{3}}\right)+\ldots$

$$
\begin{aligned}
& =\left(\frac{1}{3}+\frac{1}{2} \cdot \frac{1}{3^{2}}+\frac{1}{3} \frac{1}{3^{3}}+\ldots\right)-\left(\frac{1}{2}-\frac{1}{2} \cdot \frac{1}{2^{2}}+\frac{1}{3} \cdot \frac{1}{2^{3}}-\ldots\right) \\
& =-\left[-\left(\frac{1}{3}\right)-\frac{\left(\frac{1}{3}\right)^{2}}{2}-\frac{\left(\frac{1}{3}\right)^{3}}{3}-\ldots\right]-\left[\frac{1}{2}-\frac{\left(\frac{1}{2}\right)^{2}}{2}+\frac{\left(\frac{1}{2}\right)^{3}}{3}-\ldots\right]
\end{aligned}
$$

$$
\begin{aligned}
& =-\ln _{e}\left(1-\frac{1}{3}\right)-\ln _{e}\left(1+\frac{1}{2}\right)=-\ln \frac{2}{3}-\ln \frac{3}{2}=-\left[\log \frac{2}{3}+\log \frac{3}{2}\right] \\
& =-\ln \left(\frac{2}{3}, \frac{3}{2}\right)=-\ln 1=0 \text { Hence proved. }
\end{aligned}
$$

8. Sum to infinity the following series
a. $\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+\ldots$ to ∞.
b.
$\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+\ldots$ to ∞.

Solution:

a. Sum to infinity the following series:

$$
\begin{aligned}
& \frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+\ldots \text { to } \infty \\
& \left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{6}-\frac{1}{7}\right)+\ldots \text { to } \infty=\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}-\frac{1}{7}+\ldots \text { to } \infty \\
& =1-\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}+\ldots\right)=1-\operatorname{Ln}(1+1)=1-\ln 2
\end{aligned}
$$

b. We know that,
$\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}-\ldots$ to ∞
Putting $x=1$ on both sides, we get
$\ln (1+1)=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\ldots$
or, $\ln 2=\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\ldots=\left(\frac{2-1}{2}\right)+\left(\frac{4-3}{3.4}\right)+\left(\frac{6-5}{5.6}\right)+\ldots$
$\ln 2=\frac{1}{2}+\frac{1}{3.4}+\frac{1}{5.6}+\ldots$ to ∞
or, $\ln 2-\frac{1}{2}=\frac{1}{3.4}+\frac{1}{5.6}+\ldots$
or, $\ln 2-\frac{1}{2}=\frac{1}{3.4}+\frac{1}{5.6}+\ldots$
$\therefore \frac{1}{3.4}+\frac{1}{5.6}+\ldots$ to $\infty=\ln 2-\frac{1}{2}$
9. If $\mathrm{y}=\mathrm{x}-\frac{\mathrm{x}^{2}}{2}+\frac{\mathrm{x}^{3}}{3}-\frac{\mathrm{x}^{4}}{4}+\ldots$ to $\infty,|\mathrm{x}|<1$, prove that $\mathrm{x}=\mathrm{y}+\frac{\mathrm{y}^{2}}{2!}+\frac{\mathrm{y}^{3}}{3!}+\ldots$ to ∞.

Solution:

Here, $y=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots$ to ∞

$$
\begin{aligned}
& \text { or, } y=\ln _{e}(1+x) \\
& \therefore \quad e^{y}=1+x \\
& 1+x=1+\frac{y}{1!}+\frac{y^{2}}{2!}+\frac{y^{3}}{3!}+\ldots \text { to } \infty \\
& \therefore \quad x=y+\frac{y^{2}}{2!}+\frac{y^{3}}{3!}+\ldots \text { to } \infty
\end{aligned}
$$

10. If $y=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\ldots$ to $\infty,|x|<1$, prove that $x=y-\frac{y^{2}}{2!}+\frac{y^{3}}{3!}-\frac{y^{4}}{4!}+\ldots$ to ∞

Solution:

Here, $x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\ldots$ to ∞

34 Kriti's Principles of Mathematics-XII

$$
\begin{aligned}
& y=-\left[-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\ldots \text { to } \infty\right] \\
& \text { or, } y=-\left[\ln _{e}(1-x)\right] \\
& \text { or, }-y=\ln _{e}(1-x) \\
& \begin{array}{l}
\therefore \quad 1-x=e^{-y} \\
\\
1-x=1-\frac{y}{1!}+\frac{y^{2}}{2!}-\frac{y^{3}}{3!}+\frac{y^{4}}{4!}-\ldots \\
\\
\quad x=y-\frac{y^{2}}{2!}+\frac{y^{3}}{3!}-\frac{y^{4}}{4!}+\ldots \text { to } \infty
\end{array}
\end{aligned}
$$

11. If $y=\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$ to $\infty,|x|<1$, prove that $x=y-\frac{y^{2}}{2}+\frac{y^{3}}{3}-\frac{y^{4}}{4}+\ldots$ to ∞

Solution:

Here, $y=\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$ to ∞
$1+y=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$ to ∞
$1+y=e^{x}$
Taking 'In' on both sides

$$
\ln (1+y)=x
$$

$\therefore \quad x=\ln (1+y)$

$$
x=y-\frac{y^{2}}{2}+\frac{y^{3}}{3}-\frac{y^{4}}{4}+\ldots \text { to } \infty
$$

CHAPTER 3

ELEMENTARY GROUP THEORY

EXERCISE 3.1

1. Identify the binary operations from the followings
a. Defined as $x \star y=x+y$ on the set of positive odd numbers O^{+}for all $\mathrm{x}, \mathrm{y} \in \mathrm{O}^{+}$.
b. Defined as $x \star y=2^{x y}$ on the set of real numbers $\mathbb{R}, \forall x, y \in \mathbb{R}$
c. Defined as $x \star y=2 x-y$ on the set of integers $Z, \forall x, y \in \mathbb{Z}$.
d. Defined as $x \star y=x+y-x y$ on the set of natural numbers $N, \forall x, y \in \mathbb{N}$.
e. Defined as $A \star B=A B$ on the set of 2×2 matrix $M, \forall A, B \in M$.

Solution:

a. No, the operation $*$ on the set of positive odd numbers 0^{+}defined by $\mathrm{x} * \mathrm{y}=$ $x+y$ is not a binary operation because for all $x, y \in 0^{+}, x * y=x+y \notin 0^{+}$.
e.g. $1,3 \in 0^{+}$but $1 * 3=1+3=4 \notin 0^{+}$.
b. Yes, since $\forall x, y \in R, x+y=2^{x y} \in R$
c. Yes, Here $Z=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
$\forall x, y \in Z, 2 x-y$ is also an integer and uniquely belongs to Z. So, it is a binary operation.
d. No, let $2,3 \in N$ then $2 * 3=2+3-2.3=5-6=-1 \notin N$

Therefore $*$ defined by $x * y=x+y-x y$ on the set of natural number is not a binary.
e. Yes, $\forall A, B \in M=\{$ set of 2×2 matrix $\}$
$A^{*} B=A B$ is also a 2×2 matrix and uniquery belongs to M. So, it is a binary.
3. Show that the multiplication is a binary operation on the set $\{-1,0,1\}$

Solution:

Let $S=\{-1,0,1\}$
For any $a, b \in S \quad a * b=a . b \in S$
\therefore multiplication operation on $S=\{-1,0,1\}$ is a binary operation.
4. Show that the binary operation \star on the set $S=\{0,-1,1\}$ defined as $a \star b=a \times$ b $\forall \mathrm{a}, \mathrm{b} \in \mathrm{S}$ is
a. commutative
b. associative

Solution:

Given $S=\{-1,0,1\}$
Operation * defined by $a * b=a \times b$
a. $\forall a, b \in S, a * b=a \cdot b=b . a=b * a$
$\therefore \quad *$ is commutative on S .
b. $\forall a, b, c \in S$
$(a * b) * c=(a \times b) * c=a \times b \times c=a \times(b * c)=a *(b * c)$
$\therefore \quad$ ' $*$ ' is an associative on S .
5. Test the existence of an identity element and inverses of the elements in the binary operation (\star) defined by $\mathrm{a} \star \mathrm{b}=2 \mathrm{a}+\mathrm{b}$ over the set of integers \mathbb{Z} for a , $b \in \mathbb{Z}$

Solution:

Let e be an identify element of $a \in Z$ then

$$
\begin{array}{ll}
a * e=a & \text { and } e * a=a \\
2 a+e=a & 2 e+a=a \\
e=-a \in z & e=0 \in z
\end{array}
$$

36 Kriti's Principles of Mathematics-XII

identify is not uniquely.
Let a^{\prime} be inverse of $a \in z$ then $a * a^{\prime}=e$
$2 a+a^{\prime}=-a$
$a^{1}=-3 a \in z$
6. The binary operation \star on the set of rational numbers \mathbb{Q} is defined as a \star $b=a+b+a b$ for every $a, b \in \mathbb{Q}$. Show that \star satisfies the associative property.

Solution:

Let $a, b, c \in Q$ be any elements.

$$
\text { Then, }(a * b) * c \quad=(a+b+a b) * c=a+b+a b+c+(a+b+a b) c
$$

$$
\begin{aligned}
& =a+b+a b+c+a c+b c+a b c \\
& =a+b+c+b c+c a+a b+a b c \\
& =a+(b+c+b c)+a(c+b+b c) \\
& =(b+c+b c)+a+(b+c+b c) a \\
& =a+(b+c+b c)+(b+c+b c) a \\
& =a *(b+c+b c)=a *(b * c)
\end{aligned}
$$

$\therefore \quad$ ' $*$ ' is an associative.
7. Given that $\mathrm{a} \star \mathrm{b}=3 \mathrm{a}+2 \mathrm{~b} \forall \mathrm{a}, \mathrm{b} \in \mathbb{Z}$, set of integers. Verify that \star is not a communicative binary operation on \mathbb{Z}.

Solution:

$\forall \mathrm{a}, \mathrm{b} \in \mathrm{z}$
$a * b=3 a+2 b$ is also an integers and uniquely belongs to z. So, * is a binary operation.
But $a * b=3 a+2 b \neq 3 b+2 a=b * a$
$\therefore \mathrm{a} * \mathrm{~b} \neq \mathrm{b} * \mathrm{a}$
$\therefore \quad$ ' $*$ ' is not a commutative.
8. Let A and B are the subsets of the power set P of any non-empty set X. Show that $A \star B$ is defined as follows is a binary operation.
a. Union
b. Difference
c. Intersection

Solution:

Given, $\mathrm{P}=$ power set of a non-empty set X .
a. Let $A, B \in P$ with $A * B=A \cup B$

Here, $A \cup B$ must belong to set P. So, union operation on P is a binary.
b. Let $A, B \in P$ with $A * B=A-B$

Here, $A-B$ or $B-A$ must belong to the power set P.
\therefore difference operation is a binary.
c. $\forall A, B \in P A \cap B \in P$. So, intersection is a binary.
9. Show that the multiplicative operation on the set $S=\left\{1, \omega, \omega^{2}\right\}$ where ω is the cube root of unity is a binary operation. Is the operation
a. Commutative
b. Associative

Solution:

Given, set $S=\left\{1, \omega, \omega^{2}\right\}$ where ω is the cube root of unity operation; multiplication.
$1 \times \omega=\omega \in S$
$\omega \times \omega^{2}=\omega^{3}=1 \in S$
$1 \times 1=1 \in S$
$\omega^{2} \times \omega^{2}=\omega^{4}=\omega^{3} . \omega=1 . \omega=\omega \in S$
So, $\forall \mathrm{a}, \mathrm{b} \in \mathrm{S}$

$$
a * b=a, b \in S
$$

\therefore multiplication operation is binary on S .
a. Commutative
$1 \times \omega=\omega \times 1$
$\omega^{2} \times \omega=\omega^{3}=\omega \times \omega^{2}$
$\therefore \quad \forall \mathrm{a}, \mathrm{b} \in \mathrm{S} \quad \mathrm{a} * \mathrm{~b}=\mathrm{ab}=\mathrm{ba}=\mathrm{b} * \mathrm{a}$
$\therefore \quad$ multiplication is commutative on S .
b. Associative
$1 \times\left(\omega \times \omega^{2}\right)=1 \times \omega^{3}=1 \times \omega \times \omega^{2}=(1 \times \omega) \times \omega^{2}$
$\therefore \quad \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{s} .(\mathrm{a} * \mathrm{~b}) * \mathrm{c}=(\mathrm{ab}) * \mathrm{c}=\mathrm{abc}=\mathrm{a}(\mathrm{bc})=\mathrm{a}(\mathrm{b} * \mathrm{c})=\mathrm{a} *(\mathrm{~b} * \mathrm{c})$
\therefore multiplication operation is association.

EXERCISE 3.2

1. What is congruent modulo ' n '? Illustrate with example.

Solution:

If $x, y \in z$ and n is positive integer
Then, x is said to be the congruent to y with modulo n if $x-y$ is exactly divisible by n.
It can be expressed as $x \equiv y$ modulo n.
e.g. $7 \equiv 1$ modulo $3 \Rightarrow 7-1$ is divisible by 3
i.e. when 7 is divided by 3 the remainder is 1 .

Similarly, $9 \equiv 1$ modulo $4 \Rightarrow 9-1$ is divisible by 4 i.e. when 9 is divided by 4 leaves remainder 1.
$a \equiv b$ modulo $n \Rightarrow a-b$ is divisible by n.
i.e. when a is divided by n, remainder is b.
2. Introduce one-one example of addition modulo ' n ' and multiplication modulo ' n ' to give a crystal clear concept of each other.

Solution:

Addition Modulo ' n '

Let $x, y \in z$ and n be a positive integer. The addition modulo $' n$ ' is written as $(+n)$, defined as $x+n y=r(0 \leq r<n)$ where r is remainder when $x+y$ is divided by n .
e.g. $4+{ }_{2} 3=1$ i.e. when $4+3=7$ is divided by 2 , leaves remainder 1 .
$12+{ }_{3} 4=1$ i.e. when $12+4=16$ is divided by 3 , remainder 1.
$18+4=2$ i.e. when $18+4=22$ is divided by 4 remainder 2.

Multiplication Modulo ' n '

Let $\mathrm{x}, \mathrm{y} \in \mathrm{z}$ and n is a positive integer. Then multiplication modulo n is denoted by (x_{n}), is defined by
$x x_{n} y=r,(0 \leq r<n)$ where r is remainder when $x \times y$ is divided by n.
e.g. $3 x_{2} 2=0$ i.e. when $3 \times 2=6$ is divided by 2 , remainder is 0 .
$7 \times{ }_{3} 5=2$ when $7 \times 5=35$ is divided by 3 , reminder is 2 .
3. Prepare a Caley's table for the usual multiplication operation on the set $S=\{1,-1$, $\mathrm{i},-\mathrm{i}\}$. Is this operation a binary operation?

Solution:

x	1	-1	i	-i
1	1	-1	i	-i
-1	-1	1	-i	i
i	i	-i	-1	1
-i	-i	i	1	-1

Since, it is closed, the operation is a binary operation.

38 Kriti's Principles of Mathematics-XII

4. A residue class is given as $\mathbb{Z}_{3}=\{0,1,2\}$ prepare a Caley's table for multiplication modulo 3. Is the operation a binary operation?

Solution:

Given $z_{3}=\{0,1,2\}$
We need to prepare a Caleys table for multiplication modulo 3.

x_{3}	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Since, it is closed, the multiplication modulo 3 on the set $z=\{0,1,2$,$\} is a binary.$
5. Define a binary operation. Use Caley's table to show that the multiplication operation on $S=\{0,1\}$ is binary operation.

Solution:

An operation ' $*$ ' is said to be a binary on a set S if $\forall a, b \in S$ then $a * b \in S$. In other words, an operation $*$ is said to be binary if it is closed.

x	0	1
0	0	0
1	0	1

Here, $0 \times 0=0$
$0 \times 1=0$
$1 \times 0=0$
$1 \times 1=1$
i.e. $\forall a, b \in S$
$a \times b \in S$
' x ' is a binary operation on S.
6. For all $x, y \in \mathbb{Z}$, an operation is defined by $x * y=x+y-2$ where \mathbb{Z} is the set of integers. Is the operation communicative? Associative? Is it closure? Is the operation a binary one? Justify your answer.

Solution:

$\forall x, y \in Z$

$$
x * y=x+y-2 \text { also belongs to } Z
$$

i.e. $\forall x, y \in Z \Rightarrow x * y=x+y-2 \in Z$
\therefore ' $*$ ' is closed.
Since it is closed, it is a binary.
$x * y=x+y-2=y+x-2=y * x$
$\therefore \quad \forall \mathrm{x}, \mathrm{y} \in \mathrm{Z}, \mathrm{x} * \mathrm{y}=\mathrm{y} * \mathrm{x}$ is proved.
' $*$ ' is commutative.
Finally, let $x, y, z \in Z$ then
$x *(y * z)=x *(y+z-2)=x+y+z-2-2=x+y+z-4=x+y-2+z-2$ $=(x * y)+z-2=(x * y) * z$
\therefore This proves that ' $*$ ' also associative.
7. A set M of all 3×2 matrices on which an operation defined by addition operation is performed. Is it a binary operation? Is it associative? If possible find its identity element. Does it have inverse? Justify it.

Solution:

Given, $\mathrm{M}=$ \{set of all 3×2 matrices $\}$
Operation: addition
$\forall A, B \in M, \quad A+B \in M$
because addition of two matrices of order 3×2 is also 3×2 matrix.
Addition operation on set M is closed. It means it is a binary.
Let $A, B, C \in M$ then,
$(A+B)+C=A+(B+C)$
\therefore Associative
Let I be an identify element of $A \in M$. Then,
$A+I=A$
$I=A=A$
$I=$ null matrix

$$
\therefore I=\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right) \quad \therefore \quad A^{1}=-A \in M
$$

8. If possible, solve $2 x+1=6$ in \mathbb{Z}_{7}.

Solution:

$2 x+1=6$ in Z_{7}
or, $2 x_{7} x+71=6$
or, $2 x_{7} x+71+76=6+76$
or, $2 x_{7} x=5$
or, $7 x_{7}\left(2 x_{7} x\right)=4 x_{7} 5$
or, $\left(4 \times_{7} 2\right) \times_{7} \mathrm{X}=4 \times_{7} 5$ (By associative law)
or, $1 \times_{7} x=6$
or, $x=6$

EXERCISE 3.3

1. Identify true and false statements from the followings:
a. The set of natural numbers under multiplication is a group.
b. The set of integers under addition is a group.
c. The set of non-zero rational numbers is a group under multiplication.
d. The set of 2×2 matrices under addition is a group.
e. The set $S=\{0,1,2,3,4\}$ under addition modulo 5 is a group.
f. The set of fourth roots of 1 forms a group under multiplication.
g. The set $A=\{1,-1\}$ doesn't form a group under the addition.
h. The set $S=\{0,1,-1\}$ forms a group under multiplication.
i. The set of even positive numbers under addition is a group.
j. The set $S=\{0,1\}$ under the addition modulo 2 is a group.
k. The set $S=\{0,1\}$ under multiplication is a group.

Solution:

a. Set N (Natural number) Operation: Multiplication ' x '
(N, x) is not a group because there doesn't exist inverse element.
b. $(Z,+)$ is a group
c. $(Q-\{0\}, X)$ is a group
d. Yes
e.

+5	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

40 Kriti's Principles of Mathematics-XII

It is closed, so binary
$(1 * 2) r * 4=3 * 4=2$
$1 *(2 * 4)=1 * 1=2$
$\forall a, b, c \in S,(a * b) \times c=a *(b * c$
\therefore associative holds
$0 \in S$ is an identity element $\forall \mathrm{a} \in \mathrm{S}$.
$\forall x \in S, \exists$ inverse element $y \in S$ such that
$x+5 y=0$
Here, Inverse of 0 is 0
Inverse of 1 is 4
Inverse of 2 is 3
Inverse of 3 is 2
Inverse 4 is 1
$\therefore \quad(\mathrm{S},+5)$ is a group
f. $S=\{1,-1, i,-i\}$
(S, x) is a group
g. yes
h. yes
i. no, identity does not exist.
j. yes
k. yes
2. Construct a Caley's table for the multiplication modulo 3 for the set
$S=\{0,1,2\}$ and show that it is a group.

Solution:

\times_{3}	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Closure Property: $\forall \mathrm{a}, \mathrm{b} \in \mathrm{s}$
$a x_{3} b \in s$
$0 x_{2} 0=9$
$0 x_{3} 1=1$
$1 x_{3} 1=1$
$0 x_{3} 2=0$
$1 x_{3} 0=0$
$2 x_{3} 1=2$
$1 x_{3}-2=-2$
$2 x_{3} 0=0$

Associative Property

$0 x_{3}\left(1 \times_{3} 2\right)=0 x_{3} 2=0$
$\left(0 x_{3} 1\right) \times_{3} 2=\left(0 x_{3} 2\right)=0$
$\left.\left(2 x_{3} 1\right) \times_{3} 2\right)=2 \times_{3} 2=1$
$\therefore \quad \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{S},(\mathrm{a} * \mathrm{~b}) * \mathrm{c}=\mathrm{a} *(\mathrm{~b} * \mathrm{c})$
Existence of identity
$\forall a \in S, \exists \mathrm{e} \in \mathrm{S}$ s.t. $\mathrm{a} \times_{3} \mathrm{e}=\mathrm{a}$
Existence of inverse:
$\forall \mathrm{a} \in \mathrm{S}, \exists \mathrm{a}^{\prime} \in \mathrm{S}$ s.t. $\mathrm{a} * \mathrm{a}^{\prime}=\mathrm{e}$
$a * a^{1}=e$
$\therefore \quad\left(\mathrm{S}, \times_{3}\right)$ is a group.
3. Use Caley's table to show that the set $S=\{1,-1, i,-i\}$ is a group under multiplication.

Solution:

Given (S, \times) where $s=\{1,-1,1,-1\}$
For closure
For any $\mathrm{a}, \mathrm{b} \in \mathrm{s} \mathrm{a} * \mathrm{~b}=\mathrm{ab} \in \mathrm{s}$
e.g. $1 \times 1=1 \in s$
$-1 \times-1=1 \in S$
$-1 \times i=-i \in S$
$i \times i=i^{2}=-1 \in S$
$-i \times i=-i^{2}=1 \in S$

So, for any two elements of S, the new element after operating also must belong to sets. So it is closed.
For associatively,
$(1 \times 1 \times-i=1 \times-i=-i \quad 1 \times(1 \times-i)=1 \times-i=-1$
$\therefore(1 \times 1) \times-\mathrm{i}=1 \times(1 \times-\mathrm{i})$
Similarly others follows
That is $\forall a, b, c \in s \Rightarrow(a \times b) \times c=a \times(b \times c)$
\therefore It is associative.

For existence of identify:

Let $1 \in s$ then $1 \times 1=1$
Let $-\mathrm{i} \in \mathrm{S}$ then $-\mathrm{i} \times 1=-\mathrm{i}$
Let $\mathrm{i} \in \mathrm{s}$ then $\mathrm{i} \times 1=\mathrm{i}$
Let $-1 \in \mathrm{~s}$ then $-1 \times 1=-1$
$\therefore \quad-1$ is an identify element of any element $\in \mathrm{S}$.
For existence of inverse:
For $1 \in \mathrm{~S} \quad 1 \times 1=1 \quad \therefore 1$ is inverse of 1
For $-1 \in \mathrm{~S} \quad-1 \times-1=12 \quad \therefore-1$ is inverse of -1
For $\mathrm{i} \in \mathrm{s} \quad \mathrm{i} \times-\mathrm{i}=1 \quad \therefore$ - is inverse of i
For $-i \in s \quad-i \times i=1 \quad \therefore i$ is inverse of $-i$
Therefore, $\forall \mathrm{a} \in \mathrm{s} \exists \mathrm{a}^{\prime} \in$ s.t. $\mathrm{a} \times \mathrm{a}^{\prime}=\mathrm{e}$
Hence, the algebraic structure (S, \times) satisfies all the properties (i.e. closure, associativity, existence of identity and existence of inverse)
$\therefore \quad(\mathrm{S}, \times)$ is a group
4. Define the followings:
a. Algebraic structure
b. Semi-group
c. Group
e. Abelian group
d. Monoid
f. Trivial group

Solution:

a. Algebraic Structure:

An structure of the form ($\mathrm{G}, *$) is known as an algebraic structure. Where G is a non-empty set and ' $*$ ' is a binary operation.
e.g. $(G,+),(G, x),(Z,-)(Q,+)$ etc are some examples of an algebraic structure.
b. Semi-group: An algebraic structure ($\mathrm{G}, *$) is said to be a semi-group. It satisfies the associative property.
e.g. $\left(z^{+},+\right)$is a semi-group but $(z,+)$ is not.
c. Group: An algebraic structure ($\mathrm{G}, *$) is said to be a group if it satisfies the following for properties.

- Closure
- Associative
- Existence of identity
- Existence of inverse
d. Monoid: An algebraic structure ($G, *$) is said to be a monoid if it satisfies associativity and existence of an identity. e.g. (Z, \times)
e. Abelian group: A group ($\mathrm{G}, *$) is said to be an abelian of it satisfies the commutative property.
f. Trivial group: A group $(G, *)$ is said to be a trivial group if G consists of a single element.

42 Kriti's Principles of Mathematics-XII

5. Show that the set of 2×2 non singular matrices under multiplication is a group.

Solution:

Let $M=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in R\right.$ and $\left.a d-b c \neq 0\right\}$ be the set of 2×2 real nonsingular matrices.
i. $\forall A, B \in M, A B$ is again 2×2 real non-singular matrix. So, M is closed.
ii. $\forall A, B, C \in M, A(B C)=(A B) C$ by matrix algebra. So M is associative under multiplication.
iii. $\forall A \in M$, we get $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ even that $A I=I A=A$. So the identify matrix I exists.
iv. $\forall A \in M$, we get A^{-1} (Since A is non-singular) set. $A A^{-1}-A^{-1} A=I$ where A^{-1} $=\frac{\operatorname{Adj} .(A)}{|A|}$, is known as inverse of A. Hence M is a group.
6. Show that the set of integers \mathbb{Z} forms a group under the operation addition.

Show that $(Z,+)$ is a group.
i. Closure property: $\forall \mathrm{a}, \mathrm{b} \in \mathrm{z}, \mathrm{a}+\mathrm{b} \in \mathrm{Z}$
$\therefore \mathrm{z}$ is closed
ii. Associative: $\forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}$ $(a+b)+c=a+(b+c)$
$\therefore \quad \mathrm{z}$ is associative
iii. Existence of identify: $\forall \mathrm{a} \in \mathrm{z}$, the must exist $0 \in \mathrm{z}$ s.t. $\mathrm{a}+0=\mathrm{a}$
$\therefore \quad 0 \in \mathrm{Z}$ is an identify element.
iv. Existence of inverse: $\forall \mathrm{a} \in \mathrm{Z}$ there must $-\mathrm{a} \in \mathrm{Z}$ s.t. $\mathrm{a}+(-\mathrm{a})=0$
\therefore-a is inverse of a
Hence $(Z,+)$ is a group.
7. Prepare a Cayley's table for the multiplication operation on the set $S=\left\{1, \omega, \omega^{2}\right\}$, where ω is an imaginary cube root of unity and discuss the following:
a. Commutativity on the set
b. Associativity on the set
c. Closure property on the set
d. Existence of identity element
e. Existence of an inverse.

What can you conclude on the basis of the above all?

Solution:

\times	$\mathbf{1}$	ω	ω^{2}
1	1	ω	ω^{2}
ω	ω	ω^{2}	1
ω^{2}	ω^{2}	1	ω

From the above table, s is closed
$(1 \times \omega) \times \omega^{2}=\omega \times \omega^{2}=\omega^{3}=1$
$1 \times\left(\omega \times \omega^{2}\right)=1 \times \omega^{3}=1 \times 1=1$
$\therefore(1 \times \omega) \times \omega^{2}=1 \times\left(\omega \times \omega^{2}\right)$
Again, $\omega \times\left(\omega^{2} \times \omega^{2}\right)=\omega \times \omega^{4}=\omega \times \omega=\omega^{2}$
$\left(\omega \times \omega^{2}\right) \times \omega^{2}=\omega^{3} \times \omega^{2}=1 \times \omega^{2}=\omega^{2}$
$\therefore \omega \times\left(\omega^{2} \times \omega^{2}\right)=\left(\omega \times \omega^{2}\right) \times \omega^{2}$
That is
$\forall a, b, c \in S$
$(a \times b) \times c=a \times(b \times c)$
$\therefore \mathrm{S}$ is associative.

From the table, 1 is an identity element of any element of S.
i.e. $1 \times 1=1$

$$
\begin{aligned}
& \omega \times 1=\omega \\
& \omega^{2} \times 1=\omega^{2}
\end{aligned}
$$

\therefore identity element 1 exist.
Since, $1 \times 1=1$
$\omega \times \omega^{2}=1$
$\omega^{2} \times \omega=1$
\therefore Inverse of 1 is $1 \quad$ Inverse of w is ω^{2}
Inverse of w^{2} is ω
So, there is an existence of an inverse element.
Finally, $1 \times \omega=\omega \times 1=\omega$
$\forall \mathrm{a}, \mathrm{b} \in \mathrm{s} \quad \mathrm{a} \times \mathrm{b}=\mathrm{b} \times \mathrm{a}$
Comutative property satisifies.
Hence, (S, x) is an abelian group.
8. A binary operation on \mathbb{Z} is defined as $a \star b=a+b+2 a b \forall a, b \in \mathbb{Z}, a \neq-\frac{1}{2}$. Is (\mathbb{Z}, \star) a group? Justify your answer.

Solution:

The set: Z
Operation ' $*$ ' defined by $\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}+2 \mathrm{ab}$
a. Since, $a, b \in Z$
$a+b+2 a b$ is also belongs to Z.
$\therefore \quad \mathrm{z}$ is closed
b. $\forall a, b, c \in Z$

$$
\begin{aligned}
a *(b * c) \quad & =a *(b+c+2 b c)=a+b+c+2 b c+2 a(b+c+2 b c) \\
& =a+b+c+2 b c+2 a b+2 c a+4 a b c \\
& =a+b+c+2 a b+2 b c+2 c a+4 a b c \\
\text { Again, }(a * b) * c & =(a+b+2 a b) * c=a+b b+2 a b+c+2(a+b+2 a b) c \\
& =a+b+2 a b+c+2 c a+2 b c+4 a b c \\
& =a+b+c+2 a b+2 b c+2 c a+4 a b c
\end{aligned}
$$

$\therefore \quad \mathrm{a} *(\mathrm{~b} * \mathrm{c})=(\mathrm{a} * \mathrm{~b}) * \mathrm{c}$
$\therefore \quad \mathrm{z}$ is associative
c. Since $\mathrm{a} * 0=\mathrm{a}+0+2 \mathrm{a} 0=\mathrm{a}$
$\forall a \in Z$, the identity element $0 \in Z$ exists.
d. Let d be inverse of a such that $a * d=0$ (identify)

$$
\begin{aligned}
& a+d+2 a d=0 \\
& d+2 a d=-a \\
& d(1+2 a)=-a \\
& d=\frac{-a}{1+2 a} \notin Z
\end{aligned}
$$

Even through
$a \neq-\frac{1}{2}$, if $a=1$ then

$$
d=\frac{1}{3} \notin Z
$$

\therefore Inverse element may not exist. Therefore, $(Z, *)$ is not a group.

44 Kriti's Principles of Mathematics-XII

9. Define a group. The binary operation * is defined on a set $S=\{a,, b c\}$ by the following Caley's table.

\star	a	b	c
a	a	b	c
b	b	c	a
c	c	a	b

Project your ideas about the identity element and inverse of the elements in the set. Is (S, \star) a group? Why?

Solution:

For definition of group look at 4(c)
From the given Calyes table,
S is closed.
$\forall a, b, c \in S$
$a *(b * c)=a * a=a$
$(a * b) * c=b * c=a$
$\therefore a *(b * c)=(a * b) * c$
$\therefore \mathrm{S}$ is associative
From the table, $\mathrm{a} * \mathrm{a}=\mathrm{a}$ $b * a=b$

$$
c * a=c
$$

\therefore a is identity element.
From the table,

$$
\mathrm{a} * \mathrm{a}=\mathrm{a} \quad \mathrm{~b} * \mathrm{c}=\mathrm{a} \quad \mathrm{c} * \mathrm{~b}=\mathrm{a}
$$

\therefore inverse of a is itself a inverse of b is itself c
Therefore, inverse elements exists.
Since, S satisfies closure property, associative property, existence of identity and existence of inverse, ($\mathrm{S}, *$) is a group.
10. Discuss whether the set of integers is a group
a. with respect to the subtraction? b. with respect to the multiplication?

Solution:

a. Set: Z

Operation: -

Now, we check $(Z,-)$ is a group or not.
$\forall a, b \in Z, a * b=a-b \in Z$
$\therefore \mathrm{z}$ is closed.

$$
\forall a, b, c \in Z,(a-b)-c \neq a-(b-c)
$$

e.g. let $a=-1, b=-3$ and $c=5$

Then, $(a-b)-c=(-1+3)-5=2-5=-3$

$$
a-(b-c)=-1-(-3-5)=-1+8=7
$$

$\therefore \quad(a-b)-c \neq a-(b-c)$
$\therefore \mathrm{Z}$ is not associative
Since associative property is not satisfied.
The set of integers with subtraction operation is not a group.
b. $\quad(z, x) \Rightarrow$ Group (check)
$\forall a, b \in z, a \times b \in z s o$, closure is satisfied.
$\forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{z},(\mathrm{a} \times \mathrm{b}) \times \mathrm{c}=\mathrm{a} \times(\mathrm{b} \times \mathrm{c})$
$\therefore \quad \mathrm{z}$ is associative.
Let $\mathrm{a} \in \mathrm{z}$ then $\mathrm{a} \times 1=\mathrm{a}$
\therefore so there must exist $1 \in z$ s.t. $\mathrm{a} \times 1=$ a so identify element 1 exists.

If b is inverse of $a \in z$ then $a \times b=1$
$\mathrm{b}=\frac{1}{\mathrm{a}} \notin \mathrm{Z}$
Since, if $a=2$ then $b=\frac{1}{2} \notin Z$
Therefore, there is no existence of inverse element.
$\therefore \quad(Z, \times)$ is not a group.
11. Prove that the set of all three dimensional vectors forms a group under the operation addition.

Solution:

Let $V=\left\{\left(a_{1}, a_{2}, a_{3}\right): a_{1} a_{2} a_{3} \in R\right\}$ be a set of 3 dimensional vectors.
Now, we have to show that $(v,+)$ is a group.
$\forall \mathrm{v}_{1} \mathrm{v}_{2} \in \mathrm{v} \quad \mathrm{v}_{1}+\mathrm{v}_{2} \in \mathrm{~V}$
Since addition of two 3-dimention vectors is also 3-dimentional
$\therefore \mathrm{v}$ is closed.
$\forall \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3} \in \mathrm{~V}$, then it is obvious that $\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)+\mathrm{v}_{3}=\mathrm{v}_{1}+\left(\mathrm{v}_{2}+\mathrm{v}_{3}\right)$
\therefore associative property also holds.
$\forall \mathrm{v}_{1} \in \mathrm{v}$ of 3 dimensional null vector
$(0,0,0)$ s.t. $v_{1}+(0,0,0)=v_{1}$
$\therefore \quad$ Identity element $(0,0,0)$ exists.
$\forall \mathrm{v}_{1} \in \mathrm{~V}, \exists-\mathrm{v}_{1} \in \mathrm{~V}$ s.t. $\mathrm{v}_{1}+\left(-\mathrm{v}_{1}\right)=(0,0,0)$
$\therefore \quad$ inverse element also exists.
Hence, $(\mathrm{V},+)$ is a group.
12. Show that the set of all positive rational numbers form an Abelian group under the composition defined by $a \star b=\frac{a b}{4} ; a, b \in \mathbb{Q}^{+}$

Solution:

i. Closure property:
$\forall \mathrm{a}, \mathrm{b} \in \mathrm{Q}^{+}, \quad \mathrm{a} * \mathrm{~b}=\frac{\mathrm{ab}}{4} \in \mathrm{Q}^{+}$
$\therefore \mathrm{Q}^{+}$is closed.
ii. Associative property:
$\forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Q}^{+}$then $(\mathrm{a} * \mathrm{~b}) * \mathrm{c}=\left(\frac{\mathrm{ab}}{4}\right) * \mathrm{c}=\frac{\mathrm{abc}}{\frac{4}{4}}=\frac{\mathrm{abc}}{16}$
$a *(b * c)=a *\left(\frac{b c}{4}\right)=\frac{a b c}{\frac{4}{4}}=\frac{a b c}{16}$
$\therefore \quad(\mathrm{a} * \mathrm{~b}) * \mathrm{c}=(\mathrm{b} * \mathrm{c})$
\therefore associative property holds
iii. Existence of identity

Let e be an identify of $a \in Q^{+}$
Then, $\mathrm{a} * \mathrm{e}=\mathrm{a}$
$\frac{\mathrm{ae}}{4}=\mathrm{a}$
$a \mathrm{a}=4 \mathrm{a}$
$a e-4 a=0$
$a(e-4)=0$
$e=4 \in Q^{+}$since $a \neq 0$

46 Kriti's Principles of Mathematics-XII

Identify element exists.
iv. Existence of inverse:
let b be an inverse of $a \in Q^{+}$
such that, $a * b=e$
$\frac{a b}{4}=4$
$a b=16$
$b=\frac{16}{a} \in Q^{+}$
\therefore inverse element $\mathrm{b} \in \mathrm{Q}^{+}$exists.
Hence, $\left(Q^{+}, *\right)$ is a group.
Where $*$ is defined by $a * b=\frac{a b}{4}$
Further, $\forall \mathrm{a}, \mathrm{b} \in \mathrm{Q}^{+}$
$a * b=\frac{a b}{4}=\frac{b a}{4}=b * a$
\therefore commutative property is also satisfied. Therefore, $\left(\mathrm{Q}^{+}, *\right)$ is an abelian group.
13. If P be the set of all non-empty sub sets of X under the binary operation \star defined by the relation $A \star B=A \cup B \forall A, B \in X$. Is P a group?

Solution:

Given,
$P=\{$ non empty subsets of $X\}$
Is (P, U) is a group?
$\forall P_{1} P_{2} \in P$ then $P_{1} * P_{2}=P_{1} U P_{2} \in P$
$\therefore \mathrm{P}$ is closed.
$\forall P_{1}, P_{2}, P_{3} \in P,\left(P_{1} \cup P_{2}\right) \cup P_{3}=P_{1} \cup\left(P_{2} U P_{3}\right)$
$\therefore \quad \mathrm{P}$ is associative.
$\forall \mathrm{P}_{1} \in \mathrm{P}$ then $\mathrm{P}_{1} \cup \phi=\mathrm{P}_{1}$ but $\phi \notin \mathrm{P}$.
\therefore identity element does not exist.
\therefore this is not a group.

CHAPTER 4

COMPLEX NUMBER

EXERCISE 4.1

1. Find cube roots of
a. -1
b. 8

Solution:

a. Let, z be the cube root of -1
$z^{3}=-1$
or, $z^{3}+1=0$
or, $(z)^{3}+(1)^{3}=0$
or, $\left.(z+1)(z)^{2}-z+1\right)=0$
Either,
$z=-1$
$z^{2}-z+1=0$
Comparing equation (i) with $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$
$\therefore a=1, \therefore b=-1, c=+1$
Now,
$x=\frac{b \pm \sqrt{b^{2}-4 a c}}{2 a}=1 \pm \frac{\sqrt{1-4 \times 1 \times 1}}{2 \times 1}=\frac{1 \pm \sqrt{-3}}{2}=\frac{1 \pm \sqrt{3} i}{2}$
Taking positive
Taking negative
$x=\frac{1+\sqrt{3} i}{2}$
$x=\frac{1-\sqrt{3} i}{2}$
Here, z is the value of x.
Hence, the cube root of unity is $-1, \frac{1+\sqrt{3} i}{2}$ and $\frac{1-\sqrt{3} i}{2}$
b. Here,

Let, z be the cube root of 8
So, $z^{3}=8$
or, $(z)^{3}-(2)^{3}=0$
or, $(z-2)\left(z^{2}+2 z+4\right)=0$
Either,
$z=2$
$z^{2}+22+4=0$
Comparing equation (i) with $a z^{2}+b z+c=0$
So, $a=1, b=2, c=4$
Now,
$z=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-2 \pm \sqrt{4-4 \times 1 \times 4}}{2 \times 1}=\frac{-2 \pm \sqrt{4-16}}{2}$
$=\frac{-2 \pm \sqrt{-12}}{2}=\frac{-2 \pm 2 \sqrt{3} i}{2}=-1 \pm \sqrt{3} i$

Taking positive,
$z=-1+\sqrt{3} i$

Hence, The required cube roots of 8 are $2,-1+\sqrt{3} i$ and $-1-\sqrt{3} i$
2. Solve:
a. $z^{4}=1$
b. $\mathrm{z}^{4}=-1$
c. $z^{6}=1$

48 Kriti's Principles of Mathematics-XII

Solution:

a. Here, $z^{4}=1$
or, $(z)^{4}-(1)^{4}=0$
or, $\left(z^{2}\right)^{2}-\left(1^{2}\right)^{2}=0$
or, $\left(z^{2}-1\right)\left(z^{2}+1\right)=0$
or, $(z-1)(z+1)\left(z^{2}+1\right)=0$
Either,
or, $z=1$,
or, $z=-1$
or, $z^{2}+1=0$
or, Comparing equation (i) with $a z^{2}+b z+c=0$
$\therefore a=1, b=0, c=1$
Now, $\mathrm{z}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}=\frac{0 \pm \sqrt{0-4 \times 1 \times 1}}{2 \times 1}=\frac{0 \pm \sqrt{-4}}{2}=\frac{0 \pm 2 \mathrm{i}}{2}= \pm \mathrm{i}$
Taking positive Taking negative

z = i
 $z=-i$

Hence, The required value of z is ± 1 and $\pm i$.
b. Here,

$$
z^{4}=-1
$$

or, $z^{4}=-1+i \times 0$
or, $z^{4}=\cos 180^{\circ}+i \sin 180^{\circ}$
or, $z^{4}=\left\{\cos \left(\mathrm{k} \cdot 360+180^{\circ}\right)+\mathrm{i} \sin \left(\mathrm{k} \cdot 360^{\circ}+180\right)\right\}$
or, $z=\left\{\cos \left(k .360^{\circ}+180^{\circ}\right)+i \sin \left(k .360^{\circ}+180^{\circ}\right)\right\}^{1 / 4}$
$=\cos \left(\frac{\mathrm{k} \cdot 360+180}{4}\right)+i \sin \left(\frac{\mathrm{k} \cdot 360+180^{\circ}}{4}\right)$
where, $\mathrm{k}=0,1,2$, 3

$$
\text { When } \mathrm{k}=0 \text { then, } \mathrm{z}=\cos \left(\mathrm{k} \cdot 90^{\circ}+45^{\circ}\right)+\mathrm{i} \sin \left(\mathrm{k} .90^{\circ}+45^{\circ}\right)
$$

$$
=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i
$$

when, $\mathrm{k}=1, \mathrm{z}=\cos 135^{\circ}+\mathrm{i} \sin 135^{\circ}=-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \mathrm{i}$
when, $\mathrm{k}=2, \mathrm{z}=\cos 225^{\circ}+\mathrm{i} \sin 225^{\circ}=\frac{-1}{\sqrt{2}}-\frac{1}{\sqrt{2}} \mathrm{i}$
when, $\mathrm{k}=3, \mathrm{z}=\cos 315^{\circ}+i \sin 315^{\circ}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i$
$\therefore z= \pm\left(\frac{1+1}{\sqrt{2}}\right), \pm\left(\frac{1-1}{\sqrt{2}}\right)$
c. Here, $z^{6}=1$
$z^{6}=1^{6}=0$
or, $\left(z^{2}\right)^{3}-(1)^{3}=0$
or, $\left(z^{2}-1\right)\left(z^{4}+z^{2}+1\right)=0$
Either,
$z= \pm 1$
$z^{4}+z^{2}+1=0$
or, $\left(z^{2}\right)^{2}+(1)^{2}+z^{2}=0$
or, $\left(z^{2}+1\right)^{2}-2 z^{2}+z^{2}=0$
or, $\left(z^{2}+1\right)^{2}-(z)^{2}=0$
or, $\left(z^{2}+1-z\right)\left(z^{2}+1+z\right)=0$
Either,
$z^{2}+z+1=0$
$z^{2}-z+1=0$
Comparing equation (i) with $\mathrm{az}^{2}+\mathrm{bz}+\mathrm{c}=0$
$\therefore a=1, b=1, c=1$

$$
z=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-1 \pm \sqrt{1-3 \times 1 \times 1}}{2 \times 1}=\frac{-1 \pm \sqrt{3} i}{2}
$$

Taking positive
Taking negative

$$
z=\frac{-1+\sqrt{3} i}{2}
$$

$$
z=\frac{-1-\sqrt{3} i}{2}
$$

Again, comparing equation (ii) with $\mathrm{az}^{2}+\mathrm{bz}+\mathrm{c}=0$
$\therefore a=1, b=-1, c=1$
Now,
$z=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{1 \pm \sqrt{1^{2}-4 \times 1 \times 1}}{2 \times 1}=\frac{1 \pm \sqrt{1-4}}{2}=\frac{1 \pm \sqrt{3} i}{2}$
Taking positive
Taking negative

$$
\begin{aligned}
& z=\frac{1}{2}+\frac{\sqrt{3} i}{2} \quad z=\frac{1}{2} \\
& \therefore \quad z= \pm 1, \pm\left(\frac{-1-\sqrt{3} i}{2}\right), \pm\left(\frac{1-\sqrt{3} i}{2}\right)
\end{aligned}
$$

3. If w be complex cube roots of unity, show that
a. $\left(1+\omega^{2}\right)^{3}-(1+\omega)^{3}=0$
b. $(2+\omega)\left(2+\omega^{2}\right)\left(2-\omega^{2}\right)\left(2-\omega^{4}\right)=21$
c. $\left(1-\omega+\omega^{2}\right)^{4}\left(1+\omega-\omega^{2}\right)^{4}=256$
d. $\left(1-\omega+\omega^{2}\right)^{6}+\left(1+\omega-\omega^{2}\right)^{6}=128$
e. $(1-\omega)\left(1-\omega^{2}\right)\left(1-\omega^{4}\right)\left(1-\omega^{5}\right)=9$ f. $\quad \frac{a+b \omega+c \omega^{2}}{b+c \omega+a \omega^{2}}=\omega$
g. $\frac{1}{1+2 \omega}+\frac{1}{2+\omega}-\frac{1}{1+\omega}=0$.

Solution:

a. $\left(1+\omega^{2}\right)^{3}-(1-\omega)^{3}=(-\omega)^{3}-\left(-\omega^{2}\right)^{3}=-\omega^{3}-\left(-\omega^{6}\right)=-1-\left(-\left(\omega^{3}\right)^{3}\right)$

$$
=-1-(-1)=-1+1=0
$$

b. $(2+\omega)\left(2+\omega^{2}\right)\left(2-\omega^{2}\right)\left(2-\omega^{4}\right)=(1+1+\omega)\left(1+1+\omega^{2}\right)\left(1+1-\omega^{2}\right)\left(1+1-\omega^{4}\right)$

$$
\begin{aligned}
& =\left(1-\omega^{2}\right)(1-\omega)\left(1+1-\omega^{2}\right)(1+1-\omega)\left(\because \omega^{3}=1\right) \\
& =\left(1-\omega^{2}\right)(1-\omega)\left(2-\omega^{2}\right)(2-\omega) \\
& \left.=1-\omega-\omega^{2}+\omega^{3}\right)\left(4-2 \omega-2 \omega^{2}+\omega^{3}\right)=\left(1-\omega-\omega^{2}+1\right)\left(4-2 \omega-2 \omega^{2}+1\right) \\
& =(2+1)(4+1+2)=3 \times 7=21
\end{aligned}
$$

c. $\left(1-\omega+\omega^{2}\right)^{4} \cdot\left(1+\omega-\omega^{2}\right)^{4}=(-2 \omega)^{4} \cdot\left(-2 \omega^{2}\right)^{4}$

$$
=16 \omega^{3} \cdot \omega \cdot 16 \omega^{3} \cdot \omega^{3} \cdot \omega^{2}=16 \cdot \omega \times 16 \omega^{2}\left[\because \omega^{3}=1\right]=256 \times \omega^{3}=256 \times 1=256
$$

d. $\left(1-\omega+\omega^{2}\right)^{6}+\left(1+\omega-\omega^{2}\right)^{6}=(-2 \omega)^{6}+\left(-2 \omega^{2}\right)^{6}$

$$
\begin{aligned}
& =64 \omega^{3} \cdot \omega^{3}+64 \omega^{3} \cdot \omega^{3} \cdot \omega^{3} \cdot \omega^{3} \\
& =64+64\left[\because \omega^{3}=1\right]=128
\end{aligned}
$$

e. $(1-\omega)\left(1-\omega^{2}\right)\left(1-\omega^{4}\right)\left(1-\omega^{5}\right)=(1-\omega)\left(1-\omega^{2}\right)\left(1-\omega^{3} . \omega\right)\left(1-\omega^{3} . \omega^{2}\right)$
$=(1-\omega)\left(1-\omega^{2}\right)(1-\omega)\left(1-\omega^{2}\right)=\left(1-\omega^{2}\right)^{2}(1-\omega)^{2}$
$=\left(1-2 \omega^{2}+\omega^{4}\right)\left(1-2 \omega+\omega^{2}\right)=\left(1-2 \omega^{2}+\omega\right)\left(1-2 \omega+\omega^{2}\right)=\left(-3 \omega^{2}\right)(-3 \omega)$
$=9 \omega^{3}=9 \times 1\left[\because \omega^{3}=1\right]=9$
f. $\frac{\mathrm{a}+\mathrm{b} \omega+\mathrm{c} \omega^{2}}{\mathrm{~b}+\mathrm{c} \omega+\mathrm{a} \omega^{2}}=\frac{\mathrm{a} \omega^{3}+\mathrm{b} \omega \cdot \omega^{3}+\mathrm{c} \omega^{2} \cdot \omega^{3}}{\mathrm{a} \omega^{2}+\mathrm{c} \omega+\mathrm{b}}=\frac{\omega\left(\mathrm{a} \omega^{2}+\mathrm{b} \omega^{3}+\mathrm{c} \omega^{4}\right)}{\left(\mathrm{a} \omega^{2}+\mathrm{c} \omega+\mathrm{b}\right)}$
$=\omega \frac{\left(a \omega^{2}+b+c \omega\right)}{\left(a \omega^{2}+c \omega+b\right)}\left[\because \omega^{3}=1\right]=\omega$
g. $\frac{1}{1+2 \omega}+\frac{1}{3+\omega}-\frac{1}{1+\omega}=\frac{1}{1+\omega+\omega}+\frac{1}{1+1+\omega}-\frac{1}{1+\omega}$

$$
\begin{aligned}
& =\frac{1}{-\omega^{2}+\omega}+\frac{1}{-\omega^{2}+1}-\frac{1}{1+\omega} \\
& =\frac{1}{\omega(1-\omega)}+\frac{1}{\left(1-\omega^{2}\right)}-\frac{1}{1+\omega}=\frac{1}{\omega(1-\omega)}+\frac{1}{(1-\omega)(1+\omega)}-\frac{1}{(1+\omega)} \\
& =\frac{1+\omega+\omega-\omega+\omega^{2}}{\omega \cdot(1+\omega)(1-\omega)}=\frac{1+\omega+\omega^{2}}{\omega\left(1-\omega^{2}\right)}=0\left[\because 1+\omega+\omega^{2}=0\right]
\end{aligned}
$$

4. If α and β are complex cube roots of unity show that
a. $\alpha^{4}+\beta^{4}+\alpha^{-1} \beta^{-1}=0$
b. $\alpha^{4}+\alpha^{2} \beta^{2}+\beta^{4}=0$

Solution:

a. If $\alpha=\omega, \beta=\omega^{2}$

$$
\begin{aligned}
& \alpha^{4}+\beta^{4}=\frac{1}{\alpha \beta}=\omega^{4}=\left(\omega^{2}\right)^{4}+\frac{1}{\omega \cdot \omega^{2}}=\omega+\left(\omega^{3}\right)^{2} \cdot \omega^{2}+1\left[\because \omega^{3}=1\right] \\
& \quad=\omega+\omega^{2}+1=0\left[\because 1+\omega+\omega^{2}=0\right]
\end{aligned}
$$

b. Here,

$$
\begin{aligned}
\alpha^{4}+\alpha^{2} \beta^{2}+\beta^{4} & =\omega^{4}+\omega^{2} \cdot\left(\omega^{2}\right)^{2}+\left(\omega^{2}\right)^{4}=\omega+\omega^{2} \cdot \omega^{4}+\omega^{8} \\
& =\omega+1+\omega^{2}\left[\because \omega^{3}=1\right]=0\left[\because 1+\omega+\omega^{2}=0\right]
\end{aligned}
$$

5. If $x=a+b, y=a \omega+b \omega^{2}$ and $z=a \omega^{2}+b \omega$, show that
a. $x y z=a^{3}+b^{3}$
b. $x+y+z=0$
c. $x^{3}+y^{3}+z^{3}=3\left(a^{3}+b^{3}\right)$
d. $x^{2}+y^{2}+z^{2}=6 a b$

Solution:

Given,

$$
x=a+b \quad y=a \omega+b \omega^{2} \quad z=a \omega^{2}+b \omega
$$

a. $x y z=(a+b)\left(a \omega+b \omega^{2}\right)\left(a \omega^{2}+b \omega\right)=(a+b)\left(a^{2} \omega^{3}+a b \omega^{2}+a b \omega^{4}+b^{2} \omega^{3}\right)$

$$
\begin{aligned}
& =(a+b)\left\{a^{2} \cdot 1+a b\left(\omega^{2}+\omega^{4}\right)+b^{2} \cdot 1\right\} \\
& =(a+b)\left\{a^{2}+a b\left(\omega+\omega^{2}\right)+b^{2}\right\}\left[\because \omega^{4}=\omega^{3} \cdot \omega=1 \cdot \omega=\omega\right] \\
& =(a+b)\left\{a^{2}-a b+b^{2}\right\}=a^{3}+b^{3}\left[\because \omega^{2}+\omega=-1\right)
\end{aligned}
$$

b. $x+y+z=(a+b)+\left(a \omega+b \omega^{2}\right)+\left(a \omega^{2}+b \omega\right)=a+b+a \omega+b \omega^{2}+a \omega^{2}+b \omega$

$$
=a\left(1+\omega+\omega^{2}\right)+b\left(1+\omega^{2}+\omega\right)=a \times 0+b \times 0=0
$$

c. $x^{3}+y^{3}+z^{3}$
$=x^{3}+y^{3}+z^{3}-3 x y z+3 x y z=(x+y+z)\left(x^{2}\right.$
$\left.+y^{2}+z^{2}-x y-y z-z x\right)+3 x y z$

$$
=0+3\left(a^{3}+b^{3}\right)[\because \text { from (a) \& (b) }]=3\left(a^{3}+b^{3}\right)
$$

d. $x^{2}+y^{2}+z^{2}=(x+y+z)^{2}-2 x y-2 y z-2 x z=0-2(x y+y z+x z)$

$$
\begin{aligned}
= & -2\left\{(a+b)(a \omega+b \omega)^{2}+\left(a \omega+b \omega^{2}\right) \cdot\left(a \omega^{2}+b \omega\right)+(a+b) \cdot\left(a \omega^{2}+b \omega\right)\right\} \\
= & -2\left\{a^{2} \omega+a b \omega^{2}+a b \omega+b^{2} \omega^{2}+a^{2} \omega^{3}+a b \omega^{2}+a b \omega+b^{2}+a^{2} \omega^{2}+a b \omega+\right. \\
& \left.a \omega^{2}+b^{2} \omega\right\} \\
= & -2\left\{a^{2} \omega+a^{2} \omega^{2}+a^{2} \omega^{3}+3 a b \omega^{2}+3 a b \omega+b^{2} \omega^{2}+b^{2}+b^{2} \omega\right\} \\
= & -2\left\{a^{2}\left(\omega+\omega^{2}+1\right)+3(-1) a b+b^{2}\left(\omega^{2}+\omega+1\right)\right\} \\
= & -2\left\{a^{2}\left(\omega+\omega^{2}+1\right)+3(-1) a b+b^{2}\left(\omega^{2}+\omega+1\right)\right\}=-2\{0-3 a b+0\}=6 a b
\end{aligned}
$$

6. Prove that,
a. $\left(\frac{-1+\sqrt{-3}}{2}\right)^{6}+\left(\frac{-1-\sqrt{-3}}{2}\right)^{12}=2$ b. $\left(\frac{-1+\sqrt{-3}}{2}\right)^{8}+\left(\frac{-1-\sqrt{-3}}{2}\right)^{8}=-1$
c. $1+\left(\frac{-1+\sqrt{-3}}{2}\right)^{n}+\left(\frac{-1-\sqrt{-3}}{2}\right)^{n}=\left\{\begin{array}{l}3 \text { if } n \text { is a multiple of } 3 \\ 0 \text { if } n \text { an integer which is not a multiple of } 3\end{array}\right.$

Solution:

a. We know,
$\omega=\frac{-1+\sqrt{3} i}{2}$
$\omega^{2}=\frac{-1-\sqrt{3 i}}{2}$
Now, $\left(\frac{-1+\sqrt{-3}}{2}\right)^{6}+\left(\frac{-1-\sqrt{-3}}{2}\right)^{12}=\omega^{6}+\left(\omega^{2}\right)^{12}=\left(\omega^{3}\right)^{2}+\omega^{24}$
$=1^{2}+\left(\omega^{3}\right)^{8}=1+1^{8}=2$
b. $\left(\frac{-1+\sqrt{-3}}{2}\right)^{8}+\left(\frac{-1-\sqrt{-3}}{2}\right)^{8}=\omega^{8}+\left(\omega^{2}\right)^{8}=\left(\omega^{3}\right)^{2} \cdot \omega^{2}+\left(\omega^{3}\right)^{5} \cdot \omega=\omega^{2}+\omega=-1$
c. Let, $\omega=\frac{-1+\sqrt{-3}}{2} \quad \omega^{2}=\frac{-1-\sqrt{-3}}{2}$

Case-I: If n is multiple of 3 i.e. $n=3 k, k$ is on integer.
$=1+\left(\frac{-1+\sqrt{-3}}{2}\right)^{n}+\left(\frac{-1-\sqrt{-3}}{2}\right)^{n}=1+\omega^{3 k}+\left(\omega^{2}\right)^{3 k}=1+\left(\omega^{3}\right)^{k}+\left(\omega^{3}\right)^{2 k}$
$=1+1^{\mathrm{k}}+1^{2 \mathrm{k}}=1+1+1=2+1=3$ proved.
Case II: n is not a multiple of 3 i.e. $n=3 k+1$
$=1+\left(\frac{-1+\sqrt{-3}}{2}\right)^{n}+\left(\frac{-1-\sqrt{-3}}{2}\right)^{n}=1+(\omega)^{3 k+1}+\left(\omega^{2}\right)^{3 k+1}$
$=1+(\omega)^{3 k+1}+\omega^{6 k}-\omega^{2}=1+\left(\omega^{3}\right)^{k} \cdot \omega+\left(\omega^{3}\right)^{2 k} \cdot \omega^{2}=1+\omega+\omega^{2}=0$ proved.

EXERCISE 4.2

1. Express the following complex numbers in polar form
a. $2+2 \mathrm{i}$
b. $-\sqrt{2}+i \sqrt{2}$
c. -1
d. 3 i
e. -5 i
f. $i-\sqrt{3}$
g. $-3-\sqrt{3} \mathrm{i}$
h. $1-\sqrt{3} \mathrm{i}$
i. $(2,2 \sqrt{3})$
j. $\frac{1}{1-i}$
k. $\sqrt{\frac{1+\mathrm{i}}{1-\mathrm{i}}}$

Solution:

a. Here, $2+2 \mathrm{i}$
b. Here,
$x=2, y=2$
$r=\sqrt{2^{2}+2^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$\operatorname{Tan} \theta=\frac{y}{x}=\frac{2}{2}=1$
$\therefore \theta=45^{\circ}$
It can be written in polar form as $2 \sqrt{2}\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)$

$$
-\sqrt{2}+\sqrt{2} i
$$

Here, $x=-\sqrt{2} \quad y=\sqrt{2}$
$r=\sqrt{(-\sqrt{2})^{2}+(\sqrt{2})^{2}}$
$\operatorname{Tan} \theta=\frac{y}{x}=\sqrt{2+2}$

$$
=\frac{\sqrt{2}}{-\sqrt{2}}=-1=\sqrt{4}=2
$$

$\therefore \quad \theta=135^{\circ}$
In polar form $=2\left(\cos 135^{\circ}+\right.$ is in $\left.135^{\circ}\right)$
c. Here, Let, $z=-1+0 i$

Here, $x=-1$
$y=0$
$r=\sqrt{(-1)^{2}+0}=-\sqrt{1}=1$
$\operatorname{Tan} \theta=\frac{\mathrm{y}}{\mathrm{x}}=\frac{0}{-1}=0$
d. Here,

Let, $z=0+3 i$
Here, $x=0, y=3$
$\operatorname{Tan} \theta=\frac{y}{x} r=\sqrt{(0)^{2}+(3)^{2}}$

$$
=\frac{3}{0}=\infty=\sqrt{9}=3
$$

$\therefore \theta=180^{\circ}$
In polar form $=1\left(\cos 180^{\circ}+i \sin 180^{\circ}\right)$

$$
=\cos 180^{\circ}+\mathrm{i} \sin 180^{\circ}
$$

e. Here,

Let $z=0-5 i$
Here, $x=0$,
$y=-5$
$r=\sqrt{x^{2}+y^{2}}=\sqrt{0+25}=\sqrt{25}=5$
$\operatorname{Tan} \theta=\frac{y}{x}=\frac{-5}{0}=\infty$
$\therefore \theta=270^{\circ}$
Now, In polar form -5i
$=5\left(\cos 270^{\circ}+\mathrm{isin} 270^{\circ}\right)$
g. Here,

Let, $z=-3-\sqrt{3} i$
Here, $x=-3$
$y=-\sqrt{3}$
$\operatorname{Tan} \theta=\frac{y}{x}=\frac{-\sqrt{3}}{-3}=\frac{1}{\sqrt{3}}$
$\therefore \theta=210^{\circ}$
$r=\sqrt{(-3)^{2}+(-\sqrt{3})^{2}}=\sqrt{9+3}=\sqrt{12}$ $=2 \sqrt{3}$
In polar form,
$-3-\sqrt{3} i=2 \sqrt{3}\left(\cos 210^{\circ}+i \sin 210^{\circ}\right)$
i. Here,

Let, $z=2+2 \sqrt{3} i$
Here, $z=2, y=2 \sqrt{3}$
$\operatorname{Tan} \theta=\frac{y}{x}=\frac{2 \sqrt{3}}{2}=\sqrt{3}$
$\therefore \theta=60^{\circ}$
$r=\sqrt{4+4 \times 3}=\sqrt{16}=4$
In polar form,
$(2,2 \sqrt{3})=4\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$
$\theta=90^{\circ}$
In polar form $=3\left(\cos 90^{\circ}+i \sin 90^{\circ}\right)$
f. Here, Let, $z=-\sqrt{3}+i$

Here, $x=-\sqrt{3}$
$y=1$
$r=\sqrt{(-\sqrt{3})^{2}+(1)^{2}}=\sqrt{4}=2$
$\operatorname{Tan} \theta=\frac{\mathrm{y}}{\mathrm{x}}$
or, $\operatorname{Tan} \theta=\frac{1}{-\sqrt{3}}$
or, $\operatorname{Tan} \theta=\operatorname{Tan} 150^{\circ}$
$\therefore \theta=150^{\circ}$
In polar form i- $\sqrt{3}$
$=2\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)$
h. Here,

Let, $z=1-\sqrt{3} i$
Here, $x=1, y=-\sqrt{3}$
$\operatorname{Tan} \theta=\frac{y}{x}$
or, $\operatorname{Tan} \theta=\frac{-\sqrt{3}}{1}$
or, $\operatorname{Tan} \theta=-\sqrt{3}$
or, $\operatorname{Tan} \theta=\operatorname{Tan} 300^{\circ}$

$$
\begin{aligned}
r= & \sqrt{(1)^{2}+(-\sqrt{3})^{2}}=\sqrt{1+3}=\sqrt{4} \\
& =2
\end{aligned}
$$

In polar form,
$1-\sqrt{3} i=2\left(\cos 300^{\circ}+i \sin 300^{\circ}\right)$
j. Here,

Let, $z=\frac{1}{1-i}=\frac{1}{1-i} \times \frac{1+i}{1+i}=\frac{1+i}{1+1}$
$\therefore z=\frac{1}{2}+\frac{1}{2} i$
Here, $x=\frac{1}{2}, y=\frac{1}{2}$
Now, $\operatorname{Tan} \theta=\frac{y}{x}, r=\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}}$

$$
=\frac{\frac{1}{2}}{\frac{1}{2}}=1=\sqrt{\frac{1}{4}+\frac{1}{4}}=\sqrt{\frac{2}{4}}=\frac{1}{\sqrt{2}}
$$

$\therefore \theta=45^{\circ}$
In polar form, $\frac{1}{1-\mathrm{i}}=\frac{1}{\sqrt{2}}\left(\cos 45^{\circ}+\mathrm{i} \sin 45^{\circ}\right)$
k. Here,

Let, $z=\sqrt{\frac{1+i}{1-i}}=\sqrt{\frac{1+i}{1-i}} \times \frac{1+i}{1+i}=\frac{1+i}{\sqrt{2}} \therefore z=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i$

Here, $x=\frac{1}{\sqrt{2}}, y=\frac{1}{\sqrt{2}}$
$r=\sqrt{\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}}=\sqrt{\frac{1}{2}+\frac{1}{2}}=1$
Now, $\operatorname{Tan} \theta=\frac{y}{x}=\frac{\frac{1}{2}}{\frac{1}{2}}=1 \quad \therefore \theta=45^{\circ}$
In polar form, $\sqrt{\frac{1+i}{1-i}}=\cos 45^{\circ}+i \sin 45^{\circ}$
2. Express the following complex numbers in the form $x+i y$
a. $2\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)$
b. $3\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)$
c. $4\left(\cos 240^{\circ}+\mathrm{i} \sin 240^{\circ}\right)$
d. $2 \sqrt{2}\left(\cos 270^{\circ}+\mathrm{i} \sin 270^{\circ}\right)$

Solution:

a. Here,

Let, $2\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)=x+i y$
Equating real and imaginary parts;
b. Here, Let, $3\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)=x+i y$

Equating real and imaginary parts;

$$
x=3 \cos 150^{\circ}
$$

$$
y=3 \sin 150^{\circ}
$$

$$
\begin{array}{rlrl}
x & =2 \cos 30^{\circ} & y & =2 \sin 30^{\circ} \\
& =2 \times \frac{\sqrt{3}}{2} & & =2 \times \frac{1}{2} \\
& =\sqrt{3} & & =1 \\
\therefore & 2\left(\cos 30^{\circ}+i \sin 30^{\circ}\right) & =\sqrt{3}+i .
\end{array}
$$

$$
=3 \times\left(\frac{-\sqrt{3}}{2}\right)
$$

$$
=3 \times \frac{1}{2}
$$

$$
=\frac{-3 \sqrt{3}}{2}
$$

$$
=\frac{3}{2}
$$

$$
\therefore 3\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)=\frac{-3 \sqrt{3}}{2}+\frac{3}{2} i
$$

c. Here, Let, $4\left(\cos 240^{\circ}+i \sin 240^{\circ}\right)=x+i y$

Equating real is imaginary parts;

$$
\begin{aligned}
x & =4 \cos 240^{\circ}, & y=4 \sin 240^{\circ} \\
& =4 \times\left(\frac{-1}{2}\right)=-2 & =4 \times\left(\frac{-\sqrt{3}}{2}\right)=\frac{-\sqrt{3} \times 2}{2}=-2 \sqrt{3} \\
\therefore 4\left(\cos 240^{\circ}+i \sin 240^{\circ}\right)=-2-2 \sqrt{3} i & &
\end{aligned}
$$

d. Here, Let, $2 \sqrt{2}\left(\cos 270^{\circ}+i \sin 270^{\circ}\right)=x+i y$

Equating real and imaginary parts;
$x=2 \sqrt{2} \cos 270^{\circ}=2 \sqrt{2} \times 0=0$
$y=2 \sqrt{2} \sin 270^{\circ}=-2 \sqrt{2}$
$\therefore 2 \sqrt{2}\left(\cos 270^{\circ}+i \sin 270^{\circ}\right)=-2 \sqrt{2} i$
3. Simplify
a. $2\left(\cos 53^{\circ}+i \sin 53^{\circ}\right) \cdot 3\left(\cos 7^{\circ}+i \sin 7^{\circ}\right)$
b. $(\cos 5 \theta+i \sin 5 \theta) .(\cos 3 \theta+i \sin 3 \theta)$
c. $\left(\cos 72^{\circ}+i \sin 72^{\circ}\right)\left(\cos 12^{\circ}-\mathrm{i} \sin 12^{\circ}\right)$
d. $\frac{\cos 50^{\circ}+i \sin 50^{\circ}}{\cos 20^{\circ}+i \sin 20^{\circ}}$
e. $\frac{(\cos 4 \theta+\mathrm{i} \sin 4 \theta) \cdot(\cos 3 \theta-\mathrm{i} \sin 3 \theta)}{\cos 3 \theta+\mathrm{i} \sin 3 \theta}$
f. $\frac{\cos 5 \theta+i \sin 5 \theta}{(\cos 2 \theta+i \sin 2 \theta)^{2}}$
g. $\frac{(\cos 3 \theta+i \sin 3 \theta)^{5}}{(\cos \theta+i \sin \theta)^{7}}$

Solution:

a. Here,
$2\left(\cos 53^{\circ}+i \sin 53^{\circ}\right) \cdot 3\left(\cos 7^{\circ}+i \sin 7^{\circ}\right)=2 \times 3\left\{\cos \left(53^{\circ}+7\right)+i \sin \left(53^{\circ}+7^{\circ}\right)\right\}$

54 Kriti's Principles of Mathematics-XII

$=6 \mathrm{P}\left\{\cos 60^{\circ}+\mathrm{i} \sin 60^{\circ}\right\}=6\left(\frac{1}{2}+\mathrm{i} \times \frac{\sqrt{3}}{2}\right)=3+3 \sqrt{3} \mathrm{i}$
b. $(\cos 5 \theta+i \sin \theta)(\cos 3 \theta+i \sin 3 \theta)=\cos (5 \theta+3 \theta)+i \sin (5 \theta+3 \theta)=\cos 8 \theta+i \sin 8 \theta$
c. $\left(\cos 72^{\circ}+i \sin 72^{\circ}\right)\left(\mid \cos 12-i \sin 12^{\circ}\right)=\left(\cos 72^{\circ}+i \sin 72^{\circ}\right)\{\cos (-12)+i \sin (-12)\}$
$=\cos (72-12)+i \sin (72-12)=\cos 60^{\circ}+i \sin 60^{\circ}=\frac{1}{2}+\frac{\sqrt{3}}{2} i$
d. $\frac{\cos 50^{\circ}+i \sin 50^{\circ}}{\cos 20^{\circ}+i \sin 20^{\circ}}=\cos (50-20)+i \sin (50-20)=\cos 30^{\circ}+i \sin 30^{\circ}=\frac{\sqrt{3}}{2}+\frac{1}{2} i$
$\frac{(\cos 4 \theta+i \sin 4 \theta)(\cos 3 \theta-i \sin 3 \theta)}{\cos 3 \theta+i \sin 3 \theta}=\frac{(\cos 4 \theta+i \sin 4 \theta)(\cos (-3 \theta)+i \sin (-3 \theta))}{\cos 3 \theta+i \sin 3 \theta}$

$$
\begin{aligned}
& =\frac{\cos (4 \theta-3 \theta)+i \sin (4 \theta-3 \theta)}{\cos 3 \theta+i \sin 3 \theta}=\frac{\cos \theta=i \sin \theta}{\cos 3 \theta+i \sin 3 \theta} \\
& =\cos (\theta-3 \theta)+i \sin (\theta-3 \theta)=\cos 2 \theta-i \sin 2 \theta
\end{aligned}
$$

f. $\frac{\cos 5 \theta+i \sin 5 \theta}{(\cos 2 \theta+i \sin 2 \theta)^{2}}=\frac{\cos 5 \theta+i \sin 5 \theta}{(\cos 4 \theta+i \sin 4 \theta)}=\cos (5 \theta-4 \theta)+i \sin (5 \theta-4 \theta)=\cos \theta+$ isin θ
g. $\frac{(\cos 3 \theta+i \sin 3 \theta)^{5}}{(\cos \theta+i \sin \theta)^{7}}=\frac{(\cos 15 \theta+i \sin 15 \theta)}{(\cos 7 \theta+i \sin 7 \theta)}=\cos (15 \theta-7 \theta)+i \sin (15 \theta-7 \theta)$

$$
=\cos 8 \theta+i \sin 8 \theta
$$

4. Using De Moivre's theorem, simplify
a. $\left[3\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\right]^{16}$
b. $\left[2\left(\cos 50^{\circ}+i \sin 50^{\circ}\right)\right]^{3}$
c. $\left[4\left(\cos 6^{\circ}+i \sin 6^{\circ}\right)\right]^{30}$
d. $\left(\cos 70^{\circ}+i \sin 70^{\circ}\right)^{6}$
e. $(1+i)^{15}$
f. $(1-i)^{10}$
g. $(2 i)^{4}$
h. $\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{7}$

Solution:

a. Here, $\left[3\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\right]^{16}=3^{16} \times\left[\cos \left(16 \times \frac{\pi}{4}\right)+i \sin \left(16 \times \frac{\pi}{4}\right)\right]$

$$
=8\left(\frac{-\sqrt{3}}{2}+\frac{1}{2} i\right)=-4 \sqrt{3}+4 i
$$

c. $\left[4\left(\cos 6^{\circ}+i \sin 6^{\circ}\right)\right]^{30}=4^{30}[\cos (6 \times 30)+$ isin $(6 \times 30)]=4^{30}[-1+0]=-4^{30}$
d. $\left(\cos 70^{\circ}+i \sin 70^{\circ}\right)^{6}=\cos (70 \times 6)+i \sin (70 \times 6)=\cos 420^{\circ}+i \sin 420^{\circ}=\frac{1}{2}+\frac{\sqrt{3}}{2} \mathrm{i}$
e. $(1+i)^{15}$

Here, $x=1, y=1$
$\operatorname{Tan} \theta=\frac{y}{x}, r=\sqrt{1^{2}+1^{2}}=\sqrt{2}$
or, $\operatorname{Tan} \theta=\frac{1}{2}$
or, $\operatorname{Tan} \theta=1$
$\therefore \theta=45^{\circ}$
In polar form,
$(1+i)=\sqrt{2}\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)$
f. $(1-i)^{10}$

Let, $\mathrm{z}=1$ - i
Here, $x=1, y=-1, r=\sqrt{(1)^{2}+(-1)^{2}}$
$\operatorname{Tan} \theta=\frac{y}{x}=\sqrt{1+1}=\sqrt{2}$
or, $\operatorname{Tan} \theta=\frac{-1}{1}$
or, $\operatorname{Tan} \theta=-1$
or, $\theta=315^{\circ}$
In polar form,

Now,
$\left.=\sqrt{2}\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)\right\}^{15}$
$=128 \times \sqrt{2}\{\cos (45 \times 15)+i \sin (45 \times 15)\}$
$=128 \sqrt{2}\left(\cos 675^{\circ}+i \sin 675^{\circ}\right)$
$=128 \sqrt{2}\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i\right)=128(1-i)$
g. $(2 i)^{4}$

Let, $z=0+2 i$
Here,
$x=0, y=2$
$\operatorname{Tan} \theta=\frac{y}{x}=\frac{2}{0}=\infty$
$\therefore \theta=90^{\circ}$
$r=\sqrt{0+2^{2}}$
$=\sqrt{4}=2$
In polar form,
$2 \mathrm{i}=2\left(\cos 90^{\circ}+i \sin 90^{\circ}\right)$
Now,
$=\left\{2\left(\cos 90^{\circ}+\mathrm{i} \sin 90^{\circ}\right\}^{4}\right.$
$=2^{4}\left(\cos 360^{\circ}+i \sin 360^{\circ}\right)$
$=16(1+0)=16$
$(1-i)=\sqrt{2}\left(\cos 315^{\circ}+i \sin 315^{\circ}\right)$
Now,
$\left\{\begin{array}{l}\sqrt{2}\left(\cos 315^{\circ}+i \sin 315^{\circ}\right) \\ 25\left(\cos 630^{\circ}+i \sin 630^{\circ}\right)\end{array}\right\}^{10}$
$\left\{25\left(\cos 630^{\circ}+i \sin 630^{\circ}\right)\right\}$
$=2^{5}(0+(-1) \mathrm{i})=25 \times(-1) \mathrm{i}=-32 \mathrm{i}$
h. Here,

Let, $z=\frac{1}{2}+\frac{\sqrt{3}}{2} i$
Here, $x=\frac{1}{x}, y=\frac{\sqrt{3}}{2}$
$\operatorname{Tan} \theta=\frac{y}{x}, \quad r=\sqrt{\left(\frac{1}{1}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}$
$=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}=\sqrt{\frac{1}{4}+\frac{3}{4}}=\sqrt{\frac{4}{4}}=1$
$\therefore \theta=60^{\circ}$
In polar form, $\frac{1}{2}+\frac{\sqrt{3}}{2} i$
$=\cos 60^{\circ}+i \sin 60^{\circ}$
Now, $\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)^{7}$
$=\cos 420^{\circ}+i \sin 720^{\circ}=\frac{1}{2}+\frac{\sqrt{3}}{2} i$
5. Using De Moivre's theorem, find square roots of
a. $-2-2 \sqrt{3} \mathrm{i}$
b. $4+4 \sqrt{3} i$
c. 4 i
d. -i
e. -1
f. $4-4 \sqrt{3}$

Solution:

Let, $z=-2-2 \sqrt{3} i$
Here, $x=-2$
$y=-2 \sqrt{3}$
$r=\sqrt{(-2)^{2}+(-2 \sqrt{3})^{2}}=\sqrt{4+12}=\sqrt{16}=4$
$\operatorname{Tan} \theta=\frac{y}{x}=\frac{-2 \sqrt{3}}{-2}=\sqrt{3}$
$\therefore \theta=240^{\circ}$
In polar form, $z=4\left(\cos 24^{\circ}+\mathrm{isin} 240^{\circ}\right)$
In general polar form;

$$
\begin{array}{r}
\sqrt{z}=4\{\cos (240+360 . k)+i \sin (240+360 . k))^{1 / 2}= \\
\quad 2\left\{\cos \left(\frac{240+360 . k}{2}\right)+i \sin \left(\frac{240+360 \cdot k}{2}\right)\right\}
\end{array}
$$

where, $\mathrm{k}=0$ and 1
When, $k=0$
$\sqrt{z}=2\left(\cos 120^{\circ}+i \sin 120^{\circ}\right)=2\left(\frac{-1}{2}+\frac{\sqrt{3}}{2} i\right)=-1+\sqrt{3} i$
when $\mathrm{k}=1$
$\sqrt{z}=2\left(\cos 300^{\circ}+i \sin 300^{\circ}\right)=2\left(\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)=1-\sqrt{3} i$
$\therefore \sqrt{-2-2 \sqrt{3}} i= \pm(-1+\sqrt{3} i)$
b. Let, $z=4+4 \sqrt{3} i$

Here, $x=4, y=4 \sqrt{3}$
$\operatorname{Tan} \theta=\frac{y}{x}=\frac{4 \sqrt{3}}{4}=\sqrt{3}$
$\therefore \theta=60^{\circ}$
$r=\sqrt{(4)^{2}+(4 \sqrt{3})^{2}}=\sqrt{16+48}=\sqrt{64}=8$
In polar form, $4+4 \sqrt{3} i=8\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$
In general polar form i
$z=8\{\cos (60+360 . k)+i \sin (60+360 . k)\}$
where, $\mathrm{k}=0$ and 1
when, $\mathrm{k}=0$
$\sqrt{z}=2 \sqrt{2}\left\{\cos \left(\frac{60+360 k}{2}\right)+i \sin \left(\frac{60+360 k}{2}\right)\right\}$

$$
=2 \sqrt{2}\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)=2 \sqrt{2}\left(\frac{\sqrt{3}}{2}+\frac{1}{2} i\right)=\sqrt{6}+\sqrt{2} i
$$

when, $\mathrm{k}=1$
$\sqrt{z}=2 \sqrt{2}\left\{\cos 210^{\circ}+i \sin 210^{\circ}\right\}=2 \sqrt{2}\left(\cos 210^{\circ}+i \sin 210^{\circ}\right)=2 \sqrt{2}\left(\frac{-\sqrt{3}}{2} \frac{-1}{2} i\right)$

$$
\begin{aligned}
& \quad=-\sqrt{6}-\sqrt{2} i=-(\sqrt{6}+\sqrt{2} i) \\
& \therefore \sqrt{4+4 \sqrt{3}} i= \pm(\sqrt{6}+\sqrt{2} i)
\end{aligned}
$$

c. Let, $\mathrm{z}=0+4 \mathrm{i}$

Here, $x=0, y=4$
$\operatorname{Tan} \theta=\frac{y}{x}=\frac{4}{0}=\infty$
$\therefore \theta=90^{\circ}$
$r=\sqrt{0+(4)^{2}}=\sqrt{16}=4$
In polar form, $\mathrm{z}=4\left(\cos 90^{\circ}+\mathrm{isin} 90^{\circ}\right)$
In general polar formi
$z=4\{\cos (90+360 . k)+i \sin (90+360 k)\}$
where, $k=0,1$
$\sqrt{\mathrm{z}}=\sqrt{4}\left\{\cos \left(\frac{90+360 . \mathrm{k}}{2}\right)+\mathrm{i} \sin \left(\frac{90+360 \mathrm{k}}{2}\right)\right\}$
$=2\left\{\cos \left(\frac{90+360 \mathrm{k}}{2}\right)+i \sin \left(\frac{90+360 \mathrm{k}}{2}\right)\right\}$
where, $\mathrm{k}=0$
$\sqrt{\mathrm{z}}=2\left\{\cos 45^{\circ}+\mathrm{i} \sin 45^{\circ}\right\}$

$$
=2\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i\right)=\sqrt{2}+\sqrt{2} i
$$

when $k=1$
$\sqrt{\mathrm{z}}=2\left\{\cos 225^{\circ}+\mathrm{i} \sin 22.5^{\circ}\right\}=2\left(\frac{-\sqrt{2}}{2}-\frac{\sqrt{2}}{2} \mathrm{i}\right)=\sqrt{2}-\sqrt{2} \mathrm{i}$
$\therefore \sqrt{4} \mathrm{i}= \pm \sqrt{2}(1+\mathrm{i})$
d. Let, $\mathrm{z}=-\mathrm{i}$

Here, $x=0, y=-1$
$\operatorname{Tan} \theta=\frac{y}{x}=\frac{-1}{0}=-\infty$
$\therefore \theta=270^{\circ}$
$r=\sqrt{0+(-1)^{2}}=\sqrt{1}=1$
In polar form;
$z=\cos \left(270^{\circ}+i \sin 270^{\circ}\right.$
In general polar form;
$z=\cos (270+360 . k)+i \sin (270+360 . k)$
Now, $\mathrm{k}=0$ and 1
$\sqrt{z}=\cos \left(\frac{270+360 . k}{2}\right)+i \sin \left(\frac{270+360 . k}{2}\right)$
when $\mathrm{k}=0$
$\sqrt{z}=\cos 135^{\circ}+i \sin 135^{\circ}=\frac{-1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i=\frac{-1}{\sqrt{2}}(1-i)$
when, $\mathrm{k}=1$
$\sqrt{z}=\cos 315^{\circ}+i \sin 315^{\circ}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i=\frac{1}{\sqrt{2}}(1-i)$
$\therefore \quad \sqrt{-i}= \pm \frac{1}{\sqrt{2}}(1-i)$
e. Let, $z=-1+0 i$

Here, $x=-1, y=0$
$\operatorname{Tan} \theta=\frac{y}{x}=\frac{0}{-1}=0, \quad r=\sqrt{(-1) 2+0}=\sqrt{1}=1$
$\therefore \theta=180^{\circ}$
In polar form,
$z=\cos 180^{\circ}+i \sin 180^{\circ}$
In general polar form;
$z=\cos (180+360 k)+i \sin (180+360 . k)$
where, $\mathrm{k}=0$ and 1
$\sqrt{z}=\cos \left(\frac{180+360 \cdot k}{2}\right)+i \sin \left(\frac{180+360 \cdot k}{2}\right)$
when, $\mathrm{k}=0$
$\sqrt{z}=\cos 90^{\circ}+i \sin 90^{\circ}=0+i$
when, $\mathrm{k}=1$
$\sqrt{z}=\mathrm{a} \cos 270^{\circ}+\mathrm{i} \sin 270^{\circ}=0-1 \mathrm{i}$
$\therefore \sqrt{-1}= \pm \mathrm{i}$
f. Let, $z=4-4 \sqrt{3}$

Here, $x=y, y=-4 \sqrt{3}$
$\operatorname{Tan} \theta=\frac{y}{x}=\frac{-4 \sqrt{3}}{4}=-\sqrt{3}, r=\sqrt{(4)^{2}+\left(-4 \sqrt{3}^{2}\right)}=\sqrt{16+48}=8$
$\therefore \theta=300^{\circ}$
In polar form,
$z=8\left(\cos 300^{\circ}+i \sin 300^{\circ}\right)$
In general form;
$z=8\{\cos (300+360 . k)+i \sin (300+360 . k)\}$
where, $\mathrm{k}=0$ and 1
$\sqrt{z}=2 \sqrt{2}\left\{\cos \left(\frac{300+360 k}{2}\right)+i \sin \left(\frac{300+360 \cdot k}{2}\right)\right\}$
when, $\mathrm{k}=0$

58 Kriti's Principles of Mathematics-XII

$\sqrt{z}=2 \sqrt{2}\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)=2 \sqrt{2}\left(\frac{-\sqrt{3}}{2}+\frac{1}{2} i\right)=-\sqrt{6}+\sqrt{2} i$
when, $\mathrm{k}=1$
$\sqrt{z}=2 \sqrt{2}\left(\cos 330^{\circ}+i \sin 330^{\circ}\right)=2 \sqrt{2}\left(\frac{\sqrt{3}}{2} \frac{-1}{2} i\right)=\sqrt{6}-\sqrt{2} i$
$\therefore \sqrt{4-4 \sqrt{3}} \mathrm{i}= \pm(\sqrt{6}-\sqrt{2} \mathrm{i})$
6. Using De Moivre's theorem, find
a. Cube roots of unity
b. Cube roots of -1
c. Cube roots of i
d. Cube roots of -i
e. fourth roots of unity
f. fourth roots of $-\frac{1}{2}+\frac{\sqrt{3}}{2} i$

Solution:

a. Let, $z=1+0 i$

Here, $x=1, y=0$
$\operatorname{Tan} \theta=\frac{\mathrm{y}}{\mathrm{x}}=\frac{0}{1}=0$ and $\mathrm{r}=\sqrt{(1)^{2}+0}=\sqrt{1}=1$
$\therefore \theta=0^{\circ}$
In polar form,
$z=\cos 0^{\circ}+i \sin 0^{\circ}$
In general polar form;
$z=\cos \left(360 . k+0^{\circ}\right)+i \sin (0+360 . k)$
where, $\mathrm{k}=0$ and 2
$z^{1 / 3}=\{\cos (0+360 . k)+i \sin (0+360 . k)\}^{1 / 3}=\cos (0+120 k)+i \sin (0+120 k)$
when, $\mathrm{k}=0$
$z^{1 / 3}=\cos 0+i \sin 0=1+0=1$
when, $k=1$
$z^{1 / 3}=\cos 120+i \sin 120^{\circ}=\frac{-1}{2}+\frac{\sqrt{3}}{2} i$
when, $\mathrm{k}=2$
$z^{1 / 3}=\cos 240^{\circ}+i \sin 240^{\circ}=\frac{-1}{2} \frac{-\sqrt{3}}{2} i$
\therefore Cube roots of $1=1,\left(\frac{-1}{2}+\frac{\sqrt{3}}{2} i\right),\left(\frac{-1-\sqrt{3}}{2} i\right)$
b. Let, $z=-1+0 i$

Here, $x=-1, y=0$
$\operatorname{Tan} \theta=\frac{y}{x}=\frac{0}{-1}=0, r=\sqrt{(-1)^{2}+0}=\sqrt{1}=1$
$\therefore \theta=180^{\circ}$
In polar form, $z=\cos 180^{\circ}+i \sin 180^{\circ}$
In general polar form;
$z=\cos \left(180^{\circ}+360 . k\right)+i \sin \left(180^{\circ}+360 . k\right)$
where, $k=0,1,2$
$z^{1 / 3}=\cos \left(\frac{180+360 . k}{3}\right)+i \sin \left(\frac{180+360 \cdot k}{3}\right)$
when, $\mathrm{k}=0$
$z^{1 / 3}=\cos 60^{\circ}+i \sin 60^{\circ}=\frac{1}{2}+\frac{\sqrt{3}}{2} i$
when, $\mathrm{k}=1$,
$z^{1 / 3}=\cos 180^{\circ}+i \sin 180^{\circ}=-1+0=-1$
when, $\mathrm{k}=2$
$z^{1 / 3}=\cos 300^{\circ}+\mathrm{i} \sin 300^{\circ}=\frac{1}{2}-\frac{\sqrt{3}}{2} \mathrm{i}$
\therefore Hence, the required cube roots of unity are

$$
-1, \frac{1}{2}+\frac{\sqrt{3}}{2} i \text { and } \frac{1}{2}-\frac{\sqrt{3}}{2} i
$$

c. Let, $z=0+1 i$

Here, $z=0, y=1$
$\operatorname{Tan} \theta=\frac{\mathrm{y}}{\mathrm{x}}=\frac{1}{0}=\infty$
$\therefore \theta=90^{\circ}$
$r=\sqrt{0+1^{2}}=1$
In polar form, $z=\cos 90^{\circ}+i \sin 90^{\circ}$
In general polar form;
$z=\cos (90+360 . k)+i \sin (90+360 . k)$
$z^{1 / 3}=\cos \left(\frac{90+360 . k}{3}\right)+i \sin \left(\frac{90+360 . k}{3}\right)$
when $\mathrm{k}=0$, where, $\mathrm{k}=0,1$ and 2
$z^{1 / 3}=\cos 30^{\circ}+i \sin 30^{\circ}=\frac{\sqrt{3}}{2}+\frac{1}{2} i$
when $\mathrm{k}=1$
$z^{1 / 3}=\cos 150^{\circ}+i \sin 150^{\circ}=\frac{-\sqrt{3}}{2}+\frac{1}{2} i$
when $\mathrm{k}=2$
$z^{1 / 3}=\cos 270^{\circ}+i \sin 270^{\circ}=0-1 i=-i$
Hence, the required cube roots of unity are $-i, \frac{\sqrt{3}}{2}+\frac{1}{2} i$ and $\frac{-\sqrt{3}}{2}+\frac{1}{2} i$
d. Let, $\mathrm{z}=0-\mathrm{i}$

Here, $x=0, y=-1$
$\operatorname{Tan} \theta=\frac{\mathrm{y}}{\mathrm{x}}=\frac{-1}{0}=\infty$
$\therefore \theta=270^{\circ}$
$r=\sqrt{0+(-1)^{2}}=\sqrt{1}=1$
In polar form, $z=\cos 270^{\circ}+i \sin 270^{\circ}$
In general polar form;
$z=\cos (270+360 . k)+i \sin (270+360 . k)$
$z^{1 / 3}=\cos \left(\frac{270+360 . k}{3}\right)+i \sin \left(\frac{270+360 . k}{3}\right)$
where, $\mathrm{k}=0$, 1 and 2
when, $\mathrm{k}=0$
$z^{1 / 3}=\cos 90^{\circ}+i \sin 90^{\circ}=0+1 i=i$
when $\mathrm{k}=1$,
$z^{1 / 3}=\cos 210^{\circ}+i \sin 210=\frac{-\sqrt{3}}{2}-\frac{1}{2} i=\frac{-\sqrt{3}-1 i}{2}$
when $\mathrm{k}=2$
$z^{1 / 3}=\cos .330^{\circ}+i \sin 330^{\circ}=\frac{\sqrt{3}}{2}-\frac{i}{2}=\frac{\sqrt{3}-i}{2}$

60 Kriti's Principles of Mathematics-XII

Hence, the required cube roots of i are $i, \frac{-\sqrt{3}-i}{2}$ and $\frac{\sqrt{3}-i}{2}$
e. Let, $\mathrm{z}=1+0 \mathrm{i}$

Here, $x=1, y=0$
$\operatorname{Tan} \theta=\frac{y}{x}=\frac{0}{1}=0, r=\sqrt{1+0}=\sqrt{1}=1$
$\therefore \theta=0^{\circ}$
In polar form;
In general polar form, $z=\cos (0+360 . k)+i \sin (0+360 k)$
$z^{1 / 4}=\cos \left(\frac{0+360 . k}{4}\right)+i \sin \left(\frac{0+360 . k}{4}\right)$
when $\mathrm{k}=0$, where, $\mathrm{k}=0,1,2$ and 3
$z^{1 / 4}=\cos 0^{\circ}+\operatorname{isin} 0^{\circ}=1+0=1$
when $\mathrm{k}=1$
$z^{1 / 4}=\cos 90^{\circ}+i \sin 90^{\circ}=0+1 i=i$
when $\mathrm{k}=2$
$z^{1 / 4}=\cos 180^{\circ}+i \sin 180^{\circ}=-1+0=-1$
when $\mathrm{k}=3$
$z^{1 / 4}=\cos 270^{\circ}+i \sin 270^{\circ}=0-1 i=-i$
Hence, the required forth roots of unity are ± 1 and $\pm \mathrm{i}$
f. Let, $\mathrm{z}=\frac{-1}{2}+\frac{\sqrt{3}}{2} \mathrm{i}$

Here, $x=\frac{-1}{2}, y=\frac{\sqrt{3}}{2}$
$\operatorname{Tan} \theta=\frac{y}{x}=\frac{\frac{\sqrt{3}}{2}}{\frac{-1}{2}}=\frac{\sqrt{3}}{2} \times \frac{2}{-1}=-\sqrt{3}, r=\sqrt{\left(\frac{-1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}=\sqrt{\frac{1}{4}+\frac{3}{4}}=\sqrt{\frac{4}{4}}=1$
$\therefore \theta=120^{\circ}$
In polar form, $z=\cos 120^{\circ}+i \sin 120^{\circ}$
In general polar form; $\mathrm{z}=\cos (120+360 . \mathrm{k})+\mathrm{isin}\left(120^{\circ}+360 . \mathrm{k}\right)$
$z^{1 / 4}=\cos \left(\frac{120+360 . k}{4}\right)+i \sin \left(\frac{120+360 . k}{4}\right)$
where, $k=0,1,2,3$
when $k=0 \quad z^{1 / 4}=\cos 30^{\circ}+i \sin 30^{\circ}=\frac{\sqrt{3}}{2}+\frac{1}{2} i$
when $\mathrm{k}=1$

$$
z^{1 / 4}=\cos 120^{\circ}+i \sin 120^{\circ}=\frac{-1}{2}+\frac{\sqrt{3}}{2} i=\frac{-1+\sqrt{3} i}{2}
$$

when $\mathrm{k}=2$

$$
z^{1 / 4}=\cos 210^{\circ}+i \sin 210^{\circ}=\frac{-\sqrt{3}}{2}-\frac{1}{2} i=\frac{-\sqrt{3}-1 i}{2}
$$

when $\mathrm{k}=3$

$$
z^{1 / 4}=\cos 300^{\circ}+i \sin 300^{\circ}=\frac{1}{2} \frac{-\sqrt{3} i}{2}=\frac{1-\sqrt{3} i}{2}
$$

Hence, the required fourth roots of unity are $\pm\left(\frac{\sqrt{3}}{2}+\frac{1}{2} i\right)$ and $\pm\left(\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)$
7. Using De Moivre's theorem, solve
a. $\mathrm{z}^{3}+8 \mathrm{i}=0$
b. $z^{4}=-1$
c. $\mathrm{z}^{6}=1$

Solution:

a. Here, $z^{3}+8 \mathrm{i}=0$

Let, $z^{3}=-8 i$
$z^{3}=0-8 i$
Here, $x=0, y=-8$
$\operatorname{Tan} \theta=\frac{y}{x}=\frac{-8}{0}=\frac{-8}{0}=\infty, r=\sqrt{x^{2}+y^{2}}=\sqrt{0+(-8)^{2}}=\sqrt{64}=8$
$\therefore \theta=270^{\circ}$
In polar form, $z=8\left(\cos 270^{\circ}+i \sin 270^{\circ}\right)$
In general polar form;
$z=8\{\cos (270+360 . k)+i \sin (270+360 . k)\}$
$z^{1 / 3}=2\left\{\left(\frac{270+360 . k}{3}\right)+i \sin \left(\frac{270+360 \cdot k}{3}\right)\right\}$
where, $\mathrm{k}=0,1,2$
when $\mathrm{k}=0$
$z^{1 / 3}=\left\{\cos 90^{\circ}+i \sin 90^{\circ}\right\}=2(0+1 i)=2 i$
when $\mathrm{k}=1 \quad \mathrm{z}^{1 / 3}=2\left(\cos 210^{\circ}+i \sin 210^{\circ}\right)=2\left(\frac{-\sqrt{3}}{2}-\frac{1}{2} i\right)=-\sqrt{3}-\mathrm{i}$
when $\mathrm{k}=2$

$$
z^{1 / 3}=2\left(\cos 330^{\circ}+i \sin 330^{\circ}\right)=2\left(\frac{\sqrt{3}}{2}-\frac{1}{2} i\right)=\sqrt{3}-i
$$

Hence, the required cube roots of $-8 i$ are $2 i, \sqrt{3}-i$ and $-(\sqrt{3}+i)$
b. Let, $z^{4}=-1=-1+0 i$

Here, $x=-1, y=0$
$\operatorname{Tan} \theta=\frac{y}{x}=\frac{0}{-1}=0, r=\sqrt{(-1)^{2}+0}=\sqrt{1}=1$
$\therefore \theta=180^{\circ}$
In polar form;
$z=\cos \left(180^{\circ}+i \sin 180^{\circ}\right)$
In general polar form;
$z=\cos (180+360 . k)+i \sin (180+360 . k)$
$z^{1 / 4}=\cos \left(\frac{180+360 . k}{4}\right)+i \sin \left(\frac{180+360 . k}{4}\right)$
when $k=0 \quad z^{1 / 4}=\cos 45^{\circ}+i \sin 45^{\circ}=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i$
when $k=1 \quad z^{1 / 4}=\cos 135^{\circ}+i \sin 135^{\circ}=\frac{-1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i$
when $\mathrm{k}=2$

$$
z^{1 / 4}=\cos 225^{\circ}+i \sin 225^{\circ}=\frac{-1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i
$$

when $\mathrm{k}=3$

$$
z^{1 / 4}=\cos 315^{\circ}+i \sin 315^{\circ}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i
$$

Hence, the required fourth roots of -1 is $\pm\left(\frac{-1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i\right)$ and $\pm\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i\right)$
c. $z^{6}=1$

We have, $z^{6}=1=1+i(0)=\cos 30^{\circ}+i \sin 0^{\circ}$

$$
\begin{array}{ll}
\Rightarrow & z^{6}=\cos 2 n \pi+i \sin 2 n \pi \\
\Rightarrow & z=[\cos 2 n \pi+i \sin 2 n \pi]^{1 / 6}
\end{array}
$$

By De-moivre's theorem

62 Kriti's Principles of Mathematics-XII

$z=\cos \frac{n \pi}{3}+i \sin \frac{n \pi}{3}$
where $\mathrm{n}=0,1,2,3,4,5$
When $n=0$ then the first root of z is,
$z=\cos 0+i \sin 0=1+0=1$
When $n=1$ then the $2^{\text {nd }}$ root of z is,
$z=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}=\frac{1}{2}+i \frac{\sqrt{3}}{2}=\frac{1+i \sqrt{3}}{2}$
When $n=2$ then the $3^{\text {rd }}$ root of z is,
$z=\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}=-\frac{1}{2}+i \frac{\sqrt{3}}{2}=\frac{-1+i \sqrt{3}}{2}$
When $n=3$ then the $4^{\text {th }}$ root of z is
$z=\cos \pi+i \sin \pi=-1+i .0=-1$
When $n=4$ then the $5^{\text {th }}$ root of z is,
$z=\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}=-\frac{1}{2}-i \frac{\sqrt{3}}{2}=\frac{1-i \sqrt{3}}{2}$
When $n=5$ then the $6^{\text {th }}$ root of z is,
$z=\cos \frac{5 \pi}{3}+i \sin \frac{5 \pi}{3}=\frac{1}{2}-i \frac{\sqrt{3}}{2}=\frac{1-i \sqrt{3}}{2}$
Hence, the required six roots of z are
$1,-1, \frac{1+i \sqrt{3}}{2}, \frac{1-i \sqrt{3}}{2}, \frac{-1+i \sqrt{3}}{2}, \frac{-1-i \sqrt{3}}{2}$
8. If $\mathrm{z}=\cos \theta+\mathrm{i} \sin \theta$, show that
a. $\mathrm{Z}^{\mathrm{n}}+\frac{1}{\mathrm{Z}^{\mathrm{n}}}=2 \cos \mathrm{n} \theta$
b. $\mathrm{Z}^{\mathrm{n}}-\frac{1}{\mathrm{Z}^{\mathrm{n}}}=2 \mathrm{i} \sin \mathrm{n} \theta$

Solution:

a. Here, $z=\cos \theta+i \sin \theta$
$z^{n}=\cos n \theta+i \operatorname{sinn} \theta \quad z^{-n}=\cos n \theta-i \sin n \theta$
LHS $z^{n}+\frac{1}{z^{n}}=\cos n \theta+i \operatorname{sinn} \theta+\cos n \theta-i \operatorname{sinn} \theta=2 \cos n \theta$ proved.
b. Here, $z=\cos \theta+i \sin \theta$
$z^{n}=(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \operatorname{sinn} \theta$
$z^{-n}=(\cos \theta+i \sin \theta)^{-n}=\cos n \theta-i \sin n \theta$
LHS $z^{n}-\frac{1}{z^{n}}=z^{n}-z^{-n}=\operatorname{cosn} \theta+i \sin \theta-\operatorname{cosn} \theta+i \sin n \theta=2 i \operatorname{sinn} \theta$ RHS
9. If z_{1} and z_{2} are two complex number, prove that
a. $\quad \arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$
b. $\arg \left(\frac{z_{1}}{z_{2}}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)$
c. $\quad \arg \left(\overline{\mathrm{z}_{1}}\right)=2 \pi-\arg \left(\mathrm{z}_{1}\right)$

Solution:

a. Let, z_{1} and z_{2} be $r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$ respectively.

Then, $z_{1} z_{2}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right) \cdot r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]$ $\therefore \arg \left(z_{1} z_{2}\right)=\theta_{1}+\theta_{2}=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$ proved.
b. Let z_{1} and z_{2} be $r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$ respectively with arg $\left(z_{1}\right)=\theta_{1}$ and $\arg \left(z_{2}\right)=\theta_{2}$.
Now, $\frac{z_{1}}{z_{2}}=\frac{r_{1}\left(\cos \theta_{1}+i \sin \theta_{2}\right)}{r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)}=\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right]$

So, $\arg \left(\frac{z_{1}}{z_{2}}\right)=\theta_{1}-\theta_{2}=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)$ proved
c. Let, $z=r(\cos \theta+i \sin \theta)$
where, $\mathrm{Ag} . \mathrm{z}=\theta$
Then, $\bar{z}=r(\cos \theta-i \sin \theta)$
$\bar{z}=r\{\cos (2 \pi-\theta)+i \sin (2 \pi-\theta)\} \therefore \operatorname{Arg}(\bar{z})=2 \pi-\theta=2 \pi-\operatorname{Arg}(z)$
10. Express the following into the form of $x+i y$
a. $\mathrm{e}^{\frac{\mathrm{i} \pi}{2}}$
b. $e^{\frac{-\mathrm{i} \pi}{6}}$
c. $-5 e^{\frac{-\mathrm{i} \pi}{3}}$

Solution:

a. $e^{i \pi / 2}=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}=0+i(1)=i \quad$ b. $\quad e^{-i \pi / 6}=\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}=\frac{\sqrt{3}}{2}-i \frac{1}{2}$
c. $-5 \mathrm{e}^{-\mathrm{i} \pi / 3}=-5\left[\cos \frac{\pi}{3}-\mathrm{i} \sin \frac{\pi}{3}\right]=-5\left[\frac{1}{2}-\mathrm{i} \frac{\sqrt{3}}{2}\right]=-\frac{5}{2}+\mathrm{i} \frac{\sqrt{3}}{2}$
11. Express the following into the form of re ${ }^{\mathrm{ix}}$
a. $3+4 \mathrm{i}$
b. 3 i
c. $-2-2 \mathrm{i}$
d. $1+i \sqrt{3}$

Solution:

a. To express the complex form into re ${ }^{\mathrm{ix}}$ form firstly, we change into polar form,

Let $3+4 i=r(\cos \theta+i \sin \theta)$
$\Rightarrow r \cos \theta=3$ and $i r \sin \theta=4 i \Rightarrow r \sin \theta=4$
Squaring and adding these two
We get, $r^{2}=25 \quad \therefore r=5$
Also, $\tan \theta=\frac{4}{3} \Rightarrow \theta=\tan ^{-1}\left(\frac{4}{3}\right)=0.927$
\therefore The complex number in exponential form is re ${ }^{\text {it }}$ i.e. $5 e^{0.927 i}$
b. $3 i$

Let $0+3 i=r(\cos \theta+i \sin \theta)$
$\Rightarrow r \cos \theta=0$ and $r \sin \theta=3$
$r^{2}=9 \therefore r=3$
And, $\tan \theta=\frac{3}{0}=\infty=\tan \frac{\pi}{2}$
\therefore The complex number in exponential form is re ${ }^{\mathrm{i} \theta} \mathrm{i} . \mathrm{e} .3 \mathrm{e}^{\mathrm{i} / 2}$
c. $-2-2 i$

Let $-2-2 i=r(\cos \theta+i \sin \theta)$
$\Rightarrow r \cos \theta=-2$ and $r \sin \theta=-2$
$r^{2}=4+4 \Rightarrow r^{2}=8 \therefore r=2 \sqrt{2}$
And, $\tan \theta=\frac{-2}{-2}=1=\tan \frac{5 \pi}{4} \quad \therefore \theta=5 \frac{\pi}{4}$
\therefore The complex number is exponential form is, re ${ }^{\text {i日 }}$ i.e. $2 \sqrt{2} \mathrm{e}^{\mathrm{i} 5 \pi / 4}$
d. $1+i \sqrt{3}$

Let $1+i \sqrt{3}=r(\cos \theta+i \sin \theta)$
$\Rightarrow r \cos \theta=1$ and $r \sin \theta=\sqrt{3}$

$$
r^{2}=4 \Rightarrow r=2
$$

And, $\tan \theta=\sqrt{3}=\tan \frac{\pi}{3}$
\therefore The complex number in exponential form is re ${ }^{i \theta} \mathrm{i} . e .2 \mathrm{e}^{\mathrm{i} / 3}$

CHAPTER 5

QUADRATIC EQUATIONS

EXERCISE 5.1

1. Determine the nature of the roots of the following equations
a. $x^{2}-12 x+40=0$
b. $x^{2}-4 x-3=0$
c. $2 x^{2}-12 x+18=0$
d. $4 x^{2}+8 x-5=0$
e. $x^{2}-16=0$

Solution:

a. Here, $x^{2}-12 x+40=0$ \qquad
Comparing equation (i) with $a x^{2}+b x+c=0$, we get
$\therefore \quad a=1, b=-12, c=40$
Now, $\mathrm{b}^{2}-4 \mathrm{ac}=(-12)^{2}-4 \times 1 \times 40=144-160=-16<0$
Hence, roots are imaginary and unequal.
b. Here, $x^{2}-4 x-3=0$ \qquad (i)

Comparing equation (i) with $a x^{2}+b x+c=0$, we get
$\therefore \quad a=1, b=-4, c=-3$
Now, $\mathrm{b}^{2}-4 \mathrm{ac}=(-4)^{2}-4 \times 1 \times(-3)=16+12=28>0$
Hence, roots are unequal, real and irrational.
c. Here, $2 x^{2}-12 x+18=0$ \qquad
Comparing equation (i) with $\mathrm{ax}^{2}+\mathrm{bx}+=0$, we get
$\therefore \quad a=2, b=-12, c=18$
Now, $b^{2}-4 a c=(-12)^{2}-4 \times 2 \times 18=144-144=0$
Hence, roots are real, equal and rational.
d. Here, $4 x^{2}+8 x-5=0$ \qquad (i)

Comparing equation (i) with $\mathrm{ax}^{2}=\mathrm{bx}+\mathrm{c}=0$, we get,
$\therefore \quad a=4, b=8, c=-5$
Now, $b^{2}-4 a c=(8)^{2}-4 \times 4 \times(-5)=64+80=144>0$ and perfect square
Hence, Roots are real, unequal, rational.
e. Here, $x^{2}-16=0$

Comparing equation (i) with $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$
$\therefore \quad a=1, b=0, c=-16$
Now, $b^{2}-4 \mathrm{ac}=0-4 \times 1 \times(-16)=64>0$ and perfect square
Hence, roots are real, unequal is rational.
2. For what value of the p will the equation $5 x^{2}-\mathrm{p} x+45=0$ have the equal roots?

Solution:

Given equation is $5 x^{2}-p x+45=0 \ldots$ (i)
Comparing equation (i) with
$a x^{2}+b x+c=0$
$\therefore \quad a=5, b=-p, c=45$
Now, for being equal roots;
$b^{2}-4 a c=0$
or, $(-\mathrm{p})^{2}-4 \times 5 \times 45=0$
or, $p^{2}=900$
or, $(p)^{2}=(\pm 30)^{2} \therefore p= \pm 30$
3. Find the value of k so that the equation
a. $x^{2}+(\mathrm{k}+2) x+2 \mathrm{k}=0$ has equal roots
b. $x^{2}-(2 \mathrm{k}-1) x-(\mathrm{k}-1)=0$ has equal roots

Solution:

a. Here,

Comparing equation $x^{2}+(k+2) x+2 k=0$ with $a x^{2}+b x+c=0$
$\therefore \quad a=1, b=k+2, c=2 k$
Now, for being equal roots;
$b^{2}-4 a c=0$
or, $(k+2)^{2}-4 \times 1 \times 2 k=0$
or, $\mathrm{k}^{2}+4 \mathrm{k}+4-8 \mathrm{k}=0$
or, $k^{2}-4 k+4=0$
or, $(k-2)^{2}=0$
$\therefore k=2$
b. Here, Comparing equation $x^{2}-(2 k-1) . x-(k-1)=0$ with $a x^{2}+b x+c=0$. we get,
$\therefore \quad a=1, b=-(2 k-1), c=-(k-1)$
Now, for being equal roots;
$b^{2}-4 a c=0$
or, $\{-(2 \mathrm{k}-1)\}^{2}-4 \times 1 \times\{-(\mathrm{k}-1)\}=0$
or, $4 \mathrm{k}^{2}-4 \mathrm{k}+1+4 \mathrm{k}-4=0$
or, $4 k^{2}-3=0$
or, $\mathrm{k}^{2}=\frac{3}{4} \quad \therefore \mathrm{k}= \pm \frac{\sqrt{3}}{2}$
4. If the equation $\left(1+\mathrm{m}^{2}\right) x^{2}+2 \mathrm{mc} x+\mathrm{c}^{2}-\mathrm{a}^{2}=0$ has equal roots, show that $\mathrm{c}^{2}=\mathrm{a}^{2}(1$ $+\mathrm{m}^{2}$)

Solution:

a. Here, comparing equation $\left(1+m^{2}\right) \cdot x^{2}+2 m c \cdot x+\left(c^{2}-a^{2}\right)=0$ with $a x^{2}+b x+c$ $=0$,
we get,
$\therefore a=1+m^{2}, b=2 m c, c=c^{2}-a^{2}$
Now,
For being equal roots;
$b^{2}-4 a c=0$
or, $(2 m c)^{2}-4\left(1+m^{2}\right) \cdot\left(c^{2}-a^{2}\right)=0$
or, $4 m^{2} c^{2}-4\left\{1\left(c^{2}-a^{2}\right)+m^{2}\left(c^{2}-a^{2}\right)\right\}=0$
or, $m^{2} c^{2}-\left(c^{2}-a^{2}\right)-m^{2} c^{2}+m^{2} a^{2}=0$
or, $-\left(c^{2}-a^{2}\right)=-m^{2} a^{2}$
or, $c^{2}-a^{2}=m^{2} a^{2}$
or, $c^{2}=m^{2} a^{2}+a^{2}$
or, $c^{2}=a^{2}\left(1+m^{2}\right)$ proved.
5. Show that the roots of the equation $\left(a^{2}-b c\right) x^{2}+2\left(b^{2}-c a\right) x+\left(c^{2}-a b\right)=0$ will be equal if either $\mathrm{b}=0$ or $a^{3}+b^{3}+c^{3}-3 a b c=0$

Solution:

Here, comparing $\left(a^{2}-b c\right) \cdot x^{2}+2\left(b^{2}-c a\right) \cdot x+c^{2}-a b=0$ with $A x^{2}+B x+C$ $=0$
$\therefore \quad A=a^{2}-b c, B=2\left(b^{2}-c a\right), c=c^{2}-a b$
For equal roots,
$B^{2}-4 A C=0$
or, $\left\{2\left(b^{2}-c a\right)\right\}^{2}-4\left(a^{2}-b c\right) \cdot\left(c^{2}-a b\right)=0$
or, $\left(b^{2}-c a\right)^{2}-\left(a^{2}-b c\right)\left(c^{2}-a b\right)=0$
or, $b^{4}-2 a b^{2} c+c^{2} a^{2}-a^{2} c^{2}+a^{3} b+b c^{3}-a b^{2} c=0$
or, $a^{3} b+b^{4}+b c^{3}-3 a b^{2} c=0$

66 Kriti's Principles of Mathematics-XII

or, $b\left(a^{3}+b^{3}+c^{3}-3 a b c\right)=0$
Either, $b=0$,
$a^{3}+b^{3}+c^{3}-3 a b c=0$
6. Prove that the roots of the equation $(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=$ 0 are real. Also, prove that the roots are equal if $\mathrm{a}=\mathrm{b}=\mathrm{c}$.

Solution:

Here, given equation is
$(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$
or, $x^{2}-b x-a x+a b+x^{2}-c x-b x+b c+x^{2}-a x-c x+c a=0$
or, $3 x^{2}-2(a+b+c) \cdot x+(a b+b c+c a)=0$
Comparing equation (i) with $A x^{2}+B x+C=0$
$A=3, B=-2(a+b+c), c=a b+b c+c a$
Now, $\mathrm{B}^{2}-4 \mathrm{ac}=0$
or, $\{-2(a+b+c)\}^{2}-4 \times 3(a b+b c+c a)=0$
or, $4\left(a^{2}+b^{2}+c^{2}+a b+b c+c a\right)-12(a b+b c+c a)=0$
or, $\left(a^{2}+b^{2}+c^{2}+a b+b c+c a-3 a b-3 b c-3 c a\right)=0$
or, $\left(a^{2}+b^{2}+c^{2}-2 a b-2 b c-2 c a\right)=0$
or, $(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=0$
Either, $\mathrm{a}=\mathrm{b}, \mathrm{b}=\mathrm{c}, \mathrm{c}=\mathrm{a} \therefore \mathrm{a}=\mathrm{b}=\mathrm{c}$
7. If the roots of the equation $\left(a^{2}+b^{2}\right) x^{2}-2(a c+b d) x+\left(c^{2}+d^{2}\right)=0$ are equal then prove that $\frac{a}{b}=\frac{c}{d}$

Solution:

Here, comparing $\left(a^{2}+b^{2}\right) x^{2}-2(a c+b d) x+\left(c^{2}+d^{2}\right)=0$ with $A x^{2}+B X+C=0$, we get,
$A=a^{2}+b^{2}$
$B=-2(a c+b d)$
$C=c^{2}+d^{2}$

The roots are equal if
$B^{2}-4 A C=0$
or, $\{-2(a c+b d)\}^{2}-4 \times\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=0$
or, $4(a c+b d)^{2}-4\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=0$
or, $a^{2} c^{2}+2 a b c d+b^{2} d^{2}-a^{2} c^{2}-a^{2} d^{2}-b^{2} c^{2}-b^{2} d^{2}=0$
or, $-a^{2} d^{2}+2 a b c d-b^{2} c^{2}=0$
or, $-(a d-b c)^{2}=0$
or, $a d-b c=0$
or, $a d=b c$
or, $\frac{a}{b}=\frac{c}{d} \therefore \frac{a}{b}=\frac{c}{d}$ proved.
8. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are rational and $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$, show that the roots of $(\mathrm{b}+\mathrm{c}-\mathrm{a}) x^{2}+$ $(\mathrm{c}+\mathrm{a}-\mathrm{b}) x+(\mathrm{a}+\mathrm{b}-\mathrm{c})=0$ are rational.

Solution:

Here, given equation is $(b+c-a) \cdot x^{2}+(c+a-b) \cdot x+(a+b-c)=0$
If $a+b+c=0$
Comparing equation (i) with $\mathrm{Ax}^{2}+\mathrm{Bx}+\mathrm{C}=0$
$\mathrm{A}=(\mathrm{b}+\mathrm{c}-\mathrm{a}) \quad \mathrm{B}=(\mathrm{c}+\mathrm{a}-\mathrm{b}) \quad \mathrm{C}=(\mathrm{a}+\mathrm{b}-\mathrm{c})$

$$
\text { Now, } \begin{aligned}
\mathrm{B}^{2}-4 \mathrm{AC} & =(c+a-b)^{2}-4(b+c-a) \cdot(a+b-c) \\
& =(-b-b)^{2}-4(-2 a) \cdot(-2 c)=4 b^{2}-16 a c=4\left(b^{2}-4 a c\right) \\
& =4\left\{b^{2}-4 a(-a-b)\right\}=4\left(b^{2}+4 a^{2}+4 a b\right) \\
& =4(b+2 a)^{2}>0 \text { and a perfect square }
\end{aligned}
$$

Hence, roots are rational.
9. Prove that the roots of the equation $(x-a)(x-b)=k^{2}$ are real for all value of k.

Solution:

Here, given equation is $(x-a)(x-b)=k^{2}$
or, $x^{2}-b x-a x+a b-k^{2}=0$
or, $x^{2}-(a+b) . x+\left(a b-k^{2}\right)=0$.
Comparing equation (i) with $A x^{2}=B X+C=0$, we get,
$A=1, B=-(a+b), C=a b-k^{2}$
Now,

$$
\begin{aligned}
B^{2}-4 A C & =\{-(a+b)\}^{2}-4 \times 1\left(a b-k^{2}\right)=a^{2}+2 a b+b^{2}-4\left(a b-k^{2}\right) \\
& =a^{2}-2 a b+b^{2}+4 a b+4 k^{2}=a^{2}-2 a b+b^{2}+4 k^{2}=(a-b)^{2}+4 k^{2}>0 \text { for } \\
& \text { all } k
\end{aligned}
$$

Hence, roots are real.
10. Show that the roots of the quadratic equation $(b-c) x^{2}+2(c-a) x+(a-b)=0$ are always real.

Solution:

Comparing equation $(b-c) x^{2}+2(c-a) . x+(a-b)=0$ with $A x^{2}+B X+C=0$.

$$
A=(b-c) \quad B=2(c-a) \quad C=(a-b)
$$

Now,

$$
\begin{aligned}
\mathrm{B}^{2}-4 \mathrm{AC} & =4(c-a)^{2}-4(b-c)(a-b)=4\left\{(c-a)^{2}-(b-c)(a-b)^{2}\right\} \\
& =4\left\{c^{2}+a^{2}-2 c a-a b+b^{2}+c a-b c\right\}=4\left\{a^{2}+b^{2}+c^{2}-a b-b c-c a\right\} \\
& =2\left\{2 a^{2}+2 b^{2}+2 c-2 a b-2 b c-2 c a^{2}\right\} \\
& =2\left\{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right\}>0
\end{aligned}
$$

Hence, roots are always real.
11. Show that the roots of the equation $x^{2}+(2 m-1) x+m^{2}=0$ are real if $\mathrm{m} \leq \frac{1}{4}$

Solution:

Here, given equation is $x^{2}+(2 m-1) . x+m^{2}=0$
Comparing equation (i) with $a x^{2}+b x+c=0$, we get,
$a=1, b=(2 m-1), c=m^{2}$
Now, $b^{2}-4 a c$
or, $(2 m-1)^{2}-4 \times 1 \times m^{2}$
or, $4 m^{2}-4 m+1-4 m^{2}$
or, $-(u m-1)$
or, $-(4 m-1)$
The roots will be real if $b^{2}-4 a c$
or, $-4 m+1 \geq 0$
or, $1 \geq 4 \mathrm{~m} \quad \therefore \mathrm{~m} \leq \frac{1}{4}$
12. Show that the roots of the equation $x^{2}+4 a b x+\left(a^{2}+2 b^{2}\right)^{2}=0$ are imaginary.

Solution:

Comparing $x^{2}+4 a b x+\left(\mathrm{a}^{2}+2 \mathrm{~b}^{2}\right)^{2}=0$ with $\mathrm{Ax}+\mathrm{Bx}+\mathrm{C}=0$. We get,
$A=1, B=4 a b, C=\left(a^{2}+2 b^{2}\right)^{2}$
Now, $B^{2}-4 A C=(4 a b)^{2}=4 \times 1 \times\left(a^{2}+2 b^{2}\right)^{2}=16 a^{2} b^{2}-4\left(a^{4}+2 a^{2} b^{2}+4 b^{4}\right)$
$=4\left(4 a^{2} b^{2}-a^{4}-2 a^{2} b^{2}-4 b^{4}\right)=4\left(-a^{4}+2 a^{2} b^{2}-4 b^{4}\right)$
$=-4\left(a^{4}-2 a^{2} b^{2}+4 b^{4}\right)=-4\left(a^{2}-2 b^{2}\right)^{2}<0$
Hence, roots are imaginary.
13. If the roots of the equation $q x^{2}+2 p x+2 q=0$ are real and unequal, prove that the roots of the equation $(p+q) x^{2}+2 q x+(p-q)=0$ are imaginary.

Solution:

Here, $q x^{2}+2 p x+2 q=0$

68 Kriti's Principles of Mathematics-XII

$$
\begin{align*}
& \left.b^{2}-4 a c=(2 p)^{2}-4 \cdot q \cdot 2 q\right]=4 p^{2}-8 q^{2}=4\left(p^{2}-2 q\right)^{2}>0 \ldots \ldots \ldots \text { (i) } \tag{i}\\
& \begin{aligned}
&(p+q) x^{2}+2 q x+(p-q)=0 \\
& b^{2}-4 a c=(2 q)^{2}-4(p+q) \cdot(p-q)=4 q^{2}-4\left(p^{2}-q^{2}\right)=4\left(q^{2}-p^{2}+q^{2}\right) \\
&=-4\left(p^{2}-2 q^{2}\right)<0 \ldots \ldots \ldots \text { (ii) }
\end{aligned}
\end{align*}
$$

The roots of second equation (ii) are imaginary if the roots of first equations are real.
14. If the roots of equation $a(b-c) x^{2}+b(c-a) x+c(a-b)=0$ be equal then show that a, b, c are in HP. (i.e.; $b(a+c)=2 a c$)

Solution:

Here, comparing $(a b-a c) x^{2}+(b c-a b) x+c a-a b=0$ with $A x^{2}+B X+C=0$
$\therefore \quad A=(a b-a c)$
$\therefore B=(b c-a b)$
$\therefore \quad C=(c a-a b)$
Now, $B^{2}-4 A C=0$
or, $(b c-a b)^{2}-4(a b-a c)(c a-a b)=0$
or, $b^{2} c^{2}-2 a b^{2} c+a^{2} b^{2}-4\left\{a^{2} b c-a^{2} b^{2}-a^{2} c^{2}+a^{2} b c\right\}=0$
or, $b^{2} c^{2}-2 a b^{2} c+a^{2} b^{2}-4 a^{2} b c+4 a^{2} b^{2}+4 a^{2} c^{2}-4 a^{2} b c$
or, $(b c+a b)^{2}-4 a b c(a+c)+(2 a c)^{2}=0$
or, $(b c+a b-2 a c)^{2}=0$
or, $b c+a b-2 a c=0$
or, $b c+a b=2 a c$
or, $b(a+c)=2 a c$
This shows that a, b, c are in H.P.

EXERCISE 5.2

1. Form a quadratic equation whose roots are
a. $3,-5$
b. $2, \frac{1}{2}$
c. $2-3 \mathrm{i}, 2+3 \mathrm{i}$

Solution:

a. Let, α and β be the two roots i.e. $\alpha=3, \beta=-5$

Now, $x^{2}-$ (sum of roots) $\cdot x+$ product of roots $=0$
or, $x^{2}-(3-5) \cdot x+3 \times(-5)=0$
or, $x^{2}+2 x-15=0$
Hence, The required quadratic equation is $x^{2}+2 x-15=0$.
b. Here, let, α and β be the two roots i.e. $\alpha=2, \beta=\frac{1}{2}$.

Now, $x^{2}-$ (sum of roots) $x+$ product of roots $=0$
or, $x^{2}-\left(2+\frac{1}{2}\right) x+2 \times \frac{1}{2}=0$
or, $x^{2}-\frac{5 x}{2}+1=0$
or, $2 x^{2}-5 x+2=0$
Hence, the required equation is $2 x^{2}-5 x+2=0$
c. Here, let α and β be the two roots i.e. $\alpha=2-3 i, \beta=2+3 i$

Now, $x^{2}-$ (sum of roots) $x+$ product of roots $=0$
or, $x^{2}-(2-3 i+2+3 i) x+(2-3 i)(2+3 i)=0$
or, $x^{2}-4 x+4+9=0$
or, $x^{2}-4 x+13=0$
Hence, the required quadratic equation is $x^{2}-4 x+13=0$
2. Form a quadratic equation whose one root is
a. $3-\sqrt{5}$
b. 2 i
c. $\quad i \sqrt{3}+1$
d. $\frac{1}{3+\sqrt{5}}$
e. $\frac{1}{3 \mathrm{i}}$

Solution:

a. Here, one root $(\alpha)=3-\sqrt{5}$

Other root $(\beta)=3+\sqrt{5}$
Quadratic equation is $x^{2}-$ (sum of roots) $x+$ product of roots $=0$
or, $x^{2}-(3-\sqrt{5}+3+\sqrt{5}) x+9-5=0$
or, $x^{2}-6 x+4=0$
$\therefore x^{2}-6 x+4=0$
b. Here, one root $(\alpha)=-2 i$

Other root $(\beta)=2 \mathrm{i}$
The required equation is $x^{2}-(\alpha+\beta) x+\alpha \beta=0$
or, $x^{2}-(2 i-2 i) \cdot x-4 i^{2}=0$
or, $x^{2}+4=0$
c. Here, one root $(\alpha)=1+\sqrt{3} i$

Other root $(\beta)=1-\sqrt{3} \mathrm{i}$
The required quadratic equation is
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
or, $x^{2}-(1+\sqrt{3} i+1-\sqrt{3} i) x+1^{2}+(\sqrt{3})^{2}=0$
or, $x^{2}-2 x+1+3=0$
or, $x^{2}-2 x+4=0$
d. Here, One root $(\alpha)=\frac{1}{3+\sqrt{5}}$

Other root $(\beta)=\frac{1}{3-\sqrt{5}}$
The required quadratic equation is,
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
or, $x^{2}-\left(\frac{1}{3+\sqrt{5}}+\frac{1}{(3-\sqrt{5})}\right) x+\frac{1}{3+\sqrt{5}} \frac{1}{3-\sqrt{5}}=0$
or, $x^{2}-\frac{(3-\sqrt{5}+3+\sqrt{5})}{9-5} \cdot x+\frac{1}{9-5}=0$
or, $x^{2}-\frac{6 x}{4}+\frac{1}{4}=0$
or, $4 x^{2}-6 x+1=0$
e. Here,

One root $(\alpha)=\frac{1}{3 i}=\frac{1}{3 i} \times \frac{i}{i}=\frac{i}{3 i^{2}}=-\frac{i}{3}$
Other root $(\beta)=\frac{i}{3}$
The required quadratic equation is,
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
or, $x^{2}-\left(\frac{-i}{3}+\frac{i}{3}\right) x+\left(\frac{-i}{3} \cdot \frac{i}{3}\right)=0$
$\Rightarrow X^{2}-\frac{\mathrm{i}^{2}}{9}=0$

70 Kriti's Principles of Mathematics-XII

$\Rightarrow x^{2}+\frac{1}{9}=0$
$\therefore 9 x^{2}+1=0$
3. Form a quadric equation whose roots are
a. Square the roots of $4 x^{2}+8 x-5=0$
b. Reciprocal of the roots of $3 x^{2}-5 x-2=0$
c. m-times the roots of $x^{2}-b x+c=0$
d. greater by h than the roots of $x^{2}-p x+q=0$.

Solution:

a. Here, let α and β be the roots of $4 x^{2}+8 x-5=0$
$\alpha+\beta=\frac{-8}{4}=-2, \alpha \beta=\frac{-5}{4}$
and α^{2} and β^{2} be the roots of required equation.
$\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=4-2 \cdot \frac{-5}{4}=\frac{13}{2} \quad \alpha^{2} \beta^{2}=(\alpha \beta)^{2}=\left(\frac{-5}{4}\right)^{2}=\frac{25}{16}$
The required quadratic equation is, $x^{2}-\frac{13}{2} \cdot x+\frac{25}{16}=0$
or, $16 x^{2}-104 x+25=0$
b. Here, let α and β be the two roots of $3 x^{2}-5 x-2=0$
$\alpha+\beta=\frac{5}{3}, \alpha \beta=\frac{-2}{3}$
and $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ be the two roots of required equation,
$\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}=\frac{5 / 3}{-2 / 3}=-\frac{-5}{2}$
and $\frac{1}{\alpha} \cdot \frac{1}{\beta}=\frac{1}{\alpha \beta}=\frac{1}{(-2 / 3)}=-\frac{3}{2}$
The required quadratic equation is, $x^{2}-\frac{5}{2} \cdot x-\frac{3}{2}=0$
or, $2 x^{2}+5 x-3=0$
c. Here, let, α and β be the two roots of $x^{2}-b x+c=0$
$\alpha+\beta=\frac{b}{1}, \alpha \beta=c$
or, $\alpha+\beta=b$
and $m \alpha$ and $m \beta$ be the two roots of required equation,
$m \alpha+m \beta=m(\alpha+\beta)=m b, m \alpha . m \beta=m^{2} \alpha \beta=m^{2} \times c$
The required quadratic equation is $x^{2}-m b x+m^{2} c=0$
d. Here, let α and β be the roots of $x^{2}-p x+q=0$

Then, sum of roots $=\alpha+\beta=\frac{-p}{-1}=p \quad$ Product of roots $=\alpha \beta=\frac{q}{1}=q$
Since, The roots of the required equation are by h, so
Sum of roots $=(\alpha+h)+\beta+h=(\alpha+\beta)+2 h=p+2 h$
Product of roots $=(\alpha+h)(\beta+h)=\alpha \beta+(\alpha+\beta) h+h^{2}=q+p h+h^{2}$
The required equation is $x^{2}-(p+2 h) \cdot x+\left(q+p h+h^{2}\right)=0$
4. If one root of the equation $a x^{2}+b x+c=0$ is thrice the other, then show that $3 b^{2}=16 \mathrm{ac}$.

Solution:

a. Here, let α and 3α be the two roots of $a x^{2}+b x+c=0$

Sum of roots, $\alpha+3 \alpha=\frac{b}{a}$
or, $4 \alpha=\frac{b}{a} \quad$ or, $\alpha=\frac{b}{4 a}$
Production of roots, $\alpha \cdot 3 \alpha=\frac{c}{a}$
or, $3 \alpha^{2}=\frac{c}{a}$
or, $\frac{3 b^{2}}{16 a^{2}}=\frac{c}{a}$
or, $3 b^{2}=16 a c$
$\therefore 3 b^{2}=16 a c$ proved.
5. If the roots of the equation $a x^{2}+b x+b=0$ are in the ratio $p: q$, show that
$\sqrt{\frac{p}{q}}+\sqrt{\frac{q}{p}}+\sqrt{\frac{b}{a}}=0$

Solution:

Here, α and β be the roots of $a x^{2}+b x+b=0$ and $\frac{\alpha}{\beta}=\frac{p}{q}$
Then, $\alpha+\beta=\frac{-b}{a}$

$$
\alpha \beta=\frac{b}{a}
$$

Now,

$$
\begin{aligned}
\text { LHS } & =\sqrt{\frac{p}{q}}+\sqrt{\frac{q}{p}}+\sqrt{\frac{b}{a}} \\
& =\sqrt{\frac{\alpha}{\beta}}+\sqrt{\frac{\beta}{\alpha}}+\sqrt{\frac{b}{a}} \\
& =\frac{\alpha+\beta}{\sqrt{\alpha \beta}}+\sqrt{\frac{b}{a}} \\
& =\frac{-\frac{b}{a}}{\sqrt{\frac{b}{a}}}+\sqrt{\frac{b}{a}}=-\sqrt{\frac{b}{a}}+\sqrt{\frac{b}{a}}=0
\end{aligned}
$$

6. If α, β be the roots of the equation $p x^{2}+q x+q=0$, show that
a. $\frac{1}{\alpha}+\frac{1}{\beta}+1=0$
b. $\sqrt{\frac{\alpha}{\beta}}+\sqrt{\frac{\beta}{\alpha}}+\sqrt{\frac{q}{p}}=0$

Solution:

a. Here,

If α, β be the roots of $p x^{2}+q x+q=0$
b. Here, $\alpha+\beta=-\frac{q}{p}$

Then, $\alpha+\beta=\frac{-q}{p}$
$\alpha \beta=\frac{q}{p}$
$\alpha \beta=\frac{q}{p}$

$$
\text { Now, } \mathrm{LHS}=\sqrt{\frac{\alpha}{\beta}}+\sqrt{\frac{\beta}{\alpha}}+\sqrt{\frac{q}{p}}
$$

72 Kriti's Principles of Mathematics-XII

L.H.S. $\frac{1}{\alpha}+\frac{1}{\beta}+1=\frac{\beta+\alpha}{\alpha \beta}+1$
$=\frac{\alpha+\beta}{\sqrt{\alpha \beta}}+\sqrt{\frac{q}{p}}$
$=\frac{\frac{-q}{p}}{\frac{q}{p}}+1=-1+1=0$ R.H.S.
$=\frac{-\frac{q}{p}}{\sqrt{\frac{q}{p}}}+\sqrt{\frac{q}{p}}$
$=-\sqrt{\frac{q}{p}}+\sqrt{\frac{q}{p}}=0$
7. If one root of the equation $a x^{2}+b x+c=0$ is square of other, prove that $b^{3}+a^{2} c+a c^{2}=3 a b c$

Solution:

Let, α be the one root of $a x^{2}+b x+c=0$ then other root be α^{2}.
$\alpha+\alpha^{2}=\frac{-b}{a}$
or, $\alpha \cdot \alpha^{2}=\frac{c}{a}$
or, $\alpha^{3}=\frac{c}{a}$
Cubing on both side of equation (i)
$\left(\alpha+\alpha^{2}\right)^{3}=\left(\frac{-b}{a}\right)^{3}$
or, $\alpha^{3}+\left(\alpha^{2}\right)^{3}+3 \alpha \cdot \alpha^{2}\left(\alpha+\alpha^{2}\right)=\frac{-b^{3}}{a^{3}}$
or, $\alpha^{3}+\left(\alpha^{3}\right)^{2}+3 \alpha^{3}\left(\alpha+\alpha^{2}\right)=\frac{-b^{3}}{a^{3}}$
$\Rightarrow \frac{c}{a}+\frac{c^{2}}{a^{2}}+3 \frac{c}{a} \times-\frac{b}{a}=-\frac{b^{3}}{a^{3}}$
$\Rightarrow a^{2} c+a c^{2}-3 a b c=-b^{3}$
$\therefore b^{3}+a^{2} c+a c^{2}-3 a b c=0$
8. Let α, β be the roots of the equation $x^{2}+p x+q=0$, then find the equation whose roots are
a. $\alpha \beta^{-1}, \alpha^{-1} \beta$
b. $(\alpha-\beta)^{2},(\alpha+\beta)^{2}$
c. $\alpha^{2} \beta^{-1}, \beta^{2} \alpha^{-1}$

Solution:

Let, α and β be the two roots of $x^{2}+p x+q=0 \alpha+\beta=-p, \alpha \beta=q$
a. The roots of required equation are
$\alpha \beta^{-1}$ and $\beta \alpha^{-1}$
Sum of roots $=\alpha \beta^{-1}+\beta \alpha^{-1}=\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta}=\frac{p^{2}-2 q}{q}$
Product of roots $=\alpha \beta^{-1} \times \beta \alpha^{-1}=\frac{\alpha}{\beta} \times \frac{\beta}{\alpha}=1$
The required equation is

$$
x^{2}-\text { (sum of roots) } \cdot x+\text { product of roots }=0
$$

or, $x^{2}-\frac{\left(p^{2}-2 q\right)}{q} \cdot x+1=0$
or, $q x^{2}-\left(p^{2}-2 q\right) x+q=0$
b. Here, $(\alpha-\beta)^{2}$ and $(\alpha+\beta)^{2}$ are the roots of required equation,

Sum of roots $=(\alpha-\beta)^{2}+(\alpha+\beta)^{2}$
$=(\alpha+\beta)^{2}-4 \alpha \beta+(\alpha+\beta)^{2}=2(\alpha+\beta)^{2}-4 \alpha \beta=2 p^{2}-4 q$
Product of roots $=(\alpha-\beta)^{2} \cdot(\alpha+\beta)^{2}=\left\{(\alpha+\beta)^{2}-4 \alpha \beta\right\}(\alpha+\beta)^{2}=\left(p^{2}-4 q\right) \cdot p^{2}$
The required equation is
$x^{2}-($ Sum of roots $) x+$ product of roots $=0$
or, $x^{2}-\left(2 p^{2}-4 q\right) \cdot x+\left(p^{4}-4 p^{2} q\right) \cdot\left(2 p^{2}-4 q\right)=0$
or, $x^{2}-\left(2 p^{2}-4 q\right) \cdot x+p^{2}\left(p^{2}-4 q\right)=0$
or, $x^{2}-2\left(p^{2}-2 q\right) \cdot x+p^{2}\left(p^{2}-4 q\right)=0$
c. $\alpha^{2} \beta^{-1}$ and $\beta^{2} \alpha^{-1}$ be the two roots of required equation,

Sum of roots $=\alpha^{2} \beta^{-1}+\beta^{2} \alpha^{-1}$
$=\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}=\frac{\alpha^{3}+\beta^{3}}{\alpha \beta}=\frac{(\alpha+\beta)\left(\alpha^{2}+\beta^{2}-\alpha \beta\right)}{\alpha \beta}=\frac{-p\left\{(\alpha+\beta)^{2}-3 \alpha \beta\right.}{q}$
$=\frac{-p\left\{p^{2}-3 q\right\}}{q}=\frac{-p^{3}+3 p q}{q}$
Product of roots $=\frac{\alpha^{2}}{\beta} \times \frac{\beta^{2}}{\alpha}=\frac{(\alpha \beta)^{2}}{\alpha \beta}=\alpha \beta=q$
The required equation is,
$x^{2}-$ (sum of roots) $x+$ product of roots $=0$
or, $x^{2}+\frac{P\left(p^{2}-3 q\right)}{q} x+q=0$
or, $q x^{2}+p^{3}-3 p q x+q^{2}=0$
9. Find the value of k so that the equation
a. $2 x^{2}+k x-15=0$ has one root 3 .
b. $3 x^{2}+k x-2=0$ has two roots whose sum is 6
c. $2 x^{2}+(4-k) x-17=0$ has roots equal but opposite in sign.
d. $7 \mathrm{kx}^{2}-12 \mathrm{x}-21=0$ has reciprocal roots.
e. $x^{2}-k x+1=0$ has a root square of another.

Solution:

a. Let, the other root be α then,
$\alpha .3=$ Product of roots $=\frac{-15}{2}$
or, $\alpha=-\frac{5}{2}$
Sum of roots $=\frac{-k}{2}$
or, $\alpha+3=\frac{-k}{2}$
or, $\frac{-k}{2}+3=\frac{-k}{2}$
or, $\frac{-5+6}{2}=\frac{-k}{2}$
or, $\mathrm{k}=-1 \therefore \mathrm{k}=-1$
c. Given,
equation is $2 x^{2}+(4-k) \cdot x-17=0$ If one root $=\alpha$ then other root $=-\alpha$ So that sum of the roots $=0$
Sum of roots $=-\frac{4-k}{2}$
b. Given, equation is $3 x^{2}+k x-2=0$

Sum of roots $=\frac{-k}{3}$
or, $6=\frac{-k}{3}$
$\therefore \mathrm{k}=-18$
d. Let, one root $=\alpha$

Another root $=\frac{1}{\alpha}$
Product of roots $=\frac{c}{a}$
or, $\alpha \cdot \frac{1}{\alpha}=\frac{-21}{7 k}$

74 Kriti's Principles of Mathematics-XII

or, $0=-\frac{4-k}{2}$
or, $7 \mathrm{k}=-21$
or, $0=-4-k$
$\therefore \mathrm{k}=4$
e. Let, α and α^{2} be the two roots of $x^{2}-k x+1=0$

Sum of roots $=\frac{k}{1}$
or, $\alpha+\alpha^{2}=k$
Products of roots $=\frac{1}{1}$
or, $\alpha \cdot \alpha^{2}=1$
or, $\alpha^{3}=1$, or, $\alpha=1$, i.e. $1 \times 1^{2}=k \Rightarrow k=2$
10. The sum of the roots of a quadratic equation is 1 and sum of their square is 13 , find the equation.

Solution:

Here, if α and β be the two roots of equations, then,
$\alpha+\beta=1$, and $\alpha^{2}+\beta^{2}=13$
or, $(\alpha+\beta)^{2}-2 \alpha \beta=13$
or, $1-2 \alpha \beta=13$
or, $2 \alpha \beta=-12$
or, $\alpha \beta=-6$
Now, Sum of roots $=\alpha+\beta=1$
Products of roots $=-6$
The required equation is
$x^{2}-$ (sum of roots) . $x+$ product of roots $=0$
or, $x^{2}-1 . x-6=0$
$\therefore x^{2}-x-6=0$
11. If the roots of the equation $x^{2}+p x+q=0$ are in the same ratio as those of the equation $\mathrm{x}^{2}+l \mathrm{x}+\mathrm{m}=0$. Show that $\mathrm{p}^{2} \mathrm{~m}=l^{2} \mathrm{q}$.

Solution:

Let, α and β be the equation of $x^{2}+p x+q=0$
$\alpha+\beta=-p$
$\alpha \beta=q$
If the roots of $x^{2}+1 x+m=0$ are in same ratio. Let $\mathrm{k} \alpha$ and $\mathrm{k} \beta$ be the roots of
$x^{2}+l x+m=0$
Then, $k \alpha+k \beta=-\ell \Rightarrow k=\frac{-\ell}{-p}=\frac{l}{p}$
$k \alpha \cdot k \beta=m$
or, $k^{2}=\frac{m}{q}$
Now, $\frac{\ell^{2}}{p^{2}}=\frac{m}{q}$
or, $p^{2} m=l^{2} q$
$\therefore \quad \mathrm{p}^{2} \mathrm{~m}=\ell^{2} \mathrm{q}$ proved.
12. If the ratio of roots of the equations $l x^{2}+m x+n=0$ be equal to that of the roots
$l_{1} \mathrm{x}^{2}+\mathrm{m}_{1} \mathrm{x}+\mathrm{n}_{1}=0$ prove that $\frac{\mathrm{m}^{2}}{\mathrm{~m}_{1}{ }^{2}}=\frac{l \mathrm{n}}{l_{1} \mathrm{n}_{1}}$.

Solution:

Let, α and β be the roots of $l x^{2}+m x+n=0$

Then, $\alpha+\beta=\frac{-\mathrm{m}}{\ell}$

$$
\alpha \beta=\frac{n}{\ell}
$$

Again, Let, α^{\prime} and β^{\prime} be the roots of $\ell_{1} x^{2}+m_{1} x+n_{1}=0$
Then, $\alpha^{\prime} \beta^{\prime}=\frac{-m_{1}}{\ell_{1}} \quad \alpha^{\prime} \beta^{\prime}=\frac{n_{1}}{\ell_{1}}$
By the question, $\frac{\alpha}{\beta}=\frac{\alpha^{\prime}}{\beta^{\prime}}$
By componendo and dividendo,
$\frac{\alpha+\beta}{\alpha-\beta}=\frac{\alpha^{\prime}+\beta^{\prime}}{\alpha^{\prime}-\beta^{\prime}}$
or, $\frac{(\alpha+\beta)^{2}}{(\alpha-\beta)^{2}}=\frac{\left(\alpha^{\prime}+\beta^{\prime}\right)^{2}}{\left(\alpha^{\prime}-\beta^{\prime}\right)^{2}}$
or, $\frac{(\alpha+\beta)^{2}}{(\alpha+\beta)^{2}-(\alpha-\beta)^{2}}=\frac{\left(\alpha^{\prime}+\beta^{\prime}\right)^{2}}{\left(\alpha^{\prime}+\beta^{\prime}\right)^{2}-\left(\alpha^{\prime}-\beta^{\prime}\right)^{2}}$
or, $\frac{(\alpha+\beta)^{2}}{4 \alpha \beta}=\frac{\left(\alpha^{\prime}+\beta^{\prime}\right)^{2}}{4 \alpha^{\prime} \beta^{\prime}}$
or, $\frac{\left(\frac{-m}{\ell}\right)^{2}}{4 \frac{n}{\ell}}=\frac{\left(\frac{-m_{1}}{\ell_{1}}\right)^{2}}{\frac{n_{1}}{\ell_{1}}}$
or, $\frac{m^{2}}{4 \ell n}=\frac{m 1^{2}}{4 \ell_{1} n_{1}}$
or, $\frac{m^{2}}{\mathrm{In}}=\frac{m \ell^{2}}{\ell_{1} n_{1}}$, or, $\frac{m^{2}}{m \ell^{2}}=\frac{\ell n}{\ell_{1} n_{1}}$ proved.

EXERCISE 5.3

1. Show that the following pair of equations has a common root.
a. $2 x^{2}+x-3=0$,
$3 x^{2}-4 x+1=0$
b. $3 x^{2}-8 x+4=0$,
$4 x^{2}-7 x-2=0$

Solution:

a. Given, equations are
$2 x^{2}+x-3=0$ and $3 x^{2}-4 x+1=0$
Writing the coefficients of order and repeating the first one.
$3 \rightarrow-4$
The left hand expression of the condition
$(2 \times(-4)-3 \times 1) \cdot(1 \times 1-(-4) \times(-3))=(-8-3) \cdot(1-12)=-11-11=121$
The right hand expression of the condition,
$\{(-3 \times 3)-1 \times 2\}^{2}=(-9-2)=(-11)^{2}=121$
Since, two results are equal, they have common root.
b. Here, given equations are $3 x^{2}-8 x+4=0$ and $4 x^{2}-7 x-2=0$

Writing the coefficients of order and repeating the first one

The left hand expression of the condition,
$=(3 \times(-7)-4 \times(-8) \cdot(-8) \cdot(-2)-(-7) \times 4=(-21+32) \cdot(16+28)=11.44=484$
The right hand expression of the condition
$(4 \times 4-(-2) \times 3)^{2}=(16+6)^{2}=(22)^{2}=484$

76 Kriti's Principles of Mathematics-XII

Since, two results are equal, they have common root.
2. Determine the value of m for which the equations
$3 x^{2}+4 m x+2=0$ and $2 x^{2}+3 x-2=0$ may have a common root.

Solution:

Here, given equations are
$3 x^{2}+4 m x+2=0$ and $2 x^{2}+3 x-2=0$
Writing the coefficients of order and repeating the first one

The left hand expression of the condition,
$=(3 \times 3-2 \times 4 m) \cdot(4 m \cdot(-2))-(3 \times 2)=(9-8 m) \cdot(-8 m-6)$
$=-72 m-54+64 m^{2}+48 m=-24 m+64 m^{2}-54$
The right hand expression of the condition,
$(2 \times 2-(-2) \times 3)^{2}=(4+6)^{2}=100$
$\therefore 64 m^{2}-24 m-54=100$
or, $64 m^{2}-24 m-154=0$
or, $32 m^{2}-12 m-77=0$
or, Comparing equation (i) with $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$
$\therefore \quad a=32, b=-12, c=-77$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{12 \pm \sqrt{144-4 \times 32 \times(-77)}}{2 \times 32}=\frac{12 \pm 100}{64}$
Taking +ve,
$x=\frac{12+100}{64}=\frac{7}{4}$
Taking - ve,

$$
x=\frac{12-100}{64}=\frac{-11}{8}
$$

Here, x is the value of m
So, $m=\frac{7}{4}$ and $\frac{-11}{8}$
3. Find the value of p so that each pair of equations may have a common root
a. $4 x^{2}+p x-12=0,4 x^{2}+3 p x-4=0$ b. $2 x^{2}+p x-1=0,3 x^{2}-2 x-5=0$

Solution:

a. Here, given equation are $4 x^{2}+p x-12=0$ and $4 x^{2}+3 p x-4=0$

Writing the coefficients of order and repeating the first one.

The left hand expression of the condition,

$$
=(4 \times 3 p-4 p) \cdot(-4 p+36 p)=(12 p-4 p) \cdot(32 p)=8 p \cdot 32 p=256 p^{2}
$$

The right hand expression of the condition,
$=(-12 \times 4-(-4) \times 4)^{2}=(-48+16)^{2}=(32)^{2}=1024$
Now, 256 p $^{2}=1024$
or, $p^{2}=4$
$\therefore \quad p= \pm 2$
b. Here, Given equations are
$2 x^{2}+p x-1=0$ and $3 x^{2}-2 x-5=0$
Writing the coefficients of order and repeating the first one,

The left hand expression of the condition,
$=(2 \times(-2)-3 p) \cdot(-5 p-2)=(-4-3 p) \cdot(-5 p-2)$
$=20 p+8+15 p^{2}+6 p=26 p+8+15 p^{2}$

The right hand expression of the condition,
$=((-1) \times 3-(-5) \times 2)^{2}=(-3+10)^{2}=49$
Now,
$15 p^{2}+26 p+8=49$
or, $15 p^{2}+26 p-41=0$
or, $15 p^{2}+41 p-15 p-41=0$
or, $p(15 p+41)-1 p(15 p+41)=0$
or, $(15 p+41)(p-1)=0$
either, $p=1$,
or, $p=\frac{-41}{15}$
4. If the quadratic equations $x^{2}+p x+q=0$ and $x^{2}+p^{\prime} x+q^{\prime}=0$ have a common root show that it must be either $\frac{p q^{\prime}-p^{\prime} q}{q-q^{\prime}}$ or $\frac{q-q^{\prime}}{p^{\prime}-p}$

Solution:

Let, α be the common root of the given equations,
$\alpha^{2}+p \alpha+q=0$
$\alpha^{2}+p^{\prime} \alpha+q^{\prime}=0$
By using cross multiplication method;
$\frac{\alpha^{2}}{p q^{\prime}-q p^{\prime}}=\frac{\alpha}{q-q^{\prime}}=\frac{1}{p^{\prime}-p}$
$\therefore \quad \alpha=\frac{p q^{\prime}-p^{\prime} q}{q-q^{\prime}}, \alpha=\frac{q-q^{\prime}}{p^{\prime}-p}$
\therefore The common root is $\frac{p q^{\prime}-p^{\prime} q}{q-q^{\prime}}$ or $\frac{q-q^{\prime}}{p^{\prime}-p}$
5. If the equations $x^{2}+q x+p r=0$ and $x^{2}+r x+p q=0$ have a common root, prove that $\mathrm{p}+\mathrm{q}+\mathrm{r}=0$

Solution:

Let, α be the common root of the given equations,
$\alpha^{2}+q \alpha+p r=0$
$\alpha^{2}+r \alpha+p q=0$
By the rule of cross-multiplication method'
$\frac{\alpha^{2}}{p q^{2}-p r^{2}}=\frac{\alpha}{p r-p q}=\frac{1}{r-q}$
$\alpha=\frac{p q^{2}-p r^{2}}{p r-p q}=\frac{p(q-r)(q+r)}{p(r-q)}=-q-r \quad \alpha=\frac{p(r-q)}{(r-q)}=p$
Now,
$-q-r=p$
or, $p=-q-r$
or, $p+q+r=0$
$\therefore p+q+r=0$
6. If $x^{2}+b x+c a=0$ and $x^{2}+c x+a b=0$ have a common root show that their other roots will satisfy the equation $x^{2}+a x+b c=0$

Solution:

Let, α be the common root of the given equations,
$\alpha^{2}+b \alpha+c a=0$
$\alpha^{2}+c \alpha+a b=0$
By the rule of cross multiplication method,

78 Kriti's Principles of Mathematics-XII

$\frac{\alpha^{2}}{a^{2}-a c^{2}}=\frac{\alpha}{c a-a b}=\frac{1}{c-b}$
or, $\frac{\alpha^{2}}{a(b+c)(b-c)}=\frac{\alpha}{-a(b-c)}=\frac{1}{-(b-c)}$
$\therefore \quad \alpha=\frac{-\mathrm{a}(\mathrm{b}-\mathrm{c})}{-(\mathrm{b}-\mathrm{c})}$
Also, $\alpha=\frac{a(b+c)(b-c)}{-a(b-c)}=-(b+c)$
$\therefore \quad a=-(b+c)$
or, $a+b+c=0$
If β be the other roots of $x^{2}+b x+c a=0$, then $\alpha \beta=\frac{c a}{1}$.
or, $a \beta=c a$
$\therefore \beta=c$
Again, If γ be the other root of $x^{2}+c x+a b=0$, then $\alpha \cdot \gamma=\frac{a b}{1}=a b$
or, $a \cdot \gamma=\frac{1}{a b}$
$\therefore \gamma=b$
The quadratic equation whose roots are β and γ is
$x 2-(\beta+\gamma) x+\beta \gamma=0$
or, $x^{2}-(c+b) . x+c b=0$
or, $x^{2}-(-a) \cdot x+b c=0 \quad[\because a+b+c=0]$
or, $x^{2}+a x+b c=0$
$\therefore \quad x^{2}+a x+b c=0$
7. If $a x^{2}+2 b x+c=0$ and $a x^{2}+2 c x+b=0$ have a common root then show that a
$+4 b+4 c=0$

Solution:

Let, α be the common root of the equation,
$\alpha^{2}+2 b \alpha+c=0$
$a \alpha^{2}+2 c \alpha+b=0$
By the rule of cross multiplication method,
$\frac{\alpha 2}{2 \mathrm{~b}^{2}-2 \mathrm{c}^{2}}=\frac{\alpha}{\mathrm{ac}-\mathrm{ab}}=\frac{1}{2 \mathrm{ac}-2 \mathrm{ab}}$
$\alpha=\frac{2(b-c)(b+c)}{a(c-b)}=\frac{2(-b-c)}{a \times 1}=\frac{2(-b-c)}{a}, \quad \alpha=\frac{a(c-b)}{2 a(c-b)}=\frac{1}{2}$
Now, $\frac{-2 b-2 c}{a}=\frac{1}{2}$
or, $-4 b-4 c=a$
or, $a=-4 b-4 c$
or, $a+4 b+4 c=0$
8. If $\mathrm{x}^{2}+\mathrm{px}+\mathrm{q}=0$ and $\mathrm{x}^{2}+\mathrm{qx}+\mathrm{p}=0$ have a common root, prove that either $\mathrm{p}=$ q or $p+q+1=0$.

Solution:

Here, α be the common roots of the given equations, then
$\alpha^{2}+p \alpha+q=0$
$\alpha^{2}+q \alpha+p=0$
By the rule of cross multiplication,

```
\(\frac{\alpha^{2}}{p^{2}-q^{2}}=\frac{\alpha}{q-p}=\frac{1}{q-p}\)
\(\alpha=\frac{q-p}{q-p}\) and \(\alpha=\frac{p^{2}-q^{2}}{q-p}\)
\(\therefore \quad \frac{p^{2}-q^{2}}{p-p}=\frac{q-p}{q-p}\)
or, \(p^{2}-q^{2}=-(p-q)\)
or, \((p+q)(p-q)+(p-q)=0\)
or, \((p-q)(p+q+1)=0\)
either,
\(p-q=0 \therefore p=q\)
\(p+q+1=0 P\)
```


CHAPTER 6

MATHEMATICAL INDUCTION

EXERCISE 6.1

1. Find the $\mathrm{n}^{\text {th }}$ term and then the sum of the first n terms of each of the following series.
a. $1.3+2.4+3.5+\ldots$
b. $1+4+9+16+\ldots$
c. $1.3+3.5+5.7+\ldots$
d. $1.2 .3+2.3 .4+3.4 .5+\ldots$
e. $1+(1+2)+(1+2+3)+\ldots$

Solution:

a. Here,

Now, $n^{\text {th }}$ term of given series
$t_{n}=\left(n^{\text {th }}\right.$ term of $\left.1,2,3, \ldots\right) \times\left(n^{\text {th }}\right.$ term of $\left.3,4,5, \ldots\right)$

$$
=[1+(n-1) \cdot 1] \times[3+(n-1) \cdot 1]=n \times(n+2)=n(n+2)
$$

$\therefore \quad \mathrm{t}_{\mathrm{n}}=\mathrm{n}(\mathrm{n}+2)$
Again, the sum of first n terms of the given series
$s_{n}=\sum t_{n}=\sum n(n+2)=\Sigma\left(n^{2}+2 n\right)=\sum n^{2}+2 \sum n=\frac{n(n+1)(2 n+1)}{6}+\frac{2 n(n+1)}{2}$ $=\frac{n(n+1)(2 n+1+6)}{6}=\frac{n(n+1)(2 n+7)}{6}$
b. Here, $1+4+9+16+\ldots=1^{2}+2^{2}+3^{2}+4^{2}+\ldots$
$\mathrm{n}^{\text {th }}$ term of given series
$t_{n}=[a+(n-1) d]^{2}=[1+(n-1) \cdot 1]^{2}=n^{2}$
Again, let the sum of n natural number
$\mathrm{s}_{\mathrm{n}}=\sum \mathrm{t}_{\mathrm{n}}=\sum \mathrm{n}^{2}=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}$
c. Here, $\mathrm{n}^{\text {th }}$ term of given series
$t_{n}=(n t h$ term of $1,3,5, \ldots) \times.\left(n^{\text {th }}\right.$ term of $\left.3,5,7, \ldots\right)$

$$
=[1+(n-1) \cdot 2]+p 3+(n-1) \cdot 2]=(2 n-1)(2 n+1)=4 n^{2}-1
$$

$\therefore \mathrm{t}_{\mathrm{n}}=4 \mathrm{n}^{2}-1$
Again, the sum on of n natural number is
$\mathrm{s}_{\mathrm{n}}=\sum \mathrm{t}_{\mathrm{n}}=\sum\left(\mathrm{n}^{2}-1\right)=4 \sum \mathrm{n}^{2}-\sum 1$

$$
=\frac{4 n(n+1)(2 n+1)}{6}-n=n\left[\frac{2 n(n+1)(2 n+1)-3}{3}\right]=\frac{n}{3}\left[4 n^{2}+6 n-1\right]
$$

d. Here, $\mathrm{n}^{\text {th }}$ term of given series
$\mathrm{t}_{\mathrm{n}}=\left(\mathrm{n}^{\text {th }}\right.$ term of $\left.1,2,3,4, \ldots\right) \times\left(\mathrm{n}^{\text {th }}\right.$ term of $\left.2,3,4,5, \ldots\right) \times\left(\mathrm{n}^{\text {th }}\right.$ term of $\left.3,4,5, \ldots\right)$
$=[1+(n-1) .1] \times[2+(n-1) \cdot 1] \times[3+(n-1) \cdot 1]$

$$
=n(n+1)(n+2)=n\left(n^{2}+2 n+n+2\right)=n^{3}+3 n^{2}+2 n
$$

Again, the sum of first n natural number
$s_{n}=\sum t_{n}=\sum\left(n^{3}+3 n^{2}+2 n\right)$
$=\left(\frac{n(n+1)}{2}\right)^{2}+\frac{3 n(n+1)(2 n+1)}{6}+\frac{2 n(n+1)}{2}=\frac{n^{2}(n+1)^{2}}{4}+\frac{n(n+1)(2 n+1)}{2}+n(n+1)$
$=\frac{n^{2}(n+1)^{2}+2 n(n+1)(2 n+1)+4 n(n+1)}{4}=\frac{n}{4}[(n+1)(n+2)(n+3)]$
e. Here, $1+(1+2)+(1+2+3)+\ldots .$.

The $\mathrm{n}^{\text {th }}$ term is $\mathrm{t}_{\mathrm{n}}=1+2+3+\ldots .=\frac{\mathrm{n}(\mathrm{n}+1)}{2}=\frac{\mathrm{n}^{2}}{2}+\frac{\mathrm{n}}{2}$

Now, sum of n term is
$S_{n}=\frac{1}{2}\left(\sum n^{2}+\sum n\right)=\frac{1}{2}\left\{\frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2}\right\}=\frac{n(n+1)(n+2)}{6}$
2. Sum to n terms of the following series
a. $(x+a)+\left(x^{2}+2 a\right)+\left(x^{3}+3 a\right)+\ldots$
b. $5+55+555+\ldots$ to n terms.
c. $0.3+0.33+0.333+\ldots$ to n terms.
d. $1 \times n+2 \times(n-1)+3 \times(n-2)+\ldots$
e. $1+3+6+10+\ldots$
f. $3+6+11+18+\ldots$

Solution:

a. $(x+a)+\left(x^{2}+2 a\right)+\left(x^{3}+3 a\right)+\ldots$

Here,
Let $s_{n}=(x+a)+\left(x^{2}+2 a\right)+\left(x^{3}+3 a\right)+\ldots$ to n term

$$
\begin{aligned}
& =\left(x+x^{2}+x^{3}+\ldots+x^{n}\right)+(a+2 a+3 a+\ldots n a) \\
& =\frac{n\left(x^{n}-1\right)}{x-}+a(1+2+3+\ldots \text { th })=\frac{x\left(x^{n}-1\right)}{x-1}+\frac{a \cdot n(n+1)}{2}
\end{aligned}
$$

b. Let $\mathrm{s}_{\mathrm{n}}=5+55+555+\ldots$ to n

$$
\begin{aligned}
& =5(1+11+111+\ldots \text { to } n)=\frac{5}{9}(9+99+999+\ldots \text { to } n) \\
& =\frac{5}{9}[(10-1)+(100-1)+(1000-1)+\ldots \text { to } n] \\
& =\frac{5}{9}[(10+100+1000+\ldots \text { to } n)-(1+1+1 \ldots \text { to } n)]=\frac{5}{9}\left[\frac{10\left(10^{n}-1\right)}{10-1}-n\right] \\
& S_{n}=\frac{5}{9}\left[\frac{10}{9}\left(10^{n}-1\right)-n\right]
\end{aligned}
$$

c. Here, Let $\mathrm{s}_{\mathrm{n}}=0.3+0.33+0.333+$ to n

$$
\begin{aligned}
& \left.=\frac{3}{10}+\frac{33}{100}+\frac{333}{1000}+\ldots \text { to } n\right)=3\left(\frac{1}{10}+\frac{11}{100}+\frac{111}{1000}+\ldots \text { to } n\right) \\
& =\frac{3}{9}\left[\frac{9}{10}+\frac{99}{100}+\frac{999}{1000}+\ldots \text { to } n\right] \\
& =\frac{1}{3}\left[\frac{(10-1)}{10}+\frac{(100-1)}{100}+\frac{(1000-1)}{1000}+\ldots \text { to } n\right] \\
& =\frac{1}{3}\left[(1+1+1 \ldots n)-\left(\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+\ldots n\right)\right] \\
& =\frac{1}{3}\left[n-\frac{\frac{1}{10}\left(1-\frac{1}{10^{n}}\right)}{1-\frac{1}{10}}\right]=\frac{1}{3}\left[n-\frac{10}{90}\left(1-\frac{1}{10^{n}}\right)\right] \\
& =\frac{1}{3}\left[n-\frac{1}{9}\left(1-\frac{1}{10^{n}}\right)\right]=\frac{n}{3}-\frac{1}{27}\left(1-\frac{1}{10^{n}}\right)
\end{aligned}
$$

d. Here, $r^{\text {th }}$ term of $1,2,3, \ldots \ldots \ldots \ldots . .=r$ and $r^{\text {th }}$ term of $n, n-1, n-2, \ldots \ldots$

$$
=n-(r-1)=n-r+1
$$

So, the $r^{\text {th }}$ term of the series is $r(n-r+1)$
$\therefore \quad \mathrm{t}_{\mathrm{r}}=\mathrm{nr}-\mathrm{r}^{2}+\mathrm{r}$
So, sum $S_{n}=\sum_{r=1}^{n} t r=n \sum r-\sum r^{2}+\sum r=\frac{n \cdot n(n+1)}{2}-\frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2}$

$$
=\frac{n(n+1)}{2} \cdot\left\{n-\frac{2 n+1}{3}+1\right\}=\frac{n(n+1)}{2} \cdot \frac{3 n-2 n-1+3}{3}=\frac{n(n+1)(n+2)}{6}
$$

82 Kriti's Principles of Mathematics-XII

e. Let t_{n} be the $n^{\text {th }}$ term and S_{n} the sum of the first n terms of $1+3+6+10+\ldots$.

Then, $\mathrm{S}_{\mathrm{n}}=1+3+6+10+\ldots \ldots \ldots+\mathrm{t}_{\mathrm{n}-1}+\mathrm{t}_{\mathrm{n}}$
Also, $\mathrm{S}_{\mathrm{n}}=1+3+6+\ldots \ldots \ldots+\mathrm{t}_{\mathrm{n}-2}+\mathrm{t}_{\mathrm{n}-1}+\mathrm{t}_{\mathrm{n}}$
Subtraction yields, $0=1+2+3+\ldots \ldots \ldots+\left(t_{n}-t_{n-1}\right)-t_{n}$
or, $t_{n}=1+2+3+\ldots \ldots \ldots$ to n terms $=\frac{n(n+1)}{2}=\frac{1}{2} n^{2}+\frac{1}{2} n$
Hence, $S_{n}=\frac{1}{2} \sum n^{2}+\frac{1}{2} \sum n=\frac{1}{2}\left(1^{2}+2^{2}+3^{3}+\ldots \ldots+n^{2}\right)+\frac{1}{2}(1+2+3+\ldots \ldots+n)$

$$
\begin{aligned}
& =\frac{1}{2} \frac{n(n+1)(2 n+1)}{6}+\frac{1}{2} \frac{n(n+1)}{2} \\
& =\frac{1}{4} n(n+1)\left\{\frac{(2 n+1)}{3}+1\right\}=\frac{1}{4} n(n+1) \frac{(2 n+1+3)}{3} \\
& =\frac{n(n+1)(n+2)}{6}
\end{aligned}
$$

f. We have,

$$
\begin{aligned}
& 3+6+11+18+\ldots=\left(2^{2}-1\right)+\left(3^{2}-3\right)+\left(4^{2}-5\right)+\left(5^{2}-7\right)+\ldots \\
& =\left(2^{2}+3^{2}+4^{2}+5^{2}+\text { to } n \text { terms }\right)-(1+3+5+7+\ldots \text { to } n \text { terms }) \\
& =(n+1)^{2}-(2 n-1)=n^{2}+2 n+1-2 n+1 \\
& \therefore \quad t_{n}=n^{2}+2
\end{aligned}
$$

Now, $\Sigma \mathrm{t}_{\mathrm{n}}=\Sigma \mathrm{n}^{2}+\Sigma 2$

$$
\begin{aligned}
S_{n} & =\frac{n(n+1)(2 n+1)}{6}+2 n=\frac{\left(n^{2}+n\right)(2 n+1)+12 n}{6}=\frac{2 n^{3}+n^{2}+2 n^{2}+n+12 n}{6} \\
& =\frac{2 n^{3}+3 n^{2}+13 n}{6}=\frac{n\left(2 n^{2}+3 n+13\right)}{6}
\end{aligned}
$$

EXERCISE 6.2

1. a. If $\mathrm{P}(\mathrm{n})$ is the statement " $\mathrm{n}^{3}+\mathrm{n}$ is divisible by 2 ", prove that $\mathrm{P}(1), \mathrm{P}(2), \mathrm{P}(3)$ and $\mathrm{P}(4)$ are true.
b. If $P(n)$ is the statement " $n^{2}+n$ is even", Prove that $P(1), P(2), P(3)$ and $P(4)$ are true.
c. If $P(n)$ is the statement $" n^{3} \geq 2^{n}$ " show that $P(1)$ is false and $P(2), P(3)$ are true.
d. Let $\mathrm{P}(\mathrm{n})$ denote the statement " $\frac{\mathrm{n}(\mathrm{n}+1)}{6}$ is a natural number". Show that $P(2)$ and $P(3)$ are true but $P(4)$ is not true.

Solution:

a. Here, $P(n)=\left(n^{3}+n\right)$ is divisible by
2...(i)

Putting $n=1,2,3$, and 4 in (i) we get,
$P(1)=1^{3}+1=2$
$P(2)=2^{3}+1=9$
$P(3)=3^{3}+1=28$
$P(4)=4^{3}+1=65$
from above, $P(n)$ is false.
c. Here, $P(n)=n^{3} \geq 2^{n}$

Put $P(1)=1^{3} \geq 2^{1}=1 \geq 2$ which is false.
Put $\mathrm{n}=2$ and 3
$P(2)=2^{3} \geq 2^{2}=8 \geq 4$
b. Here, $P(n)=' n^{2}+n$ ' is even

Put $n=1,2,3$ and 4
$P(1)=1^{2}+L=2$
$P(2)=2^{2}+1=5$
$P(3)=3^{2}+3=12$
$P(4)=4^{2}+3=19$
\therefore from above, $\mathrm{P}(\mathrm{n})$ is false.
d. Here,
$P(n): \frac{n(n+1)}{6}$ is natural number
Putting $\mathrm{n}=28384$
$P(3)=3^{3} \geq 2^{3}=27 \geq 8$
From above $P(1)$ is false and $P(2)$ and $P(3)$ is true.
$\therefore \mathrm{P}(2)=\frac{2(\mathrm{n}+1)}{6}=\frac{2 \times 3}{6}=1$ true
$\therefore \mathrm{P}(4)=\frac{4(4+1)}{6}=\frac{4 \times 6}{5}=\frac{10}{3}$ is false.
$\therefore \mathrm{P}(3)=\frac{3(3+1)}{6}=\frac{3 \times 4}{6}=2$ true
Hence, from above, $P(n)$ is natural number.
2. Prove by the method of induction that
a. $2+5+8+\ldots+(3 n-1)=\frac{n(3 n+1)}{2}$
b. $1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$
c. $4+8+12+\ldots+4 n=2 n(n+1)$ d. $1+4+7+\ldots+(3 n-2)=\frac{n(3 n-1)}{2}$
e. $1.2+2.3+3.4+\ldots$ to n terms $=\frac{n(n+1)(n+2)}{3}$

Solution:

a. If $P(n)$ denotes the given statement, then;
$P(n)=2+5+8+\ldots+(3 n-1)=\frac{n(3 n+1)}{2}$
When $\mathrm{n}=1$ then (HS: $\mathrm{P}(2)=2$
RHS : $\frac{1(3 \times 1+1)}{2}=2$
\therefore LHS $=$ RSH i.e. $\mathrm{P}(1)$ is true.
Suppose that $P(n)$ is true for some $n=k \in N$
Then $P(k)=2+5+8+\ldots(3 k-1)=\frac{k(3 k+1)}{2}$
Here, we shall prove that $P(k+1)$ is true.
Whenever $P(k)$ is true.
For this, adding $3(k+1)-1=3 k+2$ on both sides of (i), we get

$$
\begin{aligned}
2+5+8+\ldots+(3 k-1)+(3 k+2) & =\frac{k(3 k+1)}{2}+3 k+2=\frac{3 k^{2}+k+6 k+4}{2} \\
& =\frac{3 k^{2}+7 k+4}{2}=\frac{3 k^{2}+3 k+4 k+4}{2} \\
& =\frac{(3 k+4)(k+1)}{2}=\frac{(k+1)[3(k+1)+1]}{2}
\end{aligned}
$$

This shows that $P(k+1)$ is true whenever $P(k)$ is true. Hence by the principle of mathematical inclusion, $P(n)$ is true for all $n \in N$.
b. Here, suppose $P(n)$ denotes the given st.

Then, $P(n)=1^{2}+3^{2}+5^{2}+\ldots+(2 n-1) 2=\frac{n(2 n-1)(2 n+1)}{3}$
When, $n=1$, then LHS $=P(1)=1$
RHS $=\frac{L(2 \times 1-1)(2 \times 1+1)}{3}=\frac{3}{3}=1$
Hence, LHS $=$ RHS. This shows that $P(n)$ is true for $n=1$. So suppose $P(n)$ is true for $\mathrm{n}=\mathrm{k} \in \mathrm{N}$. so that
$P(k)=1^{2}+3^{2}+5^{2}+\ldots+(2 k-1)^{2}=\frac{k(2 k-1)(2 k+1)}{3}$
Here, we shall prove that the statement $P(k+1)$ is true whenever $P(k)$ is true.

For this, adding $(2 k+1)^{2}$ on both sides of (1), we get

$$
\begin{aligned}
1^{2}+3^{2}+5^{2}+\ldots+(2 k-1)^{2}+ & (2 k+1)^{2}=\frac{k(2 k-1)(2 k+1)}{2}+(2 k+1)^{2} \\
& =\frac{(2 k+1)\left(2 k^{2}+5 k+3\right)}{3}=\frac{(2 k+1)(2 k+3)(k+1)}{3} \\
& =\frac{(k+1)(2 k+1)(2 k+3)}{3} \\
& =\frac{(k+1)[2(k+1)-1][2(k+1)+1]}{3}
\end{aligned}
$$

This shows that $P(k+1)$ is true whenever $P(k)$ is true. Hence by the principle of mathematical induction, $P(n)$ is true for all $n \in N$.
c. Suppose $P(n)$ denotes the given st.
$P(n)=4+8+12+\ldots+4 n=2 n(n+1)$
When $\mathrm{n}=1$ LHS: $\mathrm{P}(1)=4$ and RHS: $\mathrm{P}(1)=2 \times 1(1+1)=4$
This shows that $P(n)$ is true for $n=1$, so suppose $P(n)$ is true for some integer $\mathrm{n}=\mathrm{k} \in \mathrm{N}$, then
$P(k)=4+8+12+\ldots+4 k=2 k(k+1)$
Here, we shall show that $P(k+1)$ is true whenever $P(k)$ is true.
For this adding $4(k+1)$ on both sides of (i), we get,
$4+8+12+\ldots+4 k+4 k(k+1)=2 k(k+1)+4(k+1)=2(k+1)[k+2]$

$$
=2(k+1)[(k+1)+1]
$$

This shows that $P(k+1)$ is true whenever $P(k)$ is true. Hence by the principle of mathematical induction, $P(n)$ is true for all $n \in N$.
d. Here, Suppose $P(n)$ denotes the given st.
$P(n)=1+4+7+\ldots+(3 n-2)=\frac{n(3 n-1)}{2}$
When $n=1$, LHS : $P(1)=3 \times 1-2=1$
RHS: $P(1)=\frac{1(3 \times 1-1)}{2}=1$
$\therefore \quad$ LHS $=$ RHS
This shows that $P(n)$ is true for $n=L$, so suppose $P(n)$ is true for some integer $\mathrm{n}=\mathrm{k} \in \mathrm{N}$, then
$P(k)=1+4+7+\ldots(3 k-2)=\frac{k(3 k-1)}{2}$
Here, we shall show that $P(k+1)$ is true whenever $P(k)$ is true
$1+4+7+\ldots+(3 k-2)+(3 k+1)=\frac{k(3 k-1)}{2}+(3 k+1)=\frac{k(3 k-1)+2(3 k+1)}{2}$

$$
\begin{aligned}
& =\frac{3 k^{2}-k+6 k+2}{2}=\frac{3 k^{2}+5 k+2}{2} \\
& =\frac{3 k^{2}+3 k+2 k+2}{2}=\frac{(3 k+2)(k+1)}{2} \\
& =\frac{(k+1)[3(k+1)-1]}{2}
\end{aligned}
$$

This shows that $P(k+1)$ is true whenever $P(k)$ is true. Hence, by the principle of mathematical induction, $P(n)$ is true for all $n \in N$.
e. Here, Suppose $P(n)$ denotes the given st.
$P(n)=1.2+2.3+3.4+\ldots+n(n+1)=\frac{n(n+1)(n+2)}{3}$
When $\mathrm{n}=1$, then LHS: $\mathrm{P}(1)=1(1+1)=2$
RHS: $P(1)=\frac{1(1+1)(1+2)}{3}=2$
\therefore LHS $=$ RHS
This shows that $\mathrm{P}(\mathrm{n})$ is true for $\mathrm{n}=1$. So suppose $\mathrm{P}(\mathrm{n})$ is true for some integer $\mathrm{n}=\mathrm{k} \in \mathrm{N}$. then,
$P(k)=1.2+2.3+3.4+\ldots+k(k+1)=\frac{k(k+i)(k+2)}{3}$
Here, we shall show that $P(k+1)$ is true whenever $P(k)$ is true for $k \in N$ for this purpose, adding, $(k+1)(k+2)$ on both sides (i) we get

$$
\begin{aligned}
1.2+2.3+3.4+\ldots+(k+1)(k+2)+(k+1) & =\frac{k(k+1)(k+2)}{3}+(k+1)(k+2) \\
& =(k+1)(k-12)\left[1+\frac{k}{3}\right] \\
& =\frac{(k+1)(k+2)(k+3)}{3}
\end{aligned}
$$

This shows that $P(k+1)$ is true whenever $P(k)$ is true. Hence, by the principle of mathematical induction $P(n)$ is true for all $n \in N$.
3. Prove by the method of induction that
a. $\frac{1}{1.3}+\frac{1}{3.5}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}$
b. $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}$
c. $2+2^{2}+\ldots+2^{n}=2\left(2^{n}-1\right)$
d. $3+3^{2}+\ldots+3^{n}=\frac{3\left(3^{n}-1\right)}{2}$
e. $\frac{1}{5}+\frac{1}{5^{2}}+\frac{1}{5^{3}}+\ldots$ to n terms $=\frac{1}{4}\left(1-\frac{1}{5^{n}}\right)$

Solution:

a. Suppose $\mathrm{P}(\mathrm{n})$ denotes the given st. then

$$
P(n)=\frac{1}{1.3}+\frac{1}{3.5}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}
$$

When $\mathrm{n}=1$, then LHS: $\mathrm{P}(1)=\frac{1}{(2 \times 1-1)(2 \times 1+1)}=\frac{1}{3}$
RHS: $P(1)=\frac{1}{3} \Rightarrow$ LHS $=$ RHS
This show that $P(n)$ is true for $n=1$, so suppose $P(n)$ is true for some integer $n=$ $k \in N$. then

$$
P(k)=\frac{1}{1.3}+\frac{1}{3.5}+\ldots+\frac{1}{(2 k-1)(2 k+1)}=\frac{k}{2 k+1}
$$

Here, we shall show that $P(k+1)$ is true whenever $P(k)$ is true.
For this adding $\frac{1}{(2 k+1)(2 k+3)}$ on both sides of (i), we get

$$
\begin{aligned}
& \frac{1}{1.3}+\frac{1}{3.5}+\ldots+\frac{1}{(2 k-1)(2 k+1)}+\frac{1}{(2 k+1)(2 k+3)}=\frac{k}{2 k+1}+\frac{1}{(2 k+1)(2 k+3)} \\
& =\frac{k(2 k+3)+1}{(2 k+1)(2 k+3)} \\
& =\frac{2 k^{2}+3 k+L}{(2 k+1)(2 k+3)}=\frac{2 k^{2}+2 k+k+1}{4 k^{2}+8 k+3}=\frac{(2 k+1)(k+1)}{(2 k+1)[2(k+1)+1]}=\frac{k+1}{2(k+1)+1}
\end{aligned}
$$

This shows that $P(k+1)$ is true whenever $P(k)$ is true. Hence by the principle of mathematical induction, $P(n)$ is true for all $n \in N$.
b. Here, Suppose $P(n)$ denotes the given st. then
$P(n)=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}$
When $\mathrm{n}=1$, then LHS: $\mathrm{P}(1)=\frac{1}{2^{\prime}}=\frac{1}{2}$ RHS: $1-\frac{1}{2^{\prime}}=\frac{1}{2}$
This shows that $P(n)$ is true for $n=1$, so suppose $P(n)$ is true for some integer $n=k \in N$. Then
$P(k)=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{k}}=1-\frac{1}{2^{k}}$
We shall show that $P(k+1)$ is true whenever $P(k)$ is true for this adding $\frac{1}{2^{(k+1)}}$ on both side of (i), we get
$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{k}}+\frac{1}{2^{k+1}}=1-\frac{1}{2^{k}}+\frac{1}{2^{k+1}}=1-\frac{1}{2^{k}}\left(1-\frac{1}{2}\right)=1-\frac{1}{2^{k}}: \frac{1}{2}=1-\frac{1}{2^{k+1}}$
This show that $P(k+1)$ is true whenever $P(k)$ is true. Hence by the principle of mathematical induction $P(n)$ is true for all $n \in k$.
c. Here, Suppose $P(n)$ denotes the given st. then
$P(n)=2+2^{n}+2^{3}+\ldots+2^{n}=2\left(2^{n}-1\right)$
When, $\mathrm{n}=1$, then LHS $=\mathrm{P}(1)=2$ and RHS $=2$
\therefore LHS $=$ RHS. This shows that $P(n)$ is true for $n=1$. So suppose $P(n)$ is true for some integer $n=k \in N$. Then,
$P(k)=2+2^{2}+2^{3}+\ldots+2 k=2(2 k-1)$
Here, we shall prove that $P(k+1)$ is true whenever $P(k)$ is true.
For this, adding 2^{k+1} on both sides of (i), we get
$2+2^{2}+2^{3}+\ldots+2^{k}+2^{k+1}=2\left(2^{k}-1\right)+2^{k+1}=2^{k} .2-2+2^{k} .2=2.2^{k+1}-2=2\left(2^{k+1}-1\right)$
This shows that $P(k+1)$ is true whenever $P(k)$ is true for all $k \in N$. Hence by the principle of mathematical induction $P(n)$ is true for all $n \in N$.
d. Here, Suppose $P(n)$ denotes the given st. then
$P(n)=3+3^{2}+\ldots 3^{n}=\frac{3\left(3^{2}-1\right)}{2}$
When, $\mathrm{n}=1$, LHS $=3$ and RHS 3
$\therefore \quad$ LHS $=$ RHS. This shows that $P(n)$ is true for $n=1$. So, suppose $P(n)$ is true for some integer $n=k \in N$. then
$P(k)=3+3^{2}+\ldots+3^{k}=\frac{3\left(3^{k}-1\right)}{2}$
Here, we shall prove that $P(k+1)$ is also true whenever $P(k)$ is true for this adding 3^{k+1} on both side of (i) $3+3^{2}+\ldots 3^{k}+3^{k+1}=\frac{3\left(3^{k}-1\right)}{2}+3^{k+1}$

$$
=\frac{3.3^{k}-3+2 \cdot 3^{k} \cdot 3}{2}=k \cdot \frac{3 \cdot 3^{k+1}-3}{2}=\frac{3\left(3^{k+1}-1\right)}{2}
$$

This shows that $P(k+1)$ is true whenever $P(k)$ is true for all $k \in N$. Hence by the principle of mathematical induction $P(n)$ is true for all $n \in N$.
e. Suppose $P(n)$ denotes the given st. then
$P(n)=\frac{1}{5}+\frac{1}{5^{2}}+\frac{1}{5^{3}}+\ldots$ to n terms $=\frac{1}{4}\left(1-\frac{1}{5^{n}}\right)$
i.e. to $=a r^{n-1}=\frac{1}{5}\left(\frac{1}{5}\right)^{n-1}=\frac{1}{5^{n}}$

When, $\mathrm{n}=1$, LHS $=\frac{1}{5}$ RHS $=\frac{1}{4}\left(1-\frac{1}{5^{\prime}}\right)=\frac{1}{4} \cdot \frac{4}{5}=\frac{1}{5}$
$\therefore \quad$ LHS $=$ RHS this show that $P(n)$ is true for $n=1$. So suppose $P(n)$ is true for some integer $n=k \in N$. Then,
$P(k)=\frac{1}{5}+\frac{1}{5^{2}}+\frac{1}{5^{3}}+\ldots+\frac{1}{5^{k}}=\frac{1}{4}\left(1-\frac{1}{5^{\mathrm{K}}}\right)$
Here, we shall prove that $P(k+1)$ is true whenever $P(k)$ is true. For this adding 5^{k+1} on both sides of (i)

$$
\begin{aligned}
\frac{1}{5}+ & \frac{1}{5^{2}}+\frac{1}{5^{3}}+\ldots+\frac{1}{5^{k}}+\frac{1}{5^{k+1}}=\frac{1}{4}\left(1-\frac{1}{5^{k}}\right)+\frac{1}{5^{k+1}}=\frac{1}{4}-\frac{1}{4.5^{k}}+\frac{1}{5.5^{k}} \\
& =\frac{1}{4}+\frac{1}{5.5^{k}}-\frac{1}{4.5^{k}}=\frac{1}{4}+\frac{4-5}{4.5 .5^{k}}=\frac{1}{4}+\frac{-1}{4.5^{k+1}}=\frac{1}{4}\left[1-\frac{1}{5^{k+1}}\right]
\end{aligned}
$$

This shows that $P(k+1)$ is also true whenever $P(k)$ is true for all $k \in N$. Hence by the principle of mathematical induction $P(n)$ is true for all $n \in N$.
4. Prove by the method of induction that
a. $4^{n}-1$ is divisible by 3 .
b. $3^{2 n}-1$ is divisible by 8 .
c. $10^{2 n-1}+1$ is divisible by 11 .
d. $x^{n}-y^{n}$ is divisible by $x-y$.
e. $n(n+1)(n+2)$ is a multiple of 6 .

Solution:

a. Here, suppose $P(n)$ denotes the given st. then
$P(n)=4^{n}-1$ is divisible by 3
When $n=1, P(1)=4^{1}-1=3$ is divisible by 3 . So $P(1)$ is true
Let $P(k)$ be true for $k \in N$. That is
$P(k): 4_{k}-1$ is divisible by 3
Now we shall show that $P(k+1)$ is true when $P(k)$ is true.
$P(k+1): 4^{k+1}-1$ is divisible by 3
Now, $\left(4^{k+1}-1\right)$ is divisible by 3 . Therefore $P(k+1)$ is true whenever $P(k)$ is true.
Hence by induction method, $P(n)$ is true for all $n \in N .=1^{k} .4-4+3=4\left(4^{k}-1\right)+3$
b. Here, Suppose $P(n)$ be the given st. then $P(n): 3^{2 n}-1$ is divisible by 8 .

If $n=1$. $P(1): 3^{2}-1=8$ which is divisible by 8 .
So, the statement $P(n)$ is true for $n=1$
Let $P(k)$ be true for $k \in N$, that is
$P(k)=3^{2 k}-1$ is divisible by 8
Now, we shall show that $P(k+1)$ is true when $P(k)$ is true i.e. $P(k+1): 3^{2(k+1)}-1$

$$
\begin{align*}
& =3^{2 k+2}-1=3^{2 k} \cdot 3^{2}-1 \tag{i}\\
& =9.3^{2 k}-1=9.32 k-9+8=9\left(3^{2 k}-1\right)+8 \text { is divisible by } 8 .
\end{align*}
$$

Thus, $\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true. Hence by induction method, $\mathrm{P}(\mathrm{n})$ is true for all $n \in N$.
c. Here, Let $P(n)$ be given st. then
$P(n): 10^{2 n-1}+1$ is divisible by 11
When $n=1, P(L): 10^{2-1}+1=11$ which is divisible by 11 . So $P(1)$ is true.
Let $P(k)$ be true for $K \in N$. That is
$P(k): 10^{2 k-1}+1 \ldots \ldots \ldots$ (i)
We shall show that $P(k+1)$ is true when $P(k)$ is true i.e. $P(k+1)$: $10^{2(k+1)-1}+1$
$=10^{2 \mathrm{k}+1}+1=10^{2 \mathrm{k}-1} \cdot 10^{2}+1=\left(10^{2 \mathrm{k}-1}+1-1\right) 10^{2}+1=100\left(10^{2 \mathrm{k}-1}+1\right)-99$
which is divisible by 11 .
d. Here, let $P(n)$ be given st.
i.e. $P(n): x^{n}-y^{n}$ is divisible by $x-y$

When $n=1 P(1): x-y$ is divisible $y x-y$. So $P(1)$ is true.
Let $P(k)$ be true for $k \in N$. i.e.
$P(k): x^{k}-y^{k}$ is divisible by $x-y$
Now, we shall show that $P(k+1)$ is true when $P(k)$ is true i.e. $P(k+1): x^{k+1}-y^{k+1}$
$=x\left(x^{k}-y^{k}\right)+y\left(x^{k}-y^{k}\right)-x y\left(x^{k-1}-y^{k-1}\right)$
$=(x+y)\left(x^{k}-y^{k}\right)-x y\left(x^{k-1}-y^{k-1}\right)$ is divisible by $x-y$.

88 Kriti's Principles of Mathematics-XII

Therefore, $P(k+1)$ is true whenever $P(k)$ is true. Hence by induction method, $P(n)$ is true for all $n \in N$.
e. Here, Let $P(n)$ be given st. then
$P(n): n(n+1)(n+2)$ is multiple of 6 .
When $n=1, P(1): 1(1+1)(1+2)=6$ is multiple of 6 . So $P(1)$ is true
Let $P(k)$ is true for $k \in N$. i.e.
$\therefore P(k): k(k+1)(k+2)$ is multiple of 6
Now, we shall show that $P(k+1)$ is true when $P(k)$ is true i.e. $P(k+1):(k+1)(k+2)$ $(k+3)$ i.
$=k(k+1)(k+2)+3(k+1)(k+2)$ is multiple of 6 .
Therefore, $P(k+1)$ is true whenever $P(k)$ is true. Hence by induction method, $P(n)$ is true for all $n \in N$.

CHAPTER 7

MATRIX BASED SYSTEM OF LINEAR EQUATIONS

EXERCISE 7.1

1. By drawing graph or otherwise, classify each of the following system of the equations.
a. $4 x-3 y=-6$
$-4 x+2 y=16$
b. $2 x-y=3$,
$-4 x+2 y=6$
c. $-6 x+4 y=10$
$3 x-2 y=-5$
d. $7 x+2 y=15$,
$x+y=5$

Solution:

a. Here,

Given equations are $4 x-3 y=-6 \ldots$ (i) and $-4 x+2 y=16 \ldots$ (ii)
Adding equation (i) and (ii), we get
$4 x-3 y=-6$
$-4 x+2 y=16$
$-\mathrm{y}=10$
$\therefore \quad y=-10$
Putting in equation (i),
$4 x-3 x-10=-6$
or, $4 x=-6-30$
$\therefore \quad x=-9$
Hence, $(-9,-10)$ is the solution of the system. This kind of system where we get only one solution is known as consistent and independent.
b. Here,

Given equation of system are,
$2 x-y=3$
$-4 x+2 y=6$
Multiplying by 2 in equation (i) and adding with (ii), we get
$4 x-2 y=6$
$-4 x+2 y=6$
$0=12$
This is impossible result. In other word, the system has no solution. This is an inconsistent and independent.
c. Here,

Given, $-6 x+4 y=10$
$3 x-2 y=-5 \ldots \ldots$.... (ii)
Multiplying by 2 in equation (ii)and adding with (i), we get
$6 x+4 y=10$
$6 x-4 y=-10$
$0=0$
So, we do not get particular value of x and y. However, the result $0=0$ is true. In this situation, whatever be the solution of one equation satisfies the other equation as well. This kind of system, where we get infinitely many solution is known as consistent and dependent.
d. Here,

Given, $7 x+2 y=15$
$x+y=5$.. (ii)
Multiplying with 7 in equation (ii) and subtracting (i) from (ii),
$7 x+2 y=15$
$(-)(-) \quad(-)$
$5 y=20$
$\therefore y=4$
Putting $y=4$ in equation (ii), we get
$x+4=5$
$\therefore \mathrm{x}=1$
Hence, $(1,4)$ is the solution of the system. This kind of system of solution where only one solution we get is known consistent and independent.
2. Solve the following systems by using row - equivalent matrix method
a. $x+y=5$
b. $2 x+12 y=16$
$2 x+3 y=12$
$3 x+10 y=8$
c. $x-3 y=-1$
d. $8 x-3 y=-31$
$2 x+6 y=26$
e. $5 x-3 y=-2$
$4 x+2 y=5$
f. $\begin{aligned} & 2 / x+3 / y=2 \\ & 4 / x-5 / y=7\end{aligned}$

Solution:

a. Here,
$x+y=5$
$2 x+3 y=12$
The augmented matrix is
$\left[\begin{array}{cccc}1 & 1 & : & 5 \\ 2 & 3 & : & 12\end{array}\right]$
Multiplying by 2 in R_{1} and subtracting from R_{2}.
$\sim\left[\begin{array}{llll}1 & 1 & : & 5 \\ 0 & 1 & : & 2\end{array}\right]$
Applying $R_{2} \rightarrow R_{1}-R_{2}$
$\sim\left[\begin{array}{llll}1 & 0 & : & 3 \\ 0 & 1 & : & 2\end{array}\right]$
Hence the solution is $x=3$ and $y=2$
b. Here, Augmented matrix is
$\left[\begin{array}{cccc}2 & 12 & : & 16 \\ 3 & 10 & : & 8\end{array}\right]$
$\sim\left[\begin{array}{ccc}3 & 10 & : \\ 2 & 12 & : \\ \hline\end{array}\right]$ Applying $R_{1} \leftrightarrow R_{2}$
Applying $R_{1} \rightarrow R_{1}-R_{2}$
$\sim\left[\begin{array}{cccc}1 & -2 & : & -8 \\ 2 & 12 & : & 16\end{array}\right]$
Applying $R_{2} \rightarrow R_{2}-2 R_{1}$
$\sim\left[\begin{array}{rrrr}1 & -2 & : & -8 \\ 0 & 16 & : & 32\end{array}\right]$
$\sim\left[\begin{array}{cccc}1 & -2 & : & -8 \\ 0 & 1 & : & 2\end{array}\right]$ Applying $R_{2} \rightarrow \frac{1}{16}$ R_{2}
$\sim\left[\begin{array}{cccc}1 & 0 & : & -4 \\ 0 & 1 & : & 2\end{array}\right]$ Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1+}$ $2 R_{2}$
Hence, the required solution is $x=-4$ and $y=2$
c. Here, Augmented matrix is
$\left[\begin{array}{cccc}1 & -3 & : & -1 \\ 4 & -1 & : & 7\end{array}\right]$
Applying $R_{2} \rightarrow R_{2}-4 R_{1}$
$\sim\left[\begin{array}{cccc}1 & -3 & : & -1 \\ 0 & 11 & : & 11\end{array}\right]$
Applying $R_{2} \rightarrow \frac{1}{11} R_{2}$
$\sim\left[\begin{array}{cccc}1 & -3 & : & -1 \\ 0 & 1 & : & 1\end{array}\right]$
Applying $R_{1} \rightarrow R_{1}+3 R_{2}$
d. Here, The augmented matrix is
$\left[\begin{array}{cccc}8 & -3 & : & -31 \\ 2 & 6 & : & 26\end{array}\right]$
$\sim\left[\begin{array}{cccc}2 & 6 & : & 26 \\ 8 & -3 & : & -31\end{array}\right]$ Applying $\mathrm{R}_{1} \leftrightarrow$ R_{2}
$\sim\left[\begin{array}{cccc}1 & 3 & : & 13 \\ 8 & -3 & : & -31\end{array}\right]$ Applying $R_{1} \rightarrow \frac{1}{2}$
R_{1}
Applying $R_{2} \rightarrow R_{2}-8 R_{1}$
$\sim\left[\begin{array}{cccc}1 & 3 & : & 13 \\ 0 & -27 & : & -13\end{array}\right]$
$\left[\begin{array}{llll}1 & 0 & : & 2 \\ 0 & 1 & : & 1\end{array}\right]$
Hence, the required solution is

$$
x=2 \text { and } y=1
$$

e. Here,

The augmented matrix is
$\left[\begin{array}{cccc}5 & -3 & : & -2 \\ 4 & 2 & : & 5\end{array}\right]$
Applying $R_{1} \rightarrow \frac{1}{5} R_{1}$
$\sim\left[\begin{array}{cccc}1 & -3 / 5 & : & -2 / 5 \\ 4 & 2 & : & 5\end{array}\right]$
Applying $R_{2} \rightarrow R_{2}-4 R_{1}$
$\left[\begin{array}{llll}1 & -3 / 5 & : & -2 / 5 \\ 0 & 22 / 5 & : & 33 / 5\end{array}\right]$
Applying $R_{2} \rightarrow \frac{5}{22} R_{2}$
$\sim\left[\begin{array}{cccc}1 & -3 / 5 & : & -2 / 5 \\ 0 & 1 & : & 3 / 2\end{array}\right]$
Applying $R_{1} \rightarrow R_{1}+\frac{3}{5} R_{2}$
$\sim\left[\begin{array}{llll}1 & 0 & : & 1 / 2 \\ 0 & 1 & : & 3 / 2\end{array}\right]$
Hence the required solution is
$x=\frac{1}{2}$ and $y=\frac{3}{2}$

Applying $R_{2} \rightarrow-\frac{1}{27} R_{2}$
$\sim\left[\begin{array}{cccc}1 & 3 & : & 13 \\ 0 & 1 & : & 5\end{array}\right]$
Applying $R_{1} \rightarrow R_{1}-3 R_{2}$
$\sim\left[\begin{array}{cccc}1 & 0 & : & -2 \\ 0 & 1 & : & 5\end{array}\right]$
Hence, the required solution is $x=-2$ and $y=5$
f. Here, The augmented matrix is
$\left[\begin{array}{cccc}2 & 3 & : & 2 \\ 4 & -5 & : & 7\end{array}\right]$
Applying $\mathrm{R}_{1} \rightarrow \frac{1}{2} \mathrm{R}_{1}$
$\sim\left[\begin{array}{cccc}1 & 3 / 2 & : & 1 \\ 4 & -5 & : & 7\end{array}\right]$
Applying $R_{2} \rightarrow R_{2}-4 R_{1}$
$\sim\left[\begin{array}{ccc}1 & 3 / 2 & : \\ 0 & -11 & : \\ 0\end{array}\right]$
Applying $R_{2} \rightarrow-\frac{1}{11} R_{2}$
$\sim\left[\begin{array}{cccc}1 & 3 / 2 & : & 1 \\ 0 & 1 & : & -3 / 11\end{array}\right]$
Applying $R_{1} \rightarrow R_{1}-\frac{3}{2} R_{1}$
$\sim\left[\begin{array}{cccc}1 & 0 & : & 31 / 22 \\ 0 & 1 & : & -3 / 11\end{array}\right]$
Hence, the required solution is $\frac{1}{x}=\frac{31}{22} \Rightarrow x=\frac{22}{31}$ and $\frac{1}{y}=\frac{-3}{11} \Rightarrow y=\frac{-11}{3}$
3. Use the row equivalent matrix method to solve the system of equations:
a. $x+y+z=1$

$$
\begin{aligned}
& x+2 y+3 z=-1 \\
& 2 x-y+2 z=-4
\end{aligned}
$$

c. $9 y-5 x=3$

$$
\begin{aligned}
& x+z=1 \\
& z+2 y=2
\end{aligned}
$$

e. $2 x-y+4 z=-3$
$x-4 z=5$
$6 x-y+2 z=10$
g. $3 x-2 y-3 z=-3$
$2 x+y+z=6$
$x+3 y-2 z=13$
b. $x+4 y+z=18$
$3 x+3 y-2 z=2$
$-4 y+z=-7$
d. $x-y+2 z=0$
$x-2 y+3 z=-1$
$2 x-2 y+z=-3$
f. $x+2 y-3 z=9$
$2 x-y+2 z=-8$
$3 x-y-4 z=3$
h. $3 x-5 z=-7$
$3 x+5 y=3$
$3 z-3 y=2$

92 Kriti's Principles of Mathematics-XII

Solution:

a. Here, The augmented matrix is $\left[\begin{array}{rrrrr}1 & 1 & 1 & : & 1 \\ 1 & 2 & 3 & : & -1 \\ 2 & -1 & 2 & : & -4\end{array}\right]$

Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-{ }_{2} R_{1}$
$\sim\left[\begin{array}{ccccc}1 & 1 & 1 & : & 1 \\ 0 & 1 & 2 & : & -2 \\ 0 & -3 & 0 & : & -6\end{array}\right]$
Applying $R_{3} \rightarrow R_{3}+3 R_{2}$ and $R_{1} \rightarrow R_{1}-R_{2}$
$\left[\begin{array}{ccccc}1 & 0 & -1 & : & 3 \\ 0 & 1 & 2 & : & -2 \\ 0 & 0 & 6 & : & -12\end{array}\right]$
Applying $\mathrm{R}_{3} \rightarrow \frac{1}{6} \mathrm{R}_{3}$
$\sim\left[\begin{array}{ccccc}1 & 0 & -1 & : & 3 \\ 0 & 1 & 2 & : & -2 \\ 0 & 0 & 1 & : & -2\end{array}\right]$
Applying $R_{1} \rightarrow R_{1}+R_{3}$ and $R_{2} \rightarrow R_{2}-2 R_{3}$
$\sim\left[\begin{array}{ccccc}1 & 0 & 0 & : & 1 \\ 0 & 1 & 0 & : & 2 \\ 0 & 0 & 1 & : & -2\end{array}\right]$
Hence, the required solution is $x=1, y=2$ and $z=-2$
b. Here,

The augmented matrix is
$\left[\begin{array}{ccccc}1 & 4 & 1 & : & 18 \\ 3 & 3 & -2 & : & 2 \\ 0 & -4 & 1 & : & -7\end{array}\right]$
Applying $R_{2} \rightarrow R_{2}-3 R_{1}$
$\sim\left[\begin{array}{ccccc}1 & 4 & 1 & : & 18 \\ 0 & -9 & -5 & : & -52 \\ 0 & -4 & 1 & : & -7\end{array}\right]$
$\sim\left[\begin{array}{ccccc}1 & 4 & 1 & : & 18 \\ 0 & 1 & 5 / 9 & : & 52 / 9 \\ 0 & -4 & 1 & : & -7\end{array}\right]$
Applying $R_{3} \rightarrow 4 R_{2}+R_{3}$, we get
$\sim\left[\begin{array}{ccccc}1 & 4 & 1 & : & 18 \\ 0 & 1 & 5 / 9 & : & 52 / 9 \\ 0 & 0 & 29 / 9 & : & 145 / 9\end{array}\right]$
Applying $R_{3} \rightarrow \frac{9}{29} \times R_{3}$ we get
$\sim\left[\begin{array}{ccccc}1 & 4 & 1 & : & 18 \\ 0 & 1 & 5 / 9 & : & 52 / 9 \\ 0 & 0 & 1 & : & 5\end{array}\right]$

Applying $R_{2} \rightarrow R_{2}-\frac{5}{9} R_{3}$ we get,
$\sim\left[\begin{array}{ccccc}1 & 4 & 1 & : & 18 \\ 0 & 1 & 0 & : & 3 \\ 0 & 0 & 1 & : & 5\end{array}\right]$
Applying $R_{1} \rightarrow R_{1}-R_{3}$ we get
$\sim\left[\begin{array}{ccccc}1 & 4 & 0 & : & 13 \\ 0 & 1 & 0 & : & 3 \\ 0 & 0 & 1 & : & 5\end{array}\right]$
Applying $R_{1} \rightarrow R_{1}-4 R_{2}$ we get
$\sim\left[\begin{array}{lllll}1 & 0 & 0 & : & 1 \\ 0 & 1 & 0 & : & 3 \\ 0 & 0 & 1 & : & 5\end{array}\right]$
Hence, $x=1, y=3, z=5$
c. The augmented matrix is
$\left[\begin{array}{ccccc}-6 & 9 & 0 & : & 3 \\ 1 & 0 & 1 & : & 1 \\ 0 & 2 & 1 & : & 2\end{array}\right]$
Applying $\mathrm{R}_{1} \leftrightarrow \mathrm{R}_{2}$
$\sim\left[\begin{array}{ccccc}1 & 0 & 1 & : & 1 \\ -5 & 9 & 0 & : & 3 \\ 0 & 2 & 1 & : & 2\end{array}\right]$
Applying $R_{2} \rightarrow R_{2}+5 R_{1}$
$\sim\left[\begin{array}{lllll}1 & 0 & 1 & : & 1 \\ 0 & 9 & 5 & : & 8 \\ 0 & 2 & 1 & : & 2\end{array}\right]$
Applying $R_{2} \rightarrow R_{2}-4 R_{3}$
$\sim\left[\begin{array}{lllll}1 & 0 & 1 & : & 1 \\ 0 & 1 & 1 & : & 0 \\ 0 & 2 & 1 & : & 2\end{array}\right]$
Applying $R_{3} \rightarrow R_{3}-2 R_{2}$
$\sim\left[\begin{array}{ccccc}1 & 0 & 1 & : & 1 \\ 0 & 1 & 1 & : & 0 \\ 0 & 0 & -1 & : & 2\end{array}\right]$
Applying $\mathrm{R}_{3} \rightarrow-1 \mathrm{R}_{3}$
$\sim\left[\begin{array}{ccccc}1 & 0 & 1 & : & 1 \\ 0 & 1 & 1 & : & 0 \\ 0 & 0 & 1 & : & -2\end{array}\right]$
Applying $R_{1} \rightarrow R_{1}-R_{3}$ and $R_{2} \rightarrow R_{1}$
$-R_{3}$
$\sim\left[\begin{array}{ccccc}1 & 0 & 0 & : & 3 \\ 0 & 1 & 0 & : & 2 \\ 0 & 0 & 1 & : & -2\end{array}\right]$
d. The augmented matrix is
$\left[\begin{array}{ccccc}1 & -1 & 2 & : & 0 \\ 1 & -2 & 3 & : & -1 \\ 2 & -2 & 1 & : & -3\end{array}\right]$
Applying $R_{12} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}$

$$
\sim\left[\begin{array}{ccccc}
-2 R_{1} \\
1 & -1 & 2 & : & 0 \\
0 & -1 & 1 & : & -1 \\
0 & 0 & -3 & : & -3
\end{array}\right]
$$

Applying $R_{2} \rightarrow-1 R_{2}$
$\sim\left[\begin{array}{ccccc}1 & -1 & 2 & : & 0 \\ 0 & 1 & -1 & : & 1 \\ 0 & 0 & -3 & : & -3\end{array}\right]$
Applying $R_{1} \rightarrow R_{1}+R_{2}$
$\left[\begin{array}{ccccc}1 & 0 & -1 & : & -1 \\ 0 & 1 & -1 & : & 1 \\ 0 & 0 & -3 & : & -3\end{array}\right]$
Applying $R_{3} \rightarrow-\frac{1}{3} R_{3}$
$\sim\left[\begin{array}{ccccc}1 & 0 & -1 & : & -1 \\ 0 & 1 & -1 & : & 1 \\ 0 & 0 & 1 & : & 1\end{array}\right]$
Applying $R_{1} \rightarrow R_{1}+R_{3}$ and $R_{2} \rightarrow R_{2}$ $+R_{3}$
$\sim\left[\begin{array}{lllll}1 & 0 & 0 & : & 0 \\ 0 & 1 & 0 & : & 2 \\ 0 & 0 & 1 & : & 1\end{array}\right]$
Hence, the required solution is $x=0, y=2$, and $z=1$

Hence the solution is

$$
x=3, y=2 \text { and } z=-2
$$

e. The augmented matrix is $\left[\begin{array}{ccccc}2 & -1 & 4 & : & -3 \\ 1 & 0 & -4 & : & 5 \\ 6 & -1 & 2 & : & 10\end{array}\right]$

$$
\begin{aligned}
& \sim\left[\begin{array}{ccccc}
1 & 0 & -4 & : & 5 \\
2 & -1 & 4 & : & -3 \\
6 & -1 & 2 & : & 10
\end{array}\right] \text { Applying } R_{1} \leftrightarrow R_{2} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & -4 & : \\
0 & -1 & 12 & : \\
0 \\
0 & -1 & 26 & : \\
-20
\end{array}\right] \text { Applying } R_{2} \rightarrow R_{2}-2 R_{1} \text { and } R_{3} \rightarrow R_{3}-6 R_{3} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & -4 & : \\
0 & 1 & -12 & : \\
0 & -1 & 26 & : \\
\hline
\end{array}\right] \text { Applying } R_{2} \rightarrow 1 R_{2}
\end{aligned}
$$

$$
\sim\left[\begin{array}{ccccc}
1 & 0 & -4 & : & 5 \\
0 & 1 & -12 & : & 13 \\
0 & 0 & 14 & : & -7
\end{array}\right] \text { Applying } R_{3} \rightarrow R_{2}+R_{3}
$$

$$
\sim\left[\begin{array}{ccccc}
1 & 0 & -4 & : & 5 \\
0 & 1 & -12 & : & 13 \\
0 & 0 & 1 & : & -1 / 2
\end{array}\right] \text { Applying } R_{3} \rightarrow \frac{1}{14} R_{3}
$$

$$
\sim\left[\begin{array}{ccc:c}
1 & 0 & 0 & : \\
0 & 1 & 0 & : \\
0 & 0 & 1 & : \\
\hline
\end{array}\right] \text { Applying } R_{2} \rightarrow R_{2}+12 R_{3} \text { and } R_{1} \rightarrow R_{1}+4 R_{3}
$$

Hence, $x=3, y=7, z=-\frac{1}{2}$
f. The augmented matrix is $\left[\begin{array}{ccc:c}1 & 2 & -3 & : \\ 2 & -1 & 2 & : \\ 3 & -1 & -4 & : \\ \hline\end{array}\right]$

$$
\sim\left[\begin{array}{ccc:c}
1 & 2 & -3 & : \\
0 & -5 & 8 & : \\
0 & -7 & 5 & : \\
0 & -24
\end{array}\right] \text { Applying } R_{2} \rightarrow R_{2}-2 R_{1} \text { and } R_{3} \rightarrow R_{3}-3 R_{1}
$$

$$
\sim\left[\begin{array}{ccccc}
1 & 2 & -3 & : & 9 \\
0 & 1 & -8 / 5 & : & 26 / 5 \\
0 & -7 & 5 & : & -24
\end{array}\right] \text { Applying } \mathrm{R}_{2} \rightarrow \frac{1}{5} \mathrm{R}_{2}
$$

$$
\sim\left[\begin{array}{ccccc}
1 & 0 & 1 / 5 & \vdots & -7 / 5 \\
0 & 1 & -8 / 5 & : & 26 / 5 \\
0 & 0 & -31 / 5 & : & 62 / 5
\end{array}\right] \text { Applying } R_{3} \rightarrow R_{3}+7 R_{2} \text { and } R_{1} \rightarrow R_{1}-2 R_{2}
$$

$$
\sim\left[\begin{array}{ccc:c}
1 & 0 & 1 / 5 & : \\
0 & 1 & -8 / 5 & : \\
0 & 0 & 1 & : \\
0 & -2
\end{array}\right] \text { Applying } R_{3} \rightarrow-\frac{5}{31} R_{3}
$$

$$
\sim\left[\begin{array}{ccccc}
1 & 0 & 0 & : & -1 \\
0 & 1 & 0 & : & 2 \\
0 & 0 & 1 & : & -2
\end{array}\right] \text { Applying } R_{1} \rightarrow R_{1}-\frac{1}{5} R_{3} \text { and } R_{2} \rightarrow R_{2}+\frac{1}{8} R_{3}
$$

Hence, the required solution is $x=-1, y=2$ and $z=-2$
4. To control a certain crop disease, it is necessary to use 7 units of chemical A, 10 units of chemical B and 6 units of chemical C. One barrel of spray P contains 1, 4, 2 units of chemicals, one third of spray Q contains $3,2,2$ units and one barrel of spray R contains 4, 3, 2 units of these chemicals respectively.
a. Formulate the simultaneous linear system.
b. Write the linear system in matrix forms as
i. Coefficient matrix
ii. Variable matrix
iii. Constant matrix
c. Express the matrix in augmented matrix form.
d. Solve the systems by row equivalent matrix method and find the quantity of each type of spray should be used to control the disease.

Solution:

Let us tabulate the data as follows:

			Spray		
Chemical	P	Q	R	Requirement of chemicals (Units)	
A	1	3	4	7	
B	4	2	3	10	
C	2	2	2	6	

Let x barrels spray P, y barrels of Q and Z barrels of R be used to control the disease. Then, by questions
$x+3 y+4 z=7$
$4 x+2 y+3 z=10$
$2 x+2 y+2 z=6$
The above equations can be written in matrix form $A X=B$ as
$\left[\begin{array}{lll}1 & 3 & 4 \\ 4 & 2 & 3 \\ 2 & 2 & 2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}7 \\ 10 \\ 6\end{array}\right]$
$A X=B$ where, $A=\left[\begin{array}{lll}1 & 3 & 4 \\ 4 & 2 & 3 \\ 2 & 2 & 2\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}7 \\ 10 \\ 6\end{array}\right]$
Now, the augmented matrix is,
$[A: B]=\left[\begin{array}{ccccc}1 & 3 & 4 & : & 7 \\ 4 & 2 & 3 & : & 10 \\ 2 & 2 & 2 & : & 6\end{array}\right]$
Applying $R_{2} \rightarrow R_{2}-4 R_{1}$ and $R_{3} \rightarrow R_{3}-2 R_{1}$ we get,
$\sim\left|\begin{array}{ccccc}1 & 3 & 4 & : & 7 \\ 0 & -10 & -13 & \vdots & -18 \\ 0 & -4 & -6 & : & -8\end{array}\right|$
Applying $R_{2} \rightarrow \frac{R_{2}}{-10}$ we get,
$\sim\left[\begin{array}{ccccc}1 & 3 & 4 & & 7 \\ 0 & 1 & \frac{13}{10} & : & \frac{9}{5} \\ 0 & -4 & -6 & : & -8\end{array}\right]$
Applying $R_{1} \rightarrow R_{1}-3 R_{2}$ and $R_{3} \rightarrow R_{3}+4 R_{2}$ we get,
$\sim\left[\begin{array}{ccccc} & & \frac{1}{10} & & \frac{8}{5} \\ 1 & 0 & \frac{13}{10} & : & \frac{9}{5} \\ 0 & 1 & \frac{1}{10} & : & \frac{4}{5}\end{array}\right]$
Applying $R_{1} \rightarrow R_{1}-\frac{1}{10} \times R_{3}$ and $R_{2} \rightarrow R_{2}-\frac{13}{10} \times R_{3}$ we get,
$\sim\left[\begin{array}{lllll}1 & 0 & 0 & : & \frac{3}{2} \\ 0 & 1 & 0 & : & \frac{1}{2} \\ 0 & 0 & 1 & : & 1\end{array}\right]$
$\therefore \mathrm{x}=\frac{3}{2}, \mathrm{y}=\frac{1}{2}, \mathrm{z}=1$
Hence, $\frac{3}{2}$ barrel of spray, P. $\frac{1}{2}$ barrels of spray Q and 1 barrel of spray R are used to control the disease.

EXERCISE 7.2

1. Solve the equations, by inverse matrix method and by Cramer's rule
a. $x+y=4$
$3 x-2 y=17$
b. $2 x-y=5$
$x-2 y=1$
c. $3 x+4 y=-2$
$15 x+20 y=24$
d. $\frac{2}{3} x+y=16$

$$
x+\frac{y}{4}=14
$$

e. $3 x+\frac{4}{y}=10$
f. $3 x=4 y-11$
$5 y=-2 x+31$

$$
-2 x+\frac{3}{y}=-1
$$

Solution:

a. $x+y=4$
$3 x-2 y=17$

Coe. of x
1
3
Coe. of y
1
-2

Now,
$D=\left|\begin{array}{cc}1 & 1 \\ 3 & -2\end{array}\right|=-2-3=-5$
$D_{1}=\left|\begin{array}{cc}4 & 1 \\ 17 & -2\end{array}\right|=-8-17=-25$
$D_{2}=\left|\begin{array}{cc}1 & 4 \\ 3 & 17\end{array}\right|=17-12=5$
The solution is $x=\frac{D_{1}}{D}=\frac{-25}{-5}=5 \quad y=\frac{D_{2}}{D}=\frac{5}{-5}=-1$
b. Let,

Coe. of x
2
1

Coe. of y
-1
-2

Constant
5
1

Now,
$D=\left|\begin{array}{ll}2 & -1 \\ 1 & -2\end{array}\right|=-4+1=-3$
$D_{1}=\left|\begin{array}{ll}5 & -1 \\ 1 & -2\end{array}\right|=-10+1=-9$
$D_{2}=\left|\begin{array}{ll}2 & 5 \\ 1 & 1\end{array}\right|=2-5=-3$

The solution is, $x=\frac{D_{1}}{D}=\frac{-9}{-3}=3 \quad y=\frac{D_{2}}{D}=\frac{-3}{-3}=1$
c. Let,
Coe. of x
3
15
Coe. of y
Constant

Now,
$D=\left|\begin{array}{cc}3 & 4 \\ 15 & 20\end{array}\right|=60-60=0$
$\therefore \mathrm{D}$ is negative, the solution does not exist.
d. Let,

$\begin{aligned} & \text { Coe. of } x \\ & \frac{2}{3} \end{aligned}$		Coe. of y	Constant	
		1	16	
1		$\frac{1}{4}$	14	
Now, $\mathrm{D}=$	$\left\lvert\, \begin{array}{ll}\frac{2}{3} & 1 \\ 1 & \frac{1}{4}\end{array}\right.$	$=\frac{1}{6}-1=$	$D_{1}=\left\|\begin{array}{ll}16 & 1 \\ 14 & \frac{1}{4}\end{array}\right\|$	$=4-14=-10$
$\mathrm{D}_{2}=\left\lvert\, \begin{array}{ll}\frac{2}{3} & 1 \\ 1 & 1\end{array}\right.$	$\left.\begin{aligned} & 16 \\ & 14\end{aligned} \right\rvert\,=$	$\frac{28}{3}-16=$		

The solution is $x=\frac{D_{1}}{D}=\frac{-10}{-\frac{5}{6}}=12, y=\frac{D_{2}}{D}=\frac{-\frac{20}{3}}{-\frac{5}{6}}=8$
e. Let,

Coe. of x
3
-2
$D=\left|\begin{array}{cc}3 & 4 \\ -2 & 3\end{array}\right|=9+8=17$
$D_{1}=\left|\begin{array}{rr}10 & 4 \\ -1 & 3\end{array}\right|=30+4=34$
$D_{2}=\left|\begin{array}{cc}3 & 10 \\ -2 & -1\end{array}\right|=-3+20=17$
The solution is $x=\frac{D_{1}}{D}=\frac{34}{17}=2$
$\frac{1}{y}=\frac{D_{2}}{D}=\frac{1}{1}=1$
or, $\frac{1}{y}=1 \therefore \mathrm{y}=1$
f. Let,
Coe. of x
Coe. of y
Constant

98 Kriti's Principles of Mathematics-XII

3 -4
5
-11
2
31
$\mathrm{D}=\left|\begin{array}{cc}3 & -4 \\ 2 & 5\end{array}\right|=15+8=23$
$D_{1}=\left|\begin{array}{cc}-11 & -4 \\ 31 & 5\end{array}\right|=-55+124=69$
$D_{2}=\left|\begin{array}{cc}3 & -11 \\ 2 & 31\end{array}\right|=93+22=115$

The solution is $x=\frac{D_{1}}{D}=\frac{69}{23}=3 \quad y=\frac{D_{2}}{D}=\frac{115}{23}=5$
2. Solve the following system of simultaneous linear equations by matrix inversion method.
a. $x-y+z=4$
b. $2 x-3 y-z=4$
$x+y+z=2$
$2 x+y-3 z=0$

$$
x-2 y-z=1
$$

$$
x-y+2 z=9
$$

c. $3 x+5 y=2$
d. $x-3 y-7 z=6$
$2 x+3 y+z=9$
$2 x-3 z=-7$
$4 x+y=7$
$4 y+2 z=2$

$$
\text { e. } \begin{aligned}
& x+2 y+z=7 \\
& 2 x-y+z=3 \\
& 3 x+y+2 z=8
\end{aligned}
$$

Solution:

a. The matrix equation of given system is $A x=B$

Where $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & -3\end{array}\right], x=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], B=\left[\begin{array}{l}4 \\ 2 \\ 0\end{array}\right]$
Now,
$\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & -3\end{array}\right]=1\left|\begin{array}{cc}1 & 1 \\ 1 & -3\end{array}\right|-1\left|\begin{array}{cc}1 & 1 \\ 2 & -3\end{array}\right|+1\left|\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right|$

$$
=1(-3-1)+1(-3-2)+1(1-2)=-4-5-1=-10
$$

$\therefore|A| \neq 0$, so A^{-1} exist
Let cofactor of $A=\left[\begin{array}{lll}A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33}\end{array}\right]$
$A_{11}=\left|\begin{array}{cc}1 & 1 \\ 1 & -3\end{array}\right|=-3-1=-4 \quad A_{12}=-\left|\begin{array}{cc}1 & 1 \\ 2 & -3\end{array}\right|=-(-3-2)=5$
$A_{13}=\left|\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right|=1-2=-1 \quad A_{21}=-\left|\begin{array}{cc}-1 & 1 \\ 1 & -3\end{array}\right|=-(3-1)=-2$
$A_{22}=\left|\begin{array}{cc}1 & 1 \\ 2 & -3\end{array}\right|=-3-2=-5$
$A_{23}=\left|\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right|=-(1+2)=-3$
$A_{31}=\left|\begin{array}{rr}-1 & 1 \\ 1 & 1\end{array}\right|=(-1-1)=-2$
$A_{32}=-\left|\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right|=-(1-1)=0$
$A_{33}=\left|\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right|=1+1=2$

Co. factor of $A=\left[\begin{array}{ccc}-4 & 5 & -1 \\ -2 & -5 & -3 \\ -2 & 0 & 2\end{array}\right]$
Adj. of $\mathrm{A}=\left[\begin{array}{ccc}-4 & 5 & -1 \\ -2 & -5 & -3 \\ -2 & 0 & 2\end{array}\right]=\left[\begin{array}{ccc}-4 & -2 & -2 \\ 5 & -5 & 0 \\ -1 & -3 & 2\end{array}\right]$
The solution given by,
$X=A^{-1} B=\frac{1}{-10}\left[\begin{array}{ccc}-4 & -2 & -2 \\ 5 & -5 & 0 \\ -1 & -3 & 2\end{array}\right]\left[\begin{array}{l}4 \\ 2 \\ 0\end{array}\right]=\frac{1}{-10}\left[\begin{array}{c}-20 \\ 10 \\ -10\end{array}\right]=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$
b. The matrix equation of system is $A X=B$

Where $A=\left[\begin{array}{ccc}2 & -3 & -1 \\ 1 & -2 & -1 \\ 1 & -1 & 2\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], B=\left[\begin{array}{l}4 \\ 1 \\ 9\end{array}\right]$
Now,

$$
\begin{aligned}
|A| & =\left[\begin{array}{ccc}
2 & -3 & -1 \\
1 & -2 & -1 \\
1 & -1 & 2
\end{array}\right]-2\left|\begin{array}{cc}
-2 & -1 \\
-1 & 2
\end{array}\right|+3\left|\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right|-1\left|\begin{array}{cc}
1 & -2 \\
1 & -1
\end{array}\right| \\
& =2(-4-1)+3(2+1)-1(-1+2)=2 x-5+3 \times 3-1 \times 1=-2
\end{aligned}
$$

$\therefore|A| \neq 0, A^{-1}$ exist
Cofactor of $A=\left[\begin{array}{lll}A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33}\end{array}\right]$
$A_{11}=\left|\begin{array}{cc}-2 & -1 \\ -1 & 2\end{array}\right|=-4-1=-5 \quad A_{12}=-\left|\begin{array}{cc}1 & -1 \\ 1 & 2\end{array}\right|=-(2+1)=-3$
$A_{13}=\left|\begin{array}{ll}1 & -2 \\ 1 & -1\end{array}\right|=-1+2=1$
$A_{21}=\left|\begin{array}{cc}-3 & -1 \\ -1 & 2\end{array}\right|=-(-6-1)=7$
$A_{22}=\left|\begin{array}{cc}-1 & 2 \\ 2 & -1\end{array}\right|=(4 \times 1)=5$
$A_{23}=-\left|\begin{array}{ll}2 & -3 \\ 1 & -1\end{array}\right|=-(-2+3)=-1$
$A_{31}=\left|\begin{array}{ll}-3 & -1 \\ -2 & -1\end{array}\right|=(3-2)=1$
$A_{32}=-\left|\begin{array}{ll}2 & -1 \\ 1 & -1\end{array}\right|=-(-2+1)=1$
$A_{33}=\left|\begin{array}{ll}2 & -3 \\ 1 & -2\end{array}\right|=-4+3=-1$
Now, Co factor of $\mathrm{A}=\left[\begin{array}{ccc}-5 & -3 & 1 \\ 7 & 5 & -1 \\ 1 & 1 & -1\end{array}\right]$
Adj of $\mathrm{A}=\left[\begin{array}{ccc}-5 & -3 & 1 \\ 7 & 5 & -1 \\ 1 & 1 & -1\end{array}\right] \mathrm{T}=\left[\begin{array}{ccc}-5 & 7 & 1 \\ -3 & 5 & 1 \\ 1 & -1 & -1\end{array}\right]$
The solution given by,
$X=A^{-1} B=\frac{1}{-2}\left[\begin{array}{ccc}-5 & 7 & 1 \\ -3 & 5 & 1 \\ 1 & -1 & -1\end{array}\right]\left[\begin{array}{l}4 \\ 1 \\ 9\end{array}\right]=\frac{1}{-2}\left[\begin{array}{c}-4 \\ 2 \\ -6\end{array}\right]=\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]$
$\therefore \quad x=2, y=-1, z=3$
c. The matrix equation of given system is $A x=B$
where $A=\left[\begin{array}{ccc}3 & 5 & 0 \\ 2 & 0 & -3 \\ 0 & 4 & 2\end{array}\right], x=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], B=\left[\begin{array}{c}2 \\ -7 \\ 2\end{array}\right]$
Now,

$$
\begin{aligned}
|A| & =\left|\begin{array}{ccc}
3 & 5 & 0 \\
2 & 0 & -3 \\
0 & 4 & 2
\end{array}\right|=3\left|\begin{array}{cc}
0 & -3 \\
4 & 2
\end{array}\right|-5\left|\begin{array}{cc}
2 & -3 \\
0 & 2
\end{array}\right|+0\left|\begin{array}{ll}
2 & 0 \\
0 & 4
\end{array}\right| \\
& =3(12)-5(4 \neq 0)+0=16
\end{aligned}
$$

$\therefore|A| \neq 0, A^{-1}$ exist
Let cofactor of $A=\left[\begin{array}{lll}A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33}\end{array}\right]$
$A_{11}=\left|\begin{array}{cc}0 & -3 \\ 4 & 2\end{array}\right|=12$
$A_{12}=-\left|\begin{array}{cc}2 & -3 \\ 0 & 2\end{array}\right|=-(4-0)=-4$
$\mathrm{A}_{13}=\left|\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right|=8$
$A_{21}=\left|\begin{array}{ll}5 & 0 \\ 4 & 2\end{array}\right|=-(10)=-10$
$A_{22}=\left|\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right|=6$
$A_{23}=\left|\begin{array}{ll}3 & 5 \\ 0 & 4\end{array}\right|=-12$
$A_{31}=\left|\begin{array}{cc}5 & 0 \\ 0 & -3\end{array}\right|=-15$
$\mathrm{A}_{32}=\left|\begin{array}{cc}3 & 0 \\ 2 & -3\end{array}\right|=-(9)=9$
$A_{33}=\left|\begin{array}{ll}3 & 5 \\ 2 & 0\end{array}\right|=0-10=-10$
\therefore Cofactor of $A=\left[\begin{array}{ccc}12 & -4 & 8 \\ -10 & 6 & -12 \\ -15 & 9 & 10\end{array}\right]$
Adj of $A=\left[\begin{array}{ccc}12 & -4 & 8 \\ -10 & 6 & -12 \\ -15 & 9 & 10\end{array}\right]^{\top}=\left[\begin{array}{ccc}12 & -10 & -15 \\ -4 & 6 & 9 \\ 8 & -12 & 10\end{array}\right]$
The solution given by,
$X=A^{-1} B=\frac{1}{10}\left[\begin{array}{ccc}12 & -10 & -15 \\ -4 & 6 & 9 \\ 8 & -12 & 10\end{array}\right]\left[\begin{array}{c}2 \\ -7 \\ 2\end{array}\right]=\frac{1}{16}\left[\begin{array}{c}64 \\ -32 \\ 120\end{array}\right]=\left[\begin{array}{c}4 \\ -2 \\ 5\end{array}\right]$
$\therefore \quad x=4, y=-2, z=5$
d. The matrix equation of given system is $A X=B$
where $A=\left[\begin{array}{ccc}1 & -3 & -7 \\ 2 & 3 & 1 \\ 4 & 1 & 0\end{array}\right], x=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], B=\left[\begin{array}{l}6 \\ 9 \\ 7\end{array}\right]$
Now,
$|A|=\left|\begin{array}{ccc}1 & -3 & -7 \\ 2 & 3 & 1 \\ 4 & 1 & 0\end{array}\right|=1\left|\begin{array}{ll}3 & 1 \\ 1 & 0\end{array}\right|+3\left|\begin{array}{ll}2 & 1 \\ 4 & 0\end{array}\right|-7\left|\begin{array}{ll}2 & 3 \\ 4 & 1\end{array}\right|$

$$
=-1+3 \times-4-7(2-12)=57
$$

$\therefore|A| \neq 0, A^{-1}$ exist
Let cofactor of $A=\left[\begin{array}{lll}A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33}\end{array}\right]$
$A_{11}=\left|\begin{array}{ll}3 & 1 \\ 1 & 0\end{array}\right|=-1$
$\mathrm{A}_{12}=-\left|\begin{array}{ll}2 & 1 \\ 4 & 0\end{array}\right|=4$
$A_{13}=\left|\begin{array}{ll}2 & 3 \\ 4 & 1\end{array}\right|=2-12=-10$
$A_{21}=\left|\begin{array}{cc}-3 & -7 \\ 1 & 0\end{array}\right|=-(7)=-7$
$A_{22}=\left|\begin{array}{cc}1 & -7 \\ 4 & 0\end{array}\right|=28$
$A_{23}=\left|\begin{array}{cc}1 & -3 \\ 4 & 1\end{array}\right|=-(1+12)-13$
$A_{31}=\left|\begin{array}{cc}-3 & -7 \\ 3 & 1\end{array}\right|=-3+21=18$
$A_{32}=-\left|\begin{array}{cc}1 & -7 \\ 2 & 1\end{array}\right|=-(1+14)=-15$
$A_{33}=\left|\begin{array}{cc}1 & -3 \\ 2 & 3\end{array}\right|=3+6=9$
\therefore Cofactor of $A=\left[\begin{array}{ccc}-1 & 4 & -10 \\ -7 & 28 & -13 \\ 18 & -15 & 9\end{array}\right]$
Adj of $A=\left[\begin{array}{ccc}-1 & 4 & -10 \\ -7 & 28 & -13 \\ 18 & -15 & 9\end{array}\right] T=\left[\begin{array}{ccc}-1 & -7 & 18 \\ 4 & 28 & -15 \\ -10 & -13 & 9\end{array}\right]$
Now, the solution is given by,
$x=A^{-1} B$

$$
\begin{aligned}
& =\frac{1}{57}\left[\begin{array}{ccc}
-1 & -7 & 18 \\
4 & 28 & -15 \\
-10 & -13 & 9
\end{array}\right]\left[\begin{array}{l}
6 \\
9 \\
7
\end{array}\right] \\
& =\frac{1}{57}\left[\begin{array}{c}
57 \\
171 \\
-114
\end{array}\right]=\left[\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right]
\end{aligned}
$$

$\therefore x=1, y=3, z=-2$
e. The matrix equation of system is $A X=B$.
where, $A=\left[\begin{array}{ccc}1 & 2 & 1 \\ 2 & -1 & 1 \\ 3 & 1 & 2\end{array}\right], x=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], B=\left[\begin{array}{l}7 \\ 3 \\ 8\end{array}\right]$

Now,

$$
\begin{aligned}
|A| & =\left|\begin{array}{ccc}
1 & 2 & 1 \\
2 & -1 & 1 \\
3 & 1 & 2
\end{array}\right|=1\left|\begin{array}{cc}
-1 & 1 \\
1 & 2
\end{array}\right|-2\left|\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right|+1\left|\begin{array}{cc}
2 & -1 \\
3 & 1
\end{array}\right| \\
& =(-2-1)-2(4-3)+1(2+3)=-3-2+5=0
\end{aligned}
$$

$\therefore|A|=0, A^{-1}$ does not exist.
3. Solve the following system of equations by using Cramer's rule
a. $2 x-3 y-z=4$
$x-2 y-z=1$
b. $x+y+z=-1$ $3 x+y+z=1$ $x-y+2 z=9$ $4 x-2 y+2 z=0$
c. $6 y+6 z=-1$ $8 x+6 z=-1$ $4 x+9 y=8$
d. $x+4 y+z=18$ $3 x+3 y-2 z=2$ $-4 y+z=-7$

Solution:

a. Coe. of x
2
1
1

Coe. of y
-3
-2
-1
coe. of z
-1
-1
2

Constant
4
1
9
$\mathrm{D}=\left|\begin{array}{ccc}2 & -3 & -1 \\ 1 & -2 & -1 \\ 1 & -1 & 2\end{array}\right|=2\left|\begin{array}{cc}-2 & -1 \\ -1 & 2\end{array}\right|+3\left|\begin{array}{cc}1 & -1 \\ 1 & 2\end{array}\right|-1\left|\begin{array}{cc}1 & -2 \\ 1 & -1\end{array}\right|$
$=2(-4-1)+3(2+1)-1(-1+2)=2 x-5+3 \times 3-1 \times 1=-2$
$\mathrm{D}_{1}=\left|\begin{array}{rrr}4 & -3 & -1 \\ 1 & -2 & -1 \\ 9 & -1 & 2\end{array}\right|=4\left|\begin{array}{cc}-2 & -1 \\ -1 & 2\end{array}\right|+3\left|\begin{array}{cc}1 & -1 \\ 9 & 2\end{array}\right|-1\left|\begin{array}{cc}1 & -2 \\ 9 & -1\end{array}\right|$ $=4(-4-1)+3(2+9)-1(-1+18)=-4$
$\mathrm{D}_{2}=\left|\begin{array}{ccc}2 & 4 & -1 \\ 1 & 1 & -1 \\ 1 & 9 & 2\end{array}\right|=2\left|\begin{array}{cc}1 & -1 \\ 9 & 2\end{array}\right|-4\left|\begin{array}{cc}1 & -1 \\ 1 & 2\end{array}\right|-1\left|\begin{array}{cc}1 & 1 \\ 1 & 9\end{array}\right|$ $=2(2+9)-4(2+1)-1(9-1)=2$
$D_{3}\left|\begin{array}{lll}2 & -3 & 4 \\ 1 & -2 & 1 \\ 1 & -1 & 9\end{array}\right|=2\left|\begin{array}{ll}-2 & 1 \\ -1 & 9\end{array}\right|+3\left|\begin{array}{ll}1 & 1 \\ 1 & 9\end{array}\right|+4\left|\begin{array}{ll}1 & -2 \\ 1 & -1\end{array}\right|$

$$
=2(-18+1)+3(9-1)+4(-1+2)=-34+24+4=-6
$$

The solution is $x=\frac{D_{1}}{D}=\frac{-4}{-2}=2 \quad y=\frac{D_{1}}{D}=\frac{2}{-2}=-1 \quad z=\frac{D_{3}}{D}=\frac{-6}{-2}=3$
b. Let,

$$
=(2+2)-1(6-4)+(-6-4)=-8
$$

$$
\begin{aligned}
D_{1} & =\left|\begin{array}{ccc}
-1 & 1 & 1 \\
1 & 1 & 1 \\
0 & -2 & 2
\end{array}\right|=-1\left|\begin{array}{cc}
1 & 1 \\
-2 & 2
\end{array}\right|-1\left|\begin{array}{cc}
1 & 1 \\
0 & 2
\end{array}\right|+1\left|\begin{array}{cc}
1 & 1 \\
0 & -2
\end{array}\right| \\
& =-1(2+2)-1(2-0)+1(-2-0)=-4-2-2=-8 \\
D_{2} & =\left|\begin{array}{ccc}
1 & -1 & 1 \\
3 & 1 & 1 \\
4 & 0 & 2
\end{array}\right|=1\left|\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right|+1\left|\begin{array}{ll}
3 & 1 \\
4 & 2
\end{array}\right|+1\left|\begin{array}{ll}
3 & 1 \\
4 & 0
\end{array}\right| \\
& =2+(6-4)+(-4)=2+2-4=0 \\
D_{3} & =\left|\begin{array}{ccc}
1 & 1 & -1 \\
3 & 1 & 1 \\
4 & -2 & 0
\end{array}\right|=1\left|\begin{array}{cc}
1 & 1 \\
-2 & 0
\end{array}\right|-1\left|\begin{array}{ll}
3 & 1 \\
4 & 0
\end{array}\right|-1\left|\begin{array}{cc}
3 & 1 \\
4 & -2
\end{array}\right| \\
& =(0+2)-1(-4)-1(-6-4)=2+4+10=16
\end{aligned}
$$

The solution is $x=x=\frac{D_{1}}{D}=\frac{-8}{-8}=1 \quad y=\frac{D_{2}}{D}=\frac{0}{-8}=0 \quad z=\frac{D_{3}}{D}=\frac{16}{-8}=-2$
c. Let,

Coe. of $x \quad$ Coe. of $y \quad$ coe. of $z \quad$ Constant

0	6	6	-1
8	0	6	-1
4	9	0	8

$D=\left|\begin{array}{lll}0 & 6 & 6 \\ 8 & 0 & 6 \\ 4 & 9 & 0\end{array}\right|=-6\left|\begin{array}{ll}8 & 6 \\ 4 & 0\end{array}\right|+6\left|\begin{array}{ll}8 & 0 \\ 4 & 9\end{array}\right|=-6(-24)+6 \times 72=144+432=576$
$D_{1}=\left|\begin{array}{ccc}-1 & 6 & 6 \\ -1 & 0 & 6 \\ 8 & 9 & 0\end{array}\right|=-1\left|\begin{array}{ll}0 & 6 \\ 9 & 0\end{array}\right|-6\left|\begin{array}{cc}-1 & 6 \\ 8 & 0\end{array}\right|+6\left|\begin{array}{cc}-1 & 0 \\ 8 & 9\end{array}\right|$
$=-1(-54)-6(-48)+6(-9)=288$
$D_{2}=\left|\begin{array}{ccc}0 & -1 & 6 \\ 8 & -1 & 6 \\ 4 & 8 & 0\end{array}\right|=+1\left|\begin{array}{ll}8 & 6 \\ 4 & 0\end{array}\right|+6\left|\begin{array}{cc}8 & -1 \\ 4 & 8\end{array}\right|=-24+6(64+4)=384$
$D_{3}=\left|\begin{array}{ccc}0 & 6 & -1 \\ 8 & 0 & -1 \\ 4 & 9 & 8\end{array}\right|=-6\left|\begin{array}{cc}8 & -1 \\ 4 & 8\end{array}\right|-1\left|\begin{array}{cc}8 & 0 \\ 4 & 9\end{array}\right|=-6(64+4)-1(72-0)=-480$
The solution is $x=\frac{D_{1}}{D}=\frac{288}{576}=\frac{1}{2} \quad y=\frac{D_{2}}{D}=\frac{288}{576}=\frac{2}{3} \quad z=\frac{D_{3}}{D}=\frac{-480}{570}=\frac{-5}{6}$
d. Let,

Coe. of $x \quad$ Coe. of $y \quad$ coe. of $z \quad$ Constant

1	4	1	18
3	3	-2	2
0	-4	1	-7

$$
\text { Now, } \begin{aligned}
D & =\left|\begin{array}{ccc}
1 & 4 & 1 \\
3 & 3 & -2 \\
0 & -4 & 1
\end{array}\right|=1\left|\begin{array}{cc}
3 & -2 \\
-4 & 1
\end{array}\right|-4\left|\begin{array}{cc}
3 & -2 \\
0 & 1
\end{array}\right|+1\left|\begin{array}{cc}
3 & 3 \\
0 & -4
\end{array}\right| \\
& =(3-8)-4(3)+(-12)=-29
\end{aligned}
$$

$$
\begin{aligned}
D_{1} & =\left|\begin{array}{ccc}
18 & 4 & 1 \\
2 & 3 & -2 \\
-7 & -4 & 1
\end{array}\right|=18\left|\begin{array}{cc}
3 & -2 \\
-4 & 1
\end{array}\right|-4\left|\begin{array}{cc}
32 & -2 \\
-7 & 1
\end{array}\right|+1\left|\begin{array}{cc}
2 & 3 \\
-7 & -4
\end{array}\right| \\
& =18(3-8)-4(2-14)+1(-8+21)=-29 \\
D_{2} & =\left|\begin{array}{ccc}
1 & 18 & 1 \\
3 & 2 & -2 \\
0 & -7 & 1
\end{array}\right|=1\left|\begin{array}{cc}
2 & -2 \\
-7 & 1
\end{array}\right|-18\left|\begin{array}{cc}
3 & -2 \\
0 & 1
\end{array}\right|+1\left|\begin{array}{cc}
3 & 2 \\
0 & -7
\end{array}\right| \\
& =(2-14)-18(3)+1(-21)=-87 \\
D_{3} & =\left|\begin{array}{ccc}
1 & 4 & -18 \\
3 & 3 & 2 \\
0 & -4 & -7
\end{array}\right|=1\left|\begin{array}{cc}
3 & 2 \\
-4 & -7
\end{array}\right|-4\left|\begin{array}{cc}
3 & 2 \\
0 & -7
\end{array}\right|+28\left|\begin{array}{cc}
3 & 3 \\
0 & -4
\end{array}\right| \\
& =(-21+8)-4(-21)+18(-12)=-145
\end{aligned}
$$

The solution is $x=\frac{D_{1}}{D}=\frac{-29}{-29}=1 \quad y=\frac{D_{2}}{D}=\frac{-87}{-29}=3 \quad z=\frac{D_{3}}{D}=\frac{-145}{-29}=5$
4. Rinav sells 7 shares of A and buys 9 shares of B, thus increasing his cash by Rs. 70,

Arnav sells 9 shares of A and buys 14 shares $f B$, thus increasing his cash by Rs 80 .
a. Formulate the simultaneous linear system.
b. Express the linear system in determinant form.
c. Using Cramer's rule, find the price per share of A and B.

Solution:

Let Rs. x and Rs. y be the price per share of A and B respectively. Then, by question,
$7 x-9 y=70$
$9 x-14 y=-80$

Coefficient of x	Coefficient of y	Constants
7	-9	70
9	-14	-80

Now, $D=\left|\begin{array}{cc}7 & -9 \\ 9 & -14\end{array}\right|=-98+81=-17$
$D_{1}=\left|\begin{array}{cc}70 & -9 \\ -80 & -14\end{array}\right|=-980-720=-1700$
$D_{2}=\left|\begin{array}{cc}7 & 70 \\ 9 & -80\end{array}\right|=-560-630=-1190$
$\therefore x=\frac{D_{1}}{D}=\frac{-1700}{-17}=100, y=\frac{D_{2}}{D}=\frac{-1190}{-17}=70$
Hence, the price per share of A and B are Rs. 100 and Rs. 70 respectively.
5. A transport company has three types of trucks A, B and C which are designated to carry three different sizes of boxes, P, Q and R per load as shown below:

Types of trucks			
Boxes	A	B	C
P	2	5	2
Q	3	2	5
R	1	9	0

Each type of boxes should be used to carry exactly 18 boxes of size $\mathrm{P}, 18$ boxes of size Q and 21 boxes of size R
a. Formulate the simultaneous linear system.
b. Express the linear system in determinant form.
c. Using Cramer's rule, solve the linear system and find the number of truck.

Solution:

We have,

Trucks of types				
Boxes	A			
P	2	5	C	Total
Q	3	2	2	18
R	1	9	5	15
		0	21	

Let x, y and z be the total number of trucks of types A, B and C used respectively. Then by question,
$2 x+5 y+2 z=18$
$3 x+2 y+5 z=18$
$x+9 y+0 z=21$

Coefficient of x	Coefficient of y	Coefficient of z	Constants
2	5	2	18
3	2	5	18
1	9	0	21

Now, $D=\left|\begin{array}{lll}2 & 5 & 2 \\ 3 & 2 & 5 \\ 1 & 9 & 0\end{array}\right|=2\left|\begin{array}{ll}2 & 5 \\ 9 & 0\end{array}\right|-5\left|\begin{array}{ll}3 & 5 \\ 1 & 0\end{array}\right|+2\left|\begin{array}{ll}3 & 2 \\ 1 & 9\end{array}\right|$

$$
=2(0-45)-5(0-5)+2(27-2)=-90+25+50=-15
$$

$\mathrm{D}_{1}=\left|\begin{array}{lll}18 & 5 & 2 \\ 18 & 2 & 5 \\ 21 & 9 & 0\end{array}\right|=18\left|\begin{array}{ll}2 & 5 \\ 9 & 0\end{array}\right|-5\left|\begin{array}{ll}18 & 5 \\ 21 & 0\end{array}\right|+2\left|\begin{array}{ll}18 & 2 \\ 21 & 9\end{array}\right|$

$$
=18(0-45)-5(0-105)+2(162-42)=-810+525+240=-45
$$

$D_{2}=\left|\begin{array}{lll}2 & 18 & 2 \\ 3 & 18 & 5 \\ 1 & 21 & 0\end{array}\right|=1\left|\begin{array}{ll}18 & 2 \\ 18 & 5\end{array}\right|-21\left|\begin{array}{ll}2 & 2 \\ 3 & 5\end{array}\right|$

$$
=1(90-36)-21(10-6)=54-84=-30
$$

$D_{3}=\left|\begin{array}{lll}2 & 5 & 18 \\ 3 & 2 & 18 \\ 1 & 9 & 21\end{array}\right|=2\left|\begin{array}{ll}2 & 18 \\ 9 & 21\end{array}\right|-5\left|\begin{array}{ll}3 & 18 \\ 1 & 21\end{array}\right|+18\left|\begin{array}{ll}3 & 2 \\ 1 & 9\end{array}\right|$

$$
=2(42-162)-5(63-18)+18(27-2)=-240-225+450=-15
$$

\therefore Using Cramer's rule, we get
$x=\frac{D_{1}}{D}=\frac{-45}{-15}=3, y=\frac{D_{2}}{D}=\frac{-30}{-15}=2, z=\frac{D_{3}}{D}=\frac{-15}{-15}=1$
Hence, required number of trucks A, B and C used are 3,2 and 1 respectively.
6. The price of commodities X, Y, and Z are respectively x, y and z rupees per unit Mr. A purchases 4 units of Z and ells 3 units of X and 5 units of Y. Mr. B purchases 3 units of Y and sells 2 units of X and 1 unit of Z. Mr. C purchases 1 unit of X and sells 4 units of Y and 6 units of Z. In the process, A, B and C earn zero profit. Rs. 5000 and Rs. 1300 profits respectively.
a. Formulate the simultaneous linear system.
b. Express the linear system in determinant form.
c. Using Cramer's rule, find the prices per unit of the three commodities.

Solution:

Here the prices of commodities X, Y and Z are Rs. x, Rs. y and Rs. z per unit respectively. Then, by question,
$3 x+5 y-4 z=0$
$2 x-3 y+z=5000$
$-x+4 y+6 z=13000$

Coefficient of x	Coefficient of y	Coefficient of z	Constants
3	5	-4	0
2	-3	1	5000
-1	4	6	13000

Now, $D=\left|\begin{array}{ccc}3 & 5 & -4 \\ 2 & -3 & 1 \\ -1 & 4 & 6\end{array}\right|=3\left|\begin{array}{cc}-3 & 1 \\ 4 & 6\end{array}\right|-5\left|\begin{array}{cc}2 & 1 \\ -1 & 6\end{array}\right|-4\left|\begin{array}{cc}2 & -3 \\ -1 & 4\end{array}\right|$
$\begin{aligned} &=3(-18-4)-5(12+1)-4(8-3)=-66-65-20=-151 \\ & D_{1}=\left|\begin{array}{ccc}0 & 5 & -4 \\ 5000 & -3 & 1 \\ 13000 & 4 & 6\end{array}\right|=-5\left|\begin{array}{cc}5000 & 1 \\ 13000 & 6\end{array}\right|-4\left|\begin{array}{cc}5000 & -3 \\ 13000 & 4\end{array}\right| \\ &=-5(30000-13000)-4(20000+39000)=-85000-236000=-321000\end{aligned}$
$D_{2}=\left|\begin{array}{ccc}3 & 0 & -4 \\ 2 & 5000 & 1 \\ -1 & 13000 & 6\end{array}\right|=3\left|\begin{array}{cc}5000 & 1 \\ 13000 & 6\end{array}\right|-4\left|\begin{array}{cc}2 & 5000 \\ -1 & 13000\end{array}\right|$
$=3(30000-13000)-4(26000+5000)=51000-214000=-73000$
$D_{3}=\left|\begin{array}{ccc}3 & 5 & 0 \\ 2 & -3 & 5000 \\ -1 & 4 & 13000\end{array}\right|=3\left|\begin{array}{cc}-3 & 5000 \\ 4 & 13000\end{array}\right|-5\left|\begin{array}{cc}2 & 5000 \\ -1 & 13000\end{array}\right|$
$=3(-39000-20000)-5(26000+5000)=-1747000-155000=-332000$
Using Cranner's rule, we get
$x=\frac{D_{1}}{D}=\frac{-321000}{-151}=2125.83, y=\frac{D_{2}}{D}=\frac{-73000}{-151}=483.44$,
$z=\frac{D_{3}}{D}=\frac{-332000}{-151}=2198.68$
Hence, required the prices of commodities X, Y and Z are Rs. 2125.83m Rs, 483.44 and Rs. 2198.68 respectively.

CHAPTER 8

INVERSE CIRCULAR FUNCTIONS

EXERCISE 8

1. Evaluate the following
a. $\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
b. $\operatorname{cosec}^{-1}(2)$
c. $\cot ^{-1}(-\sqrt{3})$
d. $\operatorname{Arctan}\left(\frac{2}{\sqrt{3}}\right)$
e. $\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)$

Solution:

a. Let $\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\theta$
Then, $\sin \theta=\frac{1}{\sqrt{2}}=\sin \frac{\pi}{4} \Rightarrow \theta=\frac{\pi}{4}$
b. Let $\operatorname{cosec}^{-1}(2)=\theta$
Then $\operatorname{cosec} \theta=2$

$$
\therefore \quad \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4}
$$

$$
\begin{aligned}
& \frac{1}{\sin \theta}=2 \\
& \sin \theta=\frac{1}{2} \\
& \sin \theta=\sin \frac{\theta}{6} \Rightarrow \theta=\frac{\pi}{6} \\
& \therefore \operatorname{cosec}^{-1}(2)=\frac{\pi}{6}
\end{aligned}
$$

c. Let $\cot ^{-1}(-\sqrt{3})=\theta$

Then $\cot \theta=-\sqrt{3}$

$$
\begin{aligned}
\therefore & \tan \theta=-\frac{1}{\sqrt{3}} \\
& \tan \theta=\tan \frac{5 \theta}{6} \\
\therefore & \theta=\frac{5 \pi}{6}
\end{aligned}
$$

d. Let $\arctan \left(\frac{1}{\sqrt{3}}\right)=\theta$
$\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\theta$
$\Rightarrow \tan \theta=\frac{1}{\sqrt{3}}=\tan \frac{\pi}{6}$
$\therefore \quad \theta=\frac{\pi}{6}$
e. Let $\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)=\theta$

Then, $\sec \theta=\frac{2}{\sqrt{3}}$
$\cos \theta=\frac{\sqrt{3}}{2}$
$\cos \theta=\cos \frac{\pi}{6} \therefore \theta=\frac{\pi}{6}$
$\therefore \sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)=\frac{\pi}{6}$
2. Evaluate:
a. $\cos \left(\tan ^{-1} \frac{3}{4}\right)$
b. $\sin \left(\cot ^{-1} x\right)$
c. $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$
d. $\tan ^{-1}\left(\tan \frac{2 \pi}{3}\right)$
e. $\cos \left(2 \cot ^{-1} x\right)$
f. $\sin (2 \operatorname{Arctan} x)$

Solution:

a. $\cos \left(\tan ^{-1} \frac{3}{4}\right)$
Let $\tan ^{-1} \frac{3}{4}=\theta$
$\tan \theta=\frac{3}{4}$
b. $\sin \left(\cot ^{-1} x\right)$
Let $\mathrm{co}^{-1} \mathrm{x}=\theta$
$\therefore \quad \cot \theta=\mathrm{x}$
$\sin \left(\cot ^{-1} x\right)$
$\sin \theta=\frac{p}{h}=\frac{1}{\sqrt{1+x^{2}}}$

$$
\begin{aligned}
& \Rightarrow \operatorname{Cos} \theta=\frac{4}{5} \\
& \Rightarrow \theta=\cos ^{-1} \frac{4}{5} \\
& \therefore \quad \operatorname{Tan}^{-1} \frac{3}{4}=\cos ^{-1} \frac{4}{5}
\end{aligned}
$$

Now,

$$
\begin{gathered}
\cos \left(\tan ^{-1}\left(\frac{3}{4}\right)\right)=\cos \left(\cos ^{-1} \frac{4}{5}\right)= \\
\frac{4}{5}
\end{gathered}
$$

c. $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)=\frac{2 \pi}{3}$
e. $\cos \left(2 \cot ^{-1} x\right)$

Let $\cot ^{-1} \mathrm{x}=\theta$
$\therefore \quad \cot \theta=\mathrm{x}$
Now, $\cos \left(2 \cot ^{-1} x\right)$
$=\cos 2 \theta=\frac{\cot ^{2} \theta-1}{\cot ^{2} \theta+1}=\frac{x^{2}-1}{x^{2}+1}$
d. $\tan ^{-1}\left(\tan \frac{2 \pi}{3}\right)=\frac{2 \pi}{3}$
f. $\quad \sin (2 \arctan x)=\sin \left(2 \tan ^{-1} x\right)$

Let $\tan ^{-1} x=\theta$
$\tan \theta=x$
$\sin \left(2 \tan ^{-1} x\right)=\sin 2 \theta$
$=\frac{2 \tan \theta}{1+\tan ^{2} \theta}=\frac{2 x}{1+x^{2}}$
3. Find the value of the following.
a. $\cos \left[\sin ^{-1} \frac{4}{5}+\tan ^{-1} \frac{5}{12}\right]$
b. $\tan \left[\tan ^{-1} x-\tan ^{-1} 2 y\right]$
c. $\sin ^{-1} x-\cos ^{-1}(-x)$
d. $\sin \left[\sin ^{-1} \frac{4}{5}+\cot ^{-1} 3\right]$
e. $\tan \left[\cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{2}{3}\right]$

Solution:

a. $\cos \left[\sin ^{-1} \frac{4}{5}+\tan ^{-1} \frac{5}{12}\right]$

Let $\sin ^{-1} \frac{4}{5}=4$
$\therefore \quad \sin A=\frac{4}{5}$
$\Rightarrow \cos \mathrm{A}=\sqrt{1-\sin ^{2} \mathrm{~A}}=\frac{3}{5}$ and $\tan ^{-1} \frac{5}{12}=\mathrm{B}$
$\therefore \quad \tan B=\frac{5}{12}$

Now, $\cos \left[\sin ^{-1} \frac{4}{5}+\tan ^{-1} \frac{5}{12}\right]=\cos (A+B)=\cos A \cdot \cos B-\sin A \cdot \sin B$

$$
=\frac{3}{5} \cdot \frac{12}{13}-\frac{4}{5} \cdot \frac{5}{13}=\frac{36-20}{65}=\frac{16}{65}
$$

b. $\tan \left[\tan ^{-1} x-\tan ^{-1} 2 y\right]$
$=\tan \left[\tan ^{-1}\left(\frac{x-2 y}{1+x .2 y}\right)\right]\left[\because \tan ^{-1} A \tan ^{-1} B=\tan ^{-1}\left(\frac{A-B}{1+A B}\right)\right]=\frac{x-2 y}{1+2 x y}$
c. $\sin ^{-1} x-\cos ^{-1}(-x)$
$\sin ^{-1} x-\left(\pi-\cos ^{-1} x\right)=\sin ^{-1} x-\pi+\cos ^{-1} x=\sin ^{-1} x+\cos ^{-1} x-\pi=\frac{\pi}{2}-\pi=-\frac{\pi}{2}$
d. Let $\sin ^{-1} \frac{4}{5}=\mathrm{A}$
$\sin A=\frac{4}{5} \quad \therefore \cos A=\frac{3}{5}$
and $\cot ^{-1} 3=B$

$$
\cot \mathrm{B}=3
$$

$\therefore \quad \sin B=\frac{1}{\sqrt{10}} \cos B=\frac{3}{\sqrt{10}}$
Now, $\sin \left(\sin ^{-1} \frac{4}{5}+\cot ^{-1} 3\right)$
$\sin (A+B)=\sin A \cdot \cos B+\cos A \cdot \sin B=\frac{4}{5} \cdot \frac{3}{\sqrt{10}}+\frac{3}{5} \cdot \frac{1}{\sqrt{10}}=\frac{15}{5 \sqrt{10}}=\frac{3}{\sqrt{10}}$
e. Let $\cos ^{-1} \frac{4}{5}=\mathrm{A} \quad$ and $\tan ^{-1} \frac{2}{3}=\mathrm{B}$
$\therefore \cos A=\frac{4}{5} \quad \tan B=\frac{2}{3}$

$$
\sin A=\frac{3}{5} \quad \sin B=\frac{2}{\sqrt{13}} \text { and } \cos B=\frac{3}{\sqrt{13}}
$$

Now, $\tan \left[\cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{2}{3}\right]$
$=\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \cdot \tan B}=\frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{3}{4} \cdot \frac{2}{3}}=\frac{\frac{9+8}{12}}{\frac{12-6}{12}}=\frac{17}{6}$
4. Prove that:
a. $\sin ^{-1}\left(3 x-4 x^{3}\right)=3 \sin ^{-1} x$
b. $\cos ^{-1}\left(4 x^{3}-3 x\right)=3 \cos ^{-1} x$
c. $\tan ^{-12}-\tan ^{-1} 1=\tan ^{-1} \frac{1}{3}$
d. $\sec ^{-1} x+\operatorname{cosec}^{-1} x=\frac{\pi}{2}$
e. $\tan ^{-1} \mathrm{x}=\frac{1}{2} \sin ^{-1} \frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}$
f. $\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{8}=\frac{\pi}{4}$
g. $\cot ^{-1} 3+\operatorname{cosec}^{-1} \sqrt{5}=\frac{\pi}{4}$
h. $\tan ^{-1} \frac{m}{n}-\tan ^{-1} \frac{m-n}{m+n}=\frac{\pi}{4}$
i. $\quad \sin ^{-1} \frac{12}{13}+\cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{63}{16}=\pi \quad$ j. $\quad \tan ^{-1} \frac{1}{3}+\sec ^{-1} \frac{\sqrt{5}}{2}=\frac{\pi}{4}$

Solution:

a. Prove that $\sin ^{-1}\left(3 x-4 x^{3}\right)=3 \sin ^{-1} x$

Let $x=\sin \theta$ then $\sin ^{-1} x=\theta$
LHS $\sin ^{-1}\left(3 x-4 x^{3}\right)=\sin ^{-1}\left(3 \sin \theta-4 \sin ^{3} \theta\right)=\sin (\sin 3 \theta)=3 \theta=3 \theta=3 \sin ^{-1} x$ RHS
b. $\cos ^{-1}\left(4 x^{3}-3 x\right)=3 \cos ^{-1} x$

Let $x=\cos \theta$
$\therefore \cos ^{-1} \mathrm{x}=\theta$
Taking LHS:
$\cos ^{-1}\left(4 x^{3}-3 x\right)=\cos -1\left(4 \cos ^{3} \theta-3 \cos \theta\right)=\cos ^{-1}\left(\cos ^{3} \theta\right)=3 \theta=3 \cos ^{-1} x$ RHS
c. $\tan ^{-1} 2-\tan ^{-1} 1=\tan ^{-1}\left(\frac{1}{3}\right)$

LHS $\tan ^{-1} 2=\tan ^{-1} 1=\tan ^{-1}\left(\frac{(2-1)}{1+2.1}\right)\left[\because \tan ^{-1} A-\tan ^{-1} B=\tan ^{-1}\left(\frac{A-B}{1+A B}\right)\right]$ $=\tan ^{-1}\left(\frac{1}{3}\right)$ RHS
d. $\sec ^{-1} x+\operatorname{cosec}^{-1} x=\frac{\pi}{2}+-+$

Let $\sec ^{-1} x=\theta$ then $x=\sec \theta$
$x=\operatorname{cosec}\left(\frac{\pi}{2}-\theta\right)$
$\operatorname{cosec}^{-1} x=\frac{\pi}{2}-\theta \Rightarrow \theta+\operatorname{cosec}^{-1} x=\frac{\pi}{2}$
$\therefore \quad \sec ^{-1} \mathrm{x}+\operatorname{cosce}^{-1} \mathrm{x}=\frac{\pi}{2}$
e. $\operatorname{Tan}^{-1} x=\frac{1}{2} \sin ^{-1} x \frac{2 x}{1+x^{2}}$

Let $x=\tan \theta$
$\therefore \tan ^{-1} x=\theta$
Now, $\frac{1}{2} \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)=\frac{1}{2} \sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)=\frac{1}{2} \sin ^{-1}\left(\sin ^{2} \theta\right)=\frac{1}{2} \cdot 2 \theta=\theta=\tan ^{-1} x$
f. $\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{8}=\frac{\pi}{4}$

LHS $\left(\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{5}\right)+\left(\tan +\frac{1}{7}+\tan ^{-1} \frac{1}{8}\right)$
$=\tan ^{-1}\left(\frac{\frac{1}{3}+\frac{1}{5}}{1-\frac{1}{15}}\right)+\tan ^{-1}\left(\frac{\frac{1}{7}+\frac{1}{8}}{1-\frac{1}{56}}\right)=\tan ^{-1}\left(\frac{8}{14}\right)+\tan ^{-1}\left(\frac{15}{55}\right)$
$=\tan ^{-1}\left(\frac{4}{7}\right)+\tan ^{-1}\left(\frac{3}{11}\right)=\tan ^{-1}\left(\frac{\frac{4}{7}+\frac{3}{11}}{1-\frac{12}{77}}\right) \Rightarrow \tan ^{-1}\left(\frac{65}{65}\right)=\tan ^{-1} 1=\frac{\pi}{4}$
g. $\cot ^{-1} 3+\operatorname{cosec}^{-1} \sqrt{4}=\tan ^{-1}\left(\frac{1}{3}\right)+\operatorname{cosec}^{-1} \sqrt{(5)}$

Let $\operatorname{cosec}^{-1} \sqrt{5}=\theta$ then, $\operatorname{cosec} \theta=\sqrt{5}$
$\therefore \frac{\mathrm{h}}{\mathrm{p}}=\frac{\sqrt{5}}{1}$
$\therefore h=\sqrt{5}, p=1$ then $\mathrm{b}=2$
from fig.

$$
\tan \theta=\frac{1}{2} \therefore \theta=\tan ^{-1} \frac{1}{2}
$$

$\operatorname{cosec}^{-1} \sqrt{5}=\tan ^{-1}\left(\frac{1}{2}\right)$
from (i),
$\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{2}\right)=\tan ^{-1}\left(\frac{\frac{1}{3}+\frac{1}{2}}{1-\frac{1}{6}}\right)=\tan ^{-1}\left(\frac{\frac{5}{6}}{\frac{5}{6}}\right)=\tan ^{-1} 1=\frac{\pi}{4}$
h. $\tan ^{-1} \frac{m}{n}-\tan ^{-1}\left(\frac{m-n}{m+n}\right)$

$$
\tan ^{-1}\left(\frac{\frac{m}{n}-\frac{m-n}{m+n}}{1+\frac{m}{n} \cdot\left(\frac{m-n}{m+n}\right)}\right)=\tan ^{-1}\left(\frac{\frac{m^{2}+m n-m n+n^{2}}{n(m+n)}}{\frac{m n+n^{2}+m^{2}-m n}{n(m+n)}}\right)=\tan ^{-1} 1=\frac{\pi}{4}
$$

i. Let $\sin ^{-1} \frac{12}{13}=\theta$

$$
\text { and } \cos ^{-1} \frac{4}{5}=\beta
$$

$$
\begin{array}{ll}
\therefore \sin \theta=\frac{12}{13} & \text { then } \cos \beta=\frac{4}{5} \\
\therefore \tan \theta=\frac{12}{5} & \therefore \tan \beta=\frac{3}{4} \\
& \theta=\tan ^{-1}\left(\frac{12}{5}\right)
\end{array} \therefore \beta=\tan ^{-1}\left(\frac{3}{4}\right) .
$$

Now, $\sin ^{-1}\left(\frac{12}{13}\right)+\cos ^{-1}\left(\frac{4}{5}\right)+\tan ^{-1}\left(\frac{63}{16}\right)$
$\tan ^{-1}\left(\frac{12}{5}\right)+\tan ^{-1}\left(\frac{3}{4}\right)+\tan ^{-1}\left(\frac{63}{16}\right)=\tan ^{-1}\left(\frac{\frac{12}{5}+\frac{3}{4}}{1-\frac{36}{20}}\right)+\tan ^{-1}\left(\frac{63}{16}\right)$
$=\tan ^{-1}\left(\frac{63}{-16}\right)+\tan ^{-1}\left(\frac{63}{16}\right)=\tan ^{-1}\left(\frac{-63}{16}\right)+\tan ^{-1}\left(\frac{63}{16}\right)$
$=-\tan ^{-1}\left(\frac{63}{16}\right)+\tan ^{-1}\left(\frac{63}{16}\right)\left[\because \tan ^{-1}(-\mathrm{x})=-\tan ^{-1}(\mathrm{x})\right]=0$
j. $\quad \tan ^{-1}\left(\frac{1}{3}\right)+\sec ^{-1} \frac{\sqrt{5}}{2}$

Let $\sec ^{-1}\left(\frac{\sqrt{5}}{2}\right)=\theta$
$\therefore \sec \theta=\frac{\sqrt{5}}{2}$
$\therefore \frac{\mathrm{h}}{\mathrm{b}}=\frac{\sqrt{5}}{2} \therefore \mathrm{p}=1$
$\tan \theta=\frac{\mathrm{p}}{\mathrm{b}}=\frac{1}{2}$

$$
\begin{aligned}
& \theta=\tan ^{-1}\left(\frac{1}{2}\right) \\
& \text { or, } \sec ^{-1}\left(\frac{\sqrt{5}}{2}\right)=\tan ^{-1}\left(\frac{1}{2}\right)
\end{aligned}
$$

Therefore, $\tan ^{-1}\left(\frac{1}{3}\right)+\sec ^{-1}\left(\frac{\sqrt{5}}{2}\right)=\tan ^{-1}\left(\frac{1}{3}\right)+\sec ^{-1}\left(\frac{\sqrt{5}}{2}\right)$

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{2}\right)=\tan ^{-1}\left(\frac{\frac{1}{3}+\frac{1}{2}}{1-\frac{1}{6}}\right) \\
& =\tan ^{-1} 1=\frac{\pi}{4}
\end{aligned}
$$

5. Solve.
a. $\quad \cos ^{-1} \mathrm{x}-\sin ^{-1} \mathrm{x}=0$
b. $\sin ^{-1} \frac{1}{2} x=\cos ^{-1} x$
c. $\quad \cos ^{-1} x=\cos ^{-1} \frac{1}{2 x}$
d. $\tan ^{-1} \mathrm{x}-\cot ^{-1} \mathrm{x}=0$
e. $\tan ^{-1}\left[\frac{x-1}{x-2}\right]+\tan ^{-1}\left[\frac{x+1}{x+2}\right]=\tan ^{-1} 1$
f. $\sin ^{-1} 2 x-\sin ^{-1} \sqrt{3} x=\sin ^{-1} x(x>0)$
g. $3 \tan ^{-1} \frac{1}{2+\sqrt{3}}-\tan ^{-1} \frac{1}{x}=\tan ^{-1} \frac{1}{3} \quad$ h. $\sin ^{-1} \frac{2 a}{1+a^{2}}-\cos ^{-1} \frac{1-b^{2}}{1+b^{2}}=2 \tan ^{-1} x$
i. $\quad \tan ^{-1}(x+1)+\tan ^{-1}(x-1)=\tan ^{-1}\left(\frac{8}{31}\right)$

Solution:

a. $\cos ^{-1} x=\sin ^{-1} x=0$
$\cos ^{-1} x=\sin ^{-1} x$
or, $\sin ^{-1} \sqrt{1-x^{2}}=\sin ^{-1} x$
or, $\sqrt{1-x^{2}}=x$
Squaring both sides

$$
\begin{aligned}
& 1-x^{2}=x^{2} \\
& 1=2 x^{2} \\
& \therefore \quad x= \pm \frac{1}{\sqrt{2}}
\end{aligned}
$$

b. $\sin ^{-1} \frac{x}{2}=\cos ^{-1} x$
or, $\sin ^{-1} \frac{x}{2}=\sin ^{-1} \sqrt{1-x^{2}}$)
$\therefore \frac{x}{2}=\sqrt{1-x^{2}}$
Squaring both sides
or, $\frac{x^{2}}{4}=1-x^{2}$
or, $5 x^{2}=4$
$\therefore \quad x= \pm \frac{2}{\sqrt{5}}$
c. $\cos ^{-1} x=\cos ^{-1} \frac{1}{2 x}$

$$
\begin{aligned}
\therefore & x=\frac{1}{2 x} \\
& x^{2}=\frac{1}{2} \\
\therefore & x= \pm \frac{1}{\sqrt{2}}
\end{aligned}
$$

d. $\tan ^{-1} x-\cot ^{-1} x=0$
$\tan ^{-1} x=\cot ^{-1} x$
or, $\tan ^{-1} x=\tan ^{-1}\left(\frac{1}{x}\right)$
$\therefore \quad \mathrm{x}=\frac{1}{\mathrm{x}}$
$\therefore \quad \mathrm{x}= \pm 1$
e. $\tan ^{-1}\left(\frac{x-1}{x-2}\right)+\tan ^{-1}\left(\frac{x+1}{x+2}\right)=\tan ^{-1} 1$

$$
\begin{aligned}
& \text { or, } \tan ^{-1}\left\{\frac{\frac{x-1}{x-2}+\frac{x+1}{x+2}}{1-\left(\frac{x-1}{x-2}\right)\left(\frac{x+1}{x+2}\right)}\right\}=\tan ^{-1} 1 \\
& \text { or, } \tan ^{-1}\left(\frac{x^{2}+2 x-x-2+x^{2}+x-2 x-2}{x^{2}-4-x^{2}+1}\right)=\tan ^{-1} 1 \\
& \qquad \tan -1\left(\frac{2 x^{2}-4}{-3}\right)=\tan ^{-1} 1 \\
& \text { or, } \frac{2 x^{2}-4}{-3}=1 \\
& \text { or, } 2 x^{2}-4=-3 \\
& \text { or, } 2 x^{2}=1
\end{aligned}
$$

$\therefore \quad x= \pm \frac{1}{\sqrt{2}}$
f. $\quad \sin ^{-1} 2 x-\sin ^{-1} \sqrt{3} x=\sin ^{-1} x$
or, $\sin ^{-1} 2 x-\sin ^{-1} x=\sin ^{-1} x \sqrt{3} x$
$\sin ^{-1}\left\{2 x \cdot \sqrt{1-x^{2}}-x \cdot \sqrt{1-4 x^{2}}\right\}=\sin ^{-1} \sqrt{3} x$
$2 x \sqrt{1-x^{2}}-x \sqrt{1-4 x^{2}}=\sqrt{3} x$
$x\left(2 \sqrt{1-x^{2}}-\sqrt{1-4 x^{2}}\right)=\sqrt{3} x$
$\therefore x\left(2-\sqrt{1-x^{2}}-\sqrt{1-4 x^{2}}-\sqrt{3}\right)=0$
Either $x=0 \quad$ Or, $2 \sqrt{1-x^{2}}-\sqrt{1-4 x^{2}}-\sqrt{3}=0$
$2 \sqrt{1-x^{2}}-\sqrt{3}=\sqrt{1-4 x^{2}}$
Squaring both sides, we get, $x=\frac{1}{2}$
Hence, $x=0, \frac{1}{2}$.
g. The given equation is
$3 \tan ^{-1}\left(\frac{1}{2+\sqrt{3}}\right)-\tan ^{-1} \frac{1}{x}=\tan ^{-1} \frac{1}{3}$
or, $3 \tan ^{-1}(2-\sqrt{3})-\tan ^{-1} \frac{1}{x}=\tan ^{-1} \frac{1}{3}$
or, $\tan ^{-1}\left\{\frac{3(2-\sqrt{3})\left(2-\sqrt{3}{ }^{3}\right)}{1-3(2-\sqrt{3})^{2}}\right\}-\tan ^{-1} \frac{1}{3}=\tan ^{-1} \frac{1}{x}$
$\therefore \quad 3 \tan ^{-1} \mathrm{x}=\tan ^{-1}\left(\frac{3 \mathrm{x}-\mathrm{x}^{3}}{1-3 \mathrm{x}^{2}}\right)$
or, $\tan ^{-1}\left(\frac{12 \sqrt{3}-20}{12 \sqrt{3}-20}\right)-\tan ^{-1} \frac{1}{3}=\tan ^{-1} \frac{1}{x}$
or, $\tan ^{-1} 1-\tan ^{-1} \frac{1}{3}=\tan ^{-1} \frac{1}{x}$
or, $\tan ^{-1}\left(\frac{1-\frac{1}{3}}{1+1 \frac{1}{3}}\right)=\tan ^{-1} \frac{1}{x}$
or, $\tan ^{-1}\left(\frac{1}{2}\right)=\tan ^{-1} \frac{1}{x}$
$\therefore \quad \frac{1}{2}=\frac{1}{x} \quad \therefore \mathrm{x}=2$
h. $\sin ^{-1}\left(\frac{2 a}{1+a^{2}}\right)-\cos ^{-1}\left(\frac{1-b^{2}}{1+b^{2}}\right)=2$
$\tan ^{-1} x$
or, $2 \operatorname{tn}^{-1} a-2 \tan ^{-1} b=2 \tan ^{-1} x$
or, $\tan ^{-1} a-\tan ^{-1} b=\tan ^{-1} x$
i. $\tan ^{-1}(x+1)+\tan ^{-1}(x-1)=\tan ^{-1}$
$\left(\frac{8}{31}\right)$
or, $\tan ^{-1}\left(\frac{a-b}{1+a b}\right)=\tan ^{-1} x$
or, $\tan ^{-1}\left\{\frac{x+1+x-1}{1-(x+1)(x-1)}\right\}=\tan ^{-1}$
$\left(\frac{8}{31}\right)$
$\therefore \quad \mathrm{x}=\frac{\mathrm{a}-\mathrm{b}}{1+\mathrm{ab}}$
$\tan ^{-1}\left(\frac{2 x}{1-x^{2}+1}\right)=\tan ^{-1}\left(\frac{8}{31}\right)$
$\therefore \quad \frac{2 x}{2-x^{2}}=\frac{8}{31}$
or, $8-4 x^{2}=31 x$
or, $4 x^{2}+31 x-8=0$
or, $4 x^{2}+32 x-x-8=0$
or, $4 x(x+8)-1(x+8)=0$
$\therefore \quad x=-8$ or $\frac{1}{4}$
6. Prove the following.
a. $2 \tan ^{-1} \mathrm{x}=\sin ^{-1} \frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}=\cos ^{-1} \frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}=\tan ^{-1} \frac{2 \mathrm{x}}{1-\mathrm{x}^{2}}$
b. $\tan \left(2 \tan ^{-1} \mathrm{x}\right)=\tan \left(\tan ^{-1} \frac{2 \mathrm{x}}{1-\mathrm{x}^{2}}\right)=\frac{2 \mathrm{x}}{1-\mathrm{x}^{2}}$
c. $\tan ^{-1} 1+\tan ^{-1} 2+\tan ^{-1} 3=\Pi=2\left(\tan ^{-1} 1+\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}\right)$
d. $\sin ^{-1} \sqrt{\frac{x-b}{a-b}}=\cos ^{-1} \sqrt{\frac{a-x}{a-b}}=\tan ^{-1} \sqrt{\frac{x-b}{a-x}}$

Solution:

a. Let $x=\tan \theta$ then $2 \tan ^{-1} x=2 \tan ^{-1} \tan \theta=2 \theta$

$$
\begin{aligned}
& \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)=\sin ^{-1}\left(\sin ^{2} \theta\right)=2 \theta \\
& \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)=\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right)=\cos ^{-1}\left(\cos ^{2} \theta\right)=2 \theta \\
& \left.\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\tan ^{-1}\left(\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right)=\tan ^{-1} \tan ^{2} \theta\right)=2 \theta
\end{aligned}
$$

Combining the above results, we get the required result.
Hence, $2 \tan ^{-1} x=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$
b. $\tan \left(2 \tan ^{-1} x\right)=\tan \left(\tan ^{-1} \frac{2 x}{1-x^{2}}\right)=\frac{2 x}{1-x^{2}}$

$$
2 \tan \left(\tan ^{-1} x+\tan ^{-1} x^{3}\right)=2 \tan \tan ^{-1}\left(\frac{x+x^{3}}{1-x^{4}}\right)=2 \frac{x\left(1+x^{2}\right)}{\left(1-x^{2}\right)\left(1+x^{2}\right)}=\frac{2 x}{1-x^{2}}
$$

Hence, $\operatorname{tn}\left(2 \tan ^{-1} x\right)=2 \tan \left(\tan ^{-1} x+\tan ^{-1} x^{3}\right)$
c. LHS $\tan ^{-1} 1+\tan ^{-1} 2+\tan ^{-1} 3=\tan ^{-1} 1+\tan ^{-1}\left(\frac{2+3}{1-6}\right)=\tan ^{-1} 1+\tan ^{-1}(-1)=\frac{\pi}{4}+$ $\frac{3 \pi}{4}=\pi$

$$
\begin{aligned}
\text { RHS }, & =2\left(\tan ^{-1} 1+\tan ^{-1} \text { eq } \frac{1}{2}+\tan ^{-1} \frac{1}{3}\right)=2\left\{\tan ^{-1} 1+\tan -1\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{6}}\right)\right\} \\
& =2\left\{\tan ^{-1} 1+\tan ^{-1} 1\right\}=2\left(\frac{\pi}{4}+\frac{\pi}{4}\right)=\pi
\end{aligned}
$$

Hence, LHS = RHS
d. Put $\sin ^{-1} \sqrt{\frac{x-a}{a-b}}=A$

$$
\begin{equation*}
\Rightarrow \sqrt{\frac{x-a}{a-b}}=\sin A \tag{i}
\end{equation*}
$$

We have,
$\cos A=\sqrt{1-\sin ^{2} A}=\sqrt{1-\frac{x-b}{a-b}}=\sqrt{\frac{a-b-x+b}{a-b}}=\sqrt{\frac{a-x}{a-b}}$
$\Rightarrow A=\cos ^{-1} \sqrt{\frac{a-x}{a-b}}$
And, $\tan A=\frac{\sin A}{\cos A}=\frac{\sqrt{\frac{x-a}{a-b}}}{\sqrt{\frac{a-x}{a-b}}}=\sqrt{\frac{x-b}{a-x}}$
$\Rightarrow A=\tan ^{-1} \sqrt{\frac{x-b}{a-x}}$
From (i), (ii) and (iii), we have,

$$
\sin ^{-1} \sqrt{\frac{x-b}{a-b}}=\cos ^{-1} \sqrt{\frac{a-x}{a-b}}=\tan ^{-1} \sqrt{\frac{x-b}{a-x}}
$$

7. If $\sec ^{-1} x=\operatorname{cosec}^{-1} y$, prove that $\frac{1}{x^{2}}+\frac{1}{y^{2}}=1$.

Solution:

$$
\begin{aligned}
& \operatorname{cosec}^{-1}=\sec ^{-1} y \\
& \Rightarrow \sin ^{-1} \frac{1}{x}=\cos ^{-1} \frac{1}{y} \\
& \Rightarrow \sin ^{-1} \frac{1}{x}=\sin ^{-1} \sqrt{1-\left(\frac{1}{y}\right)^{2}} \\
& \Rightarrow \frac{1}{x}=\sqrt{1-\left(\frac{1}{y}\right)^{2}} \\
& \Rightarrow\left(\frac{1}{x}\right)^{2}=1-\left(\frac{1}{y}\right)^{2}
\end{aligned}
$$

$\Rightarrow \frac{1}{\mathrm{x}^{2}}=1-\frac{1}{\mathrm{y}^{2}}$
$\Rightarrow \frac{1}{x^{2}}+\frac{1}{y^{2}}=1$
8. If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{\pi}{2}$. Prove that $x^{2}+y^{2}+z^{2}+2 x y z=1$.

Solution:

$$
\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{\pi}{2}
$$

Put $\sin ^{-1} x=A \Rightarrow x=\sin A \Rightarrow \cos A=\sqrt{1-x^{2}}$

$$
\begin{aligned}
& \sin ^{-1} y=B \Rightarrow y=\sin B \Rightarrow \cos B=\sqrt{1-y^{2}} \\
& \sin ^{-1} z=C \Rightarrow z=\sin C
\end{aligned}
$$

Now,

$$
\begin{aligned}
& A+B+C=\frac{\pi}{2} \\
& A+B=\frac{\pi}{2}-C \\
\Rightarrow & \cos (A+B)=\cos \left(\frac{\pi}{2}-C\right) \\
\Rightarrow & \cos A \cdot \cos B-\sin A \cdot \sin B=\sin C \\
\Rightarrow & \sqrt{1-x^{2}} \sqrt{1-y^{2}}-x y=z \\
\Rightarrow & \sqrt{1-x^{2}} \sqrt{1-y^{2}}=x y+z
\end{aligned}
$$

Squaring on both sides, we get

$$
\left(1-x^{2}\right)\left(1-y^{2}\right)=(x y+z)^{2}
$$

$$
\Rightarrow 1-x^{2}-y^{2}+x^{2} y^{2}=x^{2} y^{2}+2 x y z+z^{2}
$$

$$
\Rightarrow 1=x^{2}+y^{2}+z^{2}+2 x y z
$$

$$
\therefore x^{2}+y^{2}+z^{2}+2 x y z=1
$$

9. If $\cot ^{-1} x+\cot ^{-1} y+\cot ^{-1} z=\pi$, show that $x y+y z+z x=1$

Solution:

We have,

$$
\begin{aligned}
& \cot ^{-1} x+\cot ^{-1} y+\cot ^{-1} z=\pi \\
& \cot ^{-1} x+\cot ^{-1} y=\pi-\cot ^{-1} z \\
& \cot ^{-1}\left(\frac{x y-1}{x+y}\right)=\pi-\cot ^{-1} z \\
& \text { or, } \frac{x y-1}{x+y}=\cot \left(\pi-\cot ^{-1} z\right) \\
& \text { or, } \frac{x y-1}{x+y}=-\cot \cot ^{-1} z \\
& \text { or, } \frac{x y-1}{x+y}=-z \\
& \quad x y-1=-x z-y z \\
& \therefore \quad x y+y z+z x=1
\end{aligned}
$$

10. If $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\pi$, show that $x+y+z=x y z$

Solution:

Given,

$$
\begin{aligned}
& \tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\pi \\
& \tan ^{-1}\left(\frac{x+y}{1-x y}\right)=\pi-\tan ^{-1} z \\
& \text { or, } \frac{x+y}{1-x y}=\tan \left(\pi-\tan ^{-1} z\right) \\
& \text { or, } \frac{x+y}{1-x y}=-\tan \tan ^{-1} z \quad(\because \tan (\pi-\theta)=-\tan \theta) \\
& \quad \frac{x+y}{1-x y}=-z \\
& \quad x+y=-z+x y z \\
& \therefore \quad x+y+z=x y z
\end{aligned}
$$

11. If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\pi$, prove that $x \sqrt{1-x^{2}}+y \sqrt{1-y^{2}}+z \sqrt{1-z^{2}}$
= 2xyz.

Solution:

$$
\begin{aligned}
\text { Let } \sin ^{-1} x & =A \Rightarrow \sin A=x & \therefore \cos A=\sqrt{1-x^{2}} \\
\sin ^{-1} y & =B \Rightarrow \sin B=y & \therefore \cos B=\sqrt{1-y^{2}} \\
\sin ^{-1} z & =C \Rightarrow \sin C=z & \therefore \cos C=\sqrt{1-z^{2}}
\end{aligned}
$$

Since,
$\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\pi$
i.e. $A+B+C=\pi$
$\therefore \quad A+B=\pi-C$
$\therefore \quad \operatorname{Sin}(A+B)=\sin (\pi-C)=\sin C$

$$
\cos (A+B)=\cos (\pi-C)=-\cos C
$$

Now,
Taking, LHS, $x \sqrt{1-x^{2}}+y \sqrt{1-y^{2}}+z \sqrt{1-z^{2}}$
$=\sin A \cdot \cos A+\sin B \cdot \cos B+\sin C \cdot \cos C=\frac{1}{2}(\sin 2 A+\sin 2 B)+\sin C \cdot \cos C$
$=\frac{1}{2} 2 \sin \frac{2 A+2 B}{2} \cdot \cos \frac{2 A-2 B}{2}+\sin C \cdot \cos C$
$=\sin (A+B) \cdot \cos (A-B)+\sin C \cdot \cos C$
$=\sin C \cdot \cos (A-B)+\sin C \cdot \cos C=\sin C\{\cos (A-B)+\cos C\}$
$=\sin C\{\cos (A-B)-\cos (A+B)\} \quad[\because \cos (A+B)=-\cos C]$
$=\sin C \cdot 2 \sin A \cdot \sin B=2 \sin A \cdot \sin B \cdot \sin C=2 x \cdot y \cdot z=2 x y z$
Hence, $x \sqrt{1-x^{2}}+y \sqrt{1-y^{2}}+z \sqrt{1-z^{2}}=2 x y z$

CHAPTER 9

TRIGONOMETRIC EQUATIONS AND GENERAL VALUES

EXERCISE 9

1. Find the principal solution of
a. $2 \cos x-1=0$
b. $\sqrt{3} \sec x=2$
c. $\tan x=\frac{-1}{\sqrt{3}}$
d. $\quad \sin x=\frac{1}{\sqrt{2}}$

Solution:

a. $2 \cos x-1=0$
b. $\sqrt{3} \sec x=2$
$\sec x=\frac{1}{\sqrt{3}}$
$\cos x=\frac{\sqrt{3}}{2}$
$\therefore \quad \cos x=\cos \frac{\pi}{6}, \cos \left(2 \pi-\frac{\pi}{6}\right)$
$\therefore \quad x=\frac{\pi}{6}, \frac{11 \pi}{6}$
c. $\tan x=-\frac{1}{\sqrt{3}}$
d. $\quad \sin x=\frac{1}{\sqrt{2}}$
$\tan x=\tan \left(\pi-\frac{\pi}{6}\right), \tan \left(2 \pi-\frac{\pi}{6}\right)$
$\sin x=\sin \frac{\pi}{4}, \sin \left(\pi-\frac{\pi}{4}\right)$
$\tan \mathrm{x}=\tan \frac{5 \pi}{6}, \tan \frac{11 \pi}{6} \therefore \mathrm{x}=\frac{5 \pi}{6}$,
$\sin x=\sin \frac{\pi}{4}, \sin \frac{3 \pi}{4} \quad \therefore x=\frac{\pi}{4}, \frac{3 \pi}{4}$

$$
\frac{11 \pi}{6}
$$

2. Find the general solution of
a. $\quad \cos ^{2} x=\frac{1}{2}$
b. $\quad \cos 3 x=\frac{-1}{\sqrt{2}}$
c. $\cos 3 x=\sin 2 x$
d. $\tan ^{2} x=\frac{1}{3}$

Solution:

a. $\quad \cos ^{2} x=\frac{1}{2}$
b. $\quad \cos 3 x=-\frac{1}{\sqrt{2}}$
$\cos ^{2} x=\cos ^{2} \frac{\pi}{4}$
$\therefore \quad \mathrm{x}=\mathrm{n} \pi \pm \frac{\pi}{4}$
$\cos 3 x=\cos \frac{3 \pi}{4}$
\therefore The general solution is
(Since $\cos ^{2} \theta=\cos ^{2} \propto \Rightarrow \theta=\mathrm{n} \pi \pm \propto$)
$3 x=2 n \pi \pm \frac{3 \pi}{4} \Rightarrow x=\frac{2 n \pi}{3} \pm \frac{\pi}{4}$
c. $\cos 3 x=\sin 2 x$
$\cos 3 x=\cos \left(\frac{\pi}{2}-2 x\right)$
$\therefore \quad 3 \mathrm{x}=2 \mathrm{n} \pi \pm\left(\frac{\pi}{2}-2 \mathrm{x}\right)(\because \cos \theta=\cos \propto \Rightarrow \theta=2 \mathrm{n} \pi \pm \propto)$

$$
\begin{aligned}
& 3 x=2 n \pi+\frac{\pi}{2}-2 x \quad \text { or, } 3 x=2 n \pi \\
& 5 x=2 x \pi+\frac{\pi}{2} \quad \therefore \quad x=(4 n-2 n \pi \\
& 5 x=(4 n+1) \frac{\pi}{2} \quad \therefore \\
& 5 x=(4 n+1) \frac{\pi}{2} \\
& \therefore \quad x=(4 x+1) \frac{\pi}{10} \\
& \text { Hence, } x=(4 n+1) \frac{\pi}{10},(4 n-1) \frac{\pi}{2} \\
& \text { d. } \tan ^{2} x=\frac{1}{3} \\
& \tan ^{2} x=\left(\frac{1}{\sqrt{3}}\right)^{2} \\
& \text { or, } \tan ^{2} x=\left(\tan \frac{\pi}{6}\right)^{2} \\
& \therefore \quad x=n \pi \pm \frac{\pi}{6}\left(\because \tan ^{2} \theta=\tan ^{2} \propto \Rightarrow \theta=n \pi \pm \propto\right)
\end{aligned}
$$

3. Find the general solution of the following
a. $\sin 2 x+\cos x=0$
b. $\tan ^{3} x-3 \tan x=0$
c. $\quad \sin a x+\cos b x=0$
d. $\tan x+\cot x=2$

Solution:

a. $\sin 2 x+\cos x=0$
b. $\tan ^{3} x=3 \tan x=0$
or, $2 \sin x \cdot \cos x+\cos x=0$
or, $\cos x(2 \sin x+1)=0$
Either $\cos x=0$
or, $\sin x=-\frac{1}{2}$
$\therefore \quad x=(2 x+1) \frac{\pi}{2}$
$\sin x=\sin \left(-\frac{\pi}{6}\right)$
$\therefore \quad \mathrm{x}=\mathrm{n} \pi, \mathrm{n} \pi \pm \frac{\pi}{3}$
$\therefore \quad x=n \pi+(-1)^{n}\left(-\frac{\pi}{6}\right)$
$\therefore \quad x=(2 n+1) \frac{\pi}{2}, n \pi+(-1)^{n}\left(-\frac{\pi}{6}\right)$
c. $\operatorname{Sinax}+\operatorname{cosbx}=0$
or, $-\sin a x=\operatorname{cosbx}$
$\operatorname{cosbx}=\cos \left(\frac{\pi}{2}+a x\right)$
$\therefore \mathrm{bx}=2 \mathrm{~ns} \pi \pm\left(\frac{\pi}{2}+\mathrm{ax}\right)(\because \cos \theta=\cos \propto \Rightarrow \theta=2 \mathrm{n} \pi \pm \propto \forall \mathrm{n} \in \mathrm{z})$
Taking positive sign

$$
\begin{array}{ll}
b x=2 n \pi+\frac{\pi}{2}+a x & b x=2 n \pi-\frac{\pi}{2}-a x \\
(b-a) x=2 n \pi+\frac{\pi}{2} & (b+a) x=2 n \pi-\frac{\pi}{2} \\
\therefore & x=1(4 n+1) \frac{\pi}{2} \\
\text { Hence, } x=\frac{(4 n+1)}{b-a} \frac{\pi}{2}, \frac{(4 n-1)}{b+a} \frac{\pi}{2}
\end{array}
$$

d. $\tan x+\cot x=2$

$$
\begin{aligned}
& \text { or, } \frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}=2 \\
& \text { or, } \sin ^{2} x+\cos ^{2} x=2 \sin x . \cos x \\
& 1=\sin 2 x \\
& \therefore \quad \sin 2 x=\sin \frac{\pi}{2} \\
& \therefore \quad 2 x=n \pi \pm(-1)^{n} \frac{\pi}{2}\left(\because \sin \theta=\sin \propto \theta=n \pi \pm(-1)^{n} \propto, \forall n\right) \\
& x=\frac{n \pi}{2}+(-1)^{n} \frac{\pi}{4}
\end{aligned}
$$

4. Solve the following equations for general solution.
a. $4 \cos ^{2} x+6 \sin ^{2} x=5$
b. $\cos ^{2} x-\sin ^{2} x+\cos x=0$
c. $3 \cos ^{2} x+5 \sin ^{2} x=4$
d. $4 \sin ^{2} x-8 \cos x+1=0$

Solution:

a. $4 \cos ^{2} x=6 \sin ^{2} x=5 \quad$ b. $\cos ^{2} x-\sin ^{2} x+\cos x=0$
$4-4 \sin ^{2} x+6 \sin ^{2} x=5$
$2 \sin ^{2} x=1$
$\sin ^{2} x=\left(\frac{1}{\sqrt{2}}\right)^{2}$
$\sin ^{2} x=\sin ^{2} \frac{\pi}{4}$
$\cos ^{2} x-1+\cos ^{2} x+\cos x=0$
or, $2 \cos ^{2} x+\cos x-1=0$
or, $2 \cos ^{2} x+2 \cos x-\cos x-1=0$

$$
(2 \cos x-1)(\cos x+1)=0
$$

either $2 \cos x-1=0$
$\cos x=\frac{1}{2}$
$\therefore \quad \mathrm{x}=\mathrm{n} \pi \pm \frac{\pi}{4}$
$\therefore \quad \cos x=\cos \frac{\pi}{3} \quad \therefore x=2 n \pi \pm \frac{\pi}{3}$
$\left(\because \sin ^{2} \theta=\sin ^{2} \propto \Rightarrow \theta=\mathrm{n} \pi \pm \propto \forall \mathrm{n} \in \mathrm{z}\right)$

$$
\begin{aligned}
\text { or, } & \cos x+1=0 \\
\cos x & =-1 \\
\cos x & =\cos \pi
\end{aligned}
$$

$$
\therefore \quad x=2 n \pi \pm \pi
$$

c. $3 \cos ^{2} x+5 \sin ^{2} x=4$
or, $3-3 \sin ^{2} x+\sin ^{2} x=4$ $2 \sin ^{2} x=1$
$\therefore \quad \sin ^{2} x=\left(\frac{1}{\sqrt{2}}\right)^{2}$
$\sin ^{2} x=\sin ^{2} \frac{\pi}{4}$
$\therefore \quad \mathrm{x}=\mathrm{n} \pi \pm \frac{\pi}{4}$
d. $4 \sin ^{2} x-8 \cos x+1=0$
$4-4 \cos ^{2} x-8 \cos x+1=0$
or, $4 \cos ^{2} x+8 \cos x-5=0$
or, $4 \cos ^{2} x+10 \cos x-2 \cos x-5=0$
or, $2 \cos x(2 \cos x+5)-1(2 \cos x+5)=0$

$$
(2 \cos x-1)(2 \cos x+5)=0
$$

Either $2 \cos x-1=0$ or, $\cos x=-\frac{5}{2}$
$\cos x=\frac{1}{2}$
$\cos x=\cos \frac{\pi}{3} \therefore \mathrm{x}=2 \mathrm{n} \pi \pm \frac{\pi}{3}$
5. Solve:
a. $\cos x+\cos 2 x+\cos 3 x=0$
b. $\sin 3 x+\sin x=\sin 2 x$
c. $\cos 3 x+\cos x=\cos 2 x$
d. $2 \tan x-\cot x=-1$

Solution:

a. $\cos x+\cos 2 x+\cos 3 x=0$
$(\cos x+\cos 3 x)+\cos 2 x=0$
or, $2 \cos \left(\frac{x+3 x}{2}\right) \cdot \cos \left(\frac{3 x-x}{2}\right)+\cos 2 x=0$
$2 \cos 2 x \cdot \cos x+\cos 2 x=0$
or, $\cos 2 x(2 \cos x+1)=0$

$$
\begin{array}{rlr}
& \text { Either } \cos 2 x=0 & \text { or, } 2 \cos x+1=0 \\
& \cos 2 x=\cos \frac{\pi}{2} & \cos x=-\frac{1}{2} \\
\therefore & 2 x=(2 n+1) \frac{\pi}{2} & \cos x=\cos \frac{2 \pi}{3} \\
\therefore & x=(2 n+1) \frac{\pi}{4} & \therefore \\
x=2 n \pi \pm \frac{2 \pi}{3}=(6 n \pm 2) \frac{\pi}{3}
\end{array}
$$

b. $\operatorname{Sin} 3 x+\sin x=\sin ^{2} x$
$2 \sin \left(\frac{3 x+x}{2}\right) \cdot \cos \left(\frac{3 x-3}{2}\right)=\sin ^{2} x$
or, $2 \sin 2 x \cdot \cos x-\sin ^{2} x=0$
$\sin 2 x(2 \cos x-1)=0$

Either
or, $\sin 2 x=0$

$$
\text { or, } 2 \cos x-1=0
$$

$$
\text { or, } \cos x=\frac{1}{2}
$$

or, $2 x=n \pi$

$$
\text { or, } \operatorname{cox}=\cos \frac{\pi}{3}
$$

$\therefore \quad \mathrm{x}=\frac{\mathrm{n} \pi}{3}$
$\therefore \quad \mathrm{x}=\frac{\mathrm{n} \pi}{2}, 2 \mathrm{n} \pi \pm \frac{\pi}{3}$
c. $\cos 3 x+\cos x=\cos 2 x$
or, $2 \cos 2 x \cdot \cos x=\cos 2 x$

$$
\cos 2 x(2 \cos x-1)=0
$$

Either $\cos 3 x=0$
or, $2 \cos x-1=0$
$\therefore \quad 2 x=(2 n+1) \frac{\pi}{2}$
or, $\cos x=\frac{1}{2}$
$\therefore \quad \mathrm{x}=(2 \mathrm{n}+1) \frac{\pi}{4}$
or, $\cos x=\cos \frac{\pi}{3} \quad \therefore x=2 n \pi \pm \frac{\pi}{3}$
Hence, the general solution $x=(2 n+1) \frac{\pi}{4},(6 n \pm 1) \frac{\pi}{3}$
d. $2 \tan x-\cot x=-1$
$2 \tan x-\frac{1}{\tan x}=-1$
or, $2 \tan ^{2} x-1=-\tan x$
or, $2 \tan ^{2} x+\tan x-1=0$
$2 \tan ^{2} x+2 \tan x-\tan x-1=0$
or, $2 \tan x(\tan x+1)-1(\tan x+1)=0$
$(\tan x+1)(2 \tan x-1)=0$

Either $\tan x+1=0$
$\tan \mathrm{x}=-1$

$$
\tan x=\tan \frac{3 \pi}{4} \quad \text { or, } \tan \left(-\frac{\pi}{4}\right)
$$

$\therefore \quad x=n \pi+\frac{3 \pi}{4} \quad$ or, $n \pi-\frac{\pi}{4}$
or, $2 \tan x-1=0$
or, $\tan \mathrm{x}=\frac{1}{2}$
or, $x=\tan ^{-1} \frac{1}{2} \quad \therefore x=n \pi+\tan ^{-1} \frac{1}{2}$
Hence, the general solution are
$\mathrm{x}=\mathrm{n} \pi-\frac{\pi}{4}, \mathrm{n} \pi+\tan ^{-1} \frac{1}{2}$
6. Solve:
a. $\sqrt{3} \sin x-\cos x=\sqrt{2}$
b. $\quad \tan x+\sec x=\sqrt{3}$
c. $\quad \sin x+\sqrt{3} \cos x=\sqrt{2}$
d. $\sqrt{2} \sec x+\tan x=1$
e. $\sin x+\cos x=\frac{-1}{\sqrt{2}}$

Solution:

a. $\sqrt{3} \sin x-\cos x=\sqrt{2}$
Dividing each term by 2
$\frac{\sqrt{3}}{2} \sin x-\frac{1}{2} \cos x=\frac{1}{\sqrt{2}}$
$\sin \frac{\pi}{3} \sin x-\cos \frac{\pi}{3} \cos x=\frac{1}{\sqrt{2}}$
$-\cos \left(x+\frac{\pi}{3}\right)=\frac{1}{\sqrt{2}}$
or, $\cos \left(x+\frac{\pi}{3}\right)=-\frac{1}{\sqrt{2}}$
b. $\tan x+\sec x=\sqrt{3}$
$\frac{\sin x}{\cos x}+\frac{1}{\cos x}=\sqrt{3}$
or, $\sin x+1=\sqrt{3} \cos x$
or, $\sqrt{3} \cos x-\sin x=1$
Dividing (i) by $\sqrt{\sqrt{3^{2}+(-1)^{2}}}=2$
$\therefore \frac{\sqrt{3}}{2} \cos x-\frac{1}{2} \sin x=\frac{1}{2}$
or, $\cos \left(x+\frac{\pi}{3}\right)=\cos \left(\frac{3 \pi}{4}\right)$
or, $\cos \left(x+\frac{\pi}{6}\right)=\cos \left(2 x \pi \pm \frac{\pi}{3}\right)$
$\Rightarrow \mathrm{x}=2 \mathrm{n} \pi+\frac{\pi}{6}, 2 \mathrm{n} \pi-\frac{\pi}{2}$
or, $x+\frac{\pi}{3}=2 n \pi \pm \frac{3 \pi}{4} \therefore x=2 n \pi-\frac{\pi}{3} \pm$
$\frac{3 \pi}{4}$
or, $\cos \frac{\pi}{6} \sin x-\sin \frac{\pi}{6} \cos x=\frac{1}{\sqrt{2}}$
or, $\sin \left(x-\frac{\pi}{6}\right)=\frac{1}{\sqrt{2}}$
or, $\sin \left(x-\frac{\pi}{6}\right)=\sin \frac{\pi}{4}$
$\therefore \quad x-\frac{\pi}{6}=n \pi \pm(-1)^{n} \frac{\pi}{4}$
$\therefore \quad \mathrm{x}=\mathrm{n} \pi+\frac{\pi}{6} \pm(-1)^{\mathrm{n}} \frac{\pi}{4}$
$\sin x=\sin \frac{3 \pi}{2} \therefore x=n \pi \pm(-1)^{n}$
$\frac{3 \pi}{2}$
or, $2 \sin x=1$
or, $\sin x=\sin \frac{\pi}{6} \quad \therefore x=n \pi \pm(-1)^{n} \frac{\pi}{6}$
c. $\sin x+\sqrt{3} \cos x=\sqrt{2}$

Dividing both sides by
$\sqrt{(\text { coeff. of sim) })^{2}+(\text { coeff. of } \cos x)^{2}}$
$=\sqrt{1++(\sqrt{3})^{2}=2}$
$\frac{1}{2} \sin x+\frac{\sqrt{3}}{2} \cos x=\frac{1}{\sqrt{2}}$
or, $\sin x \cdot \sin \frac{\pi}{6}+\cos x \cdot \cos \frac{\pi}{6}=\cos \frac{\pi}{4}$

$$
\begin{aligned}
& \cos \left(x-\frac{\pi}{6}\right)=\cos \frac{\pi}{4} \\
\therefore & x-\frac{\pi}{6}=2 n \pi \pm \frac{\pi}{4} \\
\therefore & x=2 n \pi \pm \frac{\pi}{4}+\frac{\pi}{6}
\end{aligned}
$$

d. $\sqrt{2} \sec x+\tan x=1$
$\sqrt{2}+\sin x=\cos x$
or, $\cos x-\sin x=\sqrt{2}$
Dividing both sides by $\sqrt{2}$
$\frac{1}{\sqrt{2}} \cos x-\frac{1}{\sqrt{2}} \sin x=1$
$\cos \frac{\pi}{4} \cdot \cos x-\sin \frac{\pi}{4} \cdot \sin x=\cos 0$
$\therefore \cos \left(x+\frac{\pi}{4}\right)=\cos 0^{\circ}$
$\therefore \quad x+\frac{\pi}{4}=2 n \pi \pm 0$
$x=2 n \pi-\frac{\pi}{4}$
e. $\sin x+\cos x=-\frac{1}{\sqrt{2}}$

Dividing both sides by $\sqrt{2}$
$\frac{1}{\sqrt{2}} \sin x+\frac{1}{\sqrt{2}} \cos x=-\frac{1}{2}$
$\cos \left(x-\frac{\pi}{4}\right)=\cos \left(\frac{2 \pi}{3}\right)$
or, $x-\frac{\pi}{4}=2 n \pi \pm \frac{2 \pi}{3} \quad \therefore x=2 n \pi \pm \frac{2 \pi}{3}+\frac{\pi}{4}$
7. Solve:
a. $\sin 2 x+\sin 4 x+\sin 6 x=0$
b. $\sin x+\sin 3 x+\sin 5 x=0$
c. $\cos 3 x+\cos x-\cos 2 x=0$
d. $\cos x+\sin x=\cos 2 x+\sin 2 x$
e. $\tan x+\tan 2 x=1-\tan x \cdot \tan 2 x$
f. $\tan x+\tan 2 x+\sqrt{3} \tan x \cdot \tan 2 x=\sqrt{3}$
g. $\tan 3 x+\tan 4 x+\tan 7 x=\tan 3 x \cdot \tan 4 x \cdot \tan 7 x$

Solution:

a. $\sin 2 x+\sin 4 x+\sin 6 x=0$
or, $(\sin 2 x+\sin 6 x)+\sin 6 x=0$
or, $2 \sin 4 x \cdot \cos 2 x+\sin 4 x=0$
$\sin 4 x(2 \cos 2 x+1)=0$
Either, $\sin 4 x=0$
$\therefore 4 \mathrm{x}=\mathrm{n} \pi$
or, $2 \cos 2 x+1=0$
or, $\cos 2 x=-\frac{1}{2}$
$\therefore \quad \mathrm{x}=\frac{\mathrm{n} \pi}{4}$
or, $\cos 2 x=\cos \left(\frac{2 \pi}{3}\right)$
or, $2 x=2 n \pi \pm \frac{2 \pi}{3} \quad \therefore x=n \pi \pm \frac{\pi}{3}$
$\therefore \quad x=\frac{n \pi}{4}, n \pi \pm \frac{\pi}{3}$
b. $(\sin x+\sin 5 x)+\sin 3 x=0$
or, $1 \sin 3 x \cdot \cos 2 x+\sin 3 x=0$
or, $\sin 3 x(2 \cos 2 x+1)=0$

Either
or, $\sin 3 x=0$
$\therefore 3 x=n \pi$
$\therefore \quad \mathrm{x}=\frac{\mathrm{n} \pi}{3}$
or, $2 \cos 2 x+1=0$
or, $\cos 2 x=-\frac{1}{2}$
or, $\cos 2 x=-\frac{1}{2}$
or, $\cos 2 x=\cos \left(\frac{2 \pi}{3}\right)$
or, $2 x=2 n \pi \pm \frac{2 \pi}{3} \quad \therefore x=n \pi \pm \frac{\pi}{3}$

Hence, $x=\frac{n \pi}{3}, n \pi \pm \frac{\pi}{3}$
c. $\cos 3 x+\cos x-\cos 2 x=0$
or, $2 \cos 2 x . \cos x-\cos 2 x=0$
or, $\cos 2 x(2 \cos x-1)=0$

Either $\cos 2 x=0$
or, $2 \cos x-1=0$
$\therefore \quad 2 x=(2 n+1) \frac{\pi}{2}$
or, $\cos x=\frac{1}{2}$
$\therefore \quad \mathrm{x}=(2 \mathrm{n}+1) \frac{\pi}{4}$

Hence, $x=(2 n+1) \frac{\pi}{4}, 2 n \pi \pm \frac{\pi}{3}$
d. $\cos x+\sin x=\cos 2 x+\sin 2 x$
or, $\frac{1}{\sqrt{2}} \cos x+\frac{1}{\sqrt{2}} \sin x=\frac{1}{\sqrt{2}} \cos 2 x+\frac{1}{\sqrt{2}} \sin 2 x$
or, $\cos \frac{\pi}{4} \cdot \cos x+\sin \frac{\pi}{4} \sin x=\cos \frac{\pi}{4} \cos 2 x+\sin \frac{\pi}{4} \cdot \sin 2 x$
or, $\cos \left(x-\frac{\pi}{4}\right)=\cos \left(2 x-\frac{\pi}{4}\right)$
$\therefore 2 x-\frac{\pi}{4}=2 n \pi \pm\left(x-\frac{\pi}{4}\right)$

$$
2 x-\frac{\pi}{4}=\left\{\begin{array}{l}
2 n \pi+x-\frac{\pi}{4} \\
2 n \pi-x+\frac{\pi}{4}
\end{array}\right.
$$

Either $x=2 n \pi$
or, $3 x=2 n \pi+\frac{\pi}{2}$
i.e. $x=\frac{2 n \pi}{3}+\frac{\pi}{6}=(4 n+1) \frac{\pi}{6}$

Hence, $x=2 n \pi,(4 n+1) \frac{\pi}{6}$
e. $\tan x+\tan 2 x=1-\tan x \cdot \tan 2 x$
or, $\frac{\tan 2 x+\tan x}{1-\tan 2 x \cdot \tan x}=1$
or, $\tan (2 x+x)=1$
f. $\quad \tan x+\tan 2 x+\sqrt{3} \tan x . \tan 2 x=\sqrt{3}$ or, $\tan x+\tan 2 x=\sqrt{3}(1-\tan x . \tan 2 x)$

$$
\begin{array}{ll}
\text { or, } \tan 3 x=\tan \frac{\pi}{4} & \text { or, } \frac{\tan 2 x+\tan x}{1-\tan 2 x \cdot \tan x}=\sqrt{3} \\
\therefore \quad 3 x=n \pi+\frac{\pi}{4} & \text { or, } \tan (2 x+x)=\sqrt{3} \\
\quad(\because \tan \theta=\tan \alpha \Rightarrow \theta=n \pi+\alpha) & \text { or, } \tan 3 x=\tan \left(\frac{\pi}{3}\right) \\
\therefore \quad x=\frac{n \pi}{3}+\frac{\pi}{12} & \text { or, } 3 x=n \pi+\frac{\pi}{3} \\
& \therefore x=\frac{n \pi}{3}+\frac{\pi}{9}
\end{array}
$$

g. We have
$\operatorname{Tan} 3 x+\tan 4 x+\tan 7 x$
$=\tan 3 x \cdot \tan 4 x \cdot \tan 7 x$
$\Rightarrow \operatorname{Tan} 3 x+\tan 4 x=-\tan 7 x+\tan 3 x$ $\tan 4 x . \tan 7 x$
$\Rightarrow \tan 3 x+\tan 4 x=-\tan 7 x$
(1-tan3x.tan $4 x$)
$\Rightarrow \frac{\tan 3 x+\tan 4 x}{1-\tan 3 x \cdot \tan 4 x-\tan 7 x}$
$\Rightarrow \tan (3 \mathrm{x}+4 \mathrm{x})$ $=-\tan 7 x \cdot \tan 7 x+\tan 7 x=0$
$\Rightarrow 2 \tan 7 x=0$
$\Rightarrow \tan 7 \mathrm{x}=0=\tan 0$
$\Rightarrow 7 \mathrm{x}=\mathrm{n} \pi+0$
$\therefore \quad \mathrm{x}=\frac{\mathrm{n} \pi}{7}$
8. Solve:
a. $\tan \left(\frac{\pi}{4}+\theta\right)+\tan \left(\frac{\pi}{4}-\theta\right)=4$
b. $2 \sin ^{2} x+\sin ^{2} 2 x=2$
c. $\tan p x=\cot q x$

Solution:

a. $\tan \left(\frac{\pi}{4}+\theta\right)+\tan \left(\frac{\pi}{4}-\theta\right)=4$
or, $\frac{\tan \frac{\pi}{4}+\tan \theta}{1-\tan \frac{\pi}{4} \cdot \tan \theta}+\frac{\tan \frac{\pi}{4}-\tan \theta}{1+\tan \frac{\pi}{4} \cdot \tan \theta}=4$
or, $\frac{1+\tan \theta}{1-\tan \theta}+\frac{1-\tan \theta}{1+\tan \theta}=4$
or, $(1+\tan \theta)^{2}+(1-\tan \theta)^{2}=4(1+$
$\tan \theta)(1-\tan \theta)$
or, $1+2 \tan \theta+\tan ^{2} \theta+1-2 \tan \theta+\tan ^{2} \theta$
$=4-4 \tan ^{2} \theta$
or, $6 \tan ^{2} \theta=2$
or, $\tan ^{2} \theta=\left(\frac{1}{\sqrt{3}}\right)^{2}$
$\therefore \tan ^{2} \theta=\tan 2\left(\frac{\pi}{6}\right) \therefore \theta=\mathrm{n} \pi \pm \frac{\pi}{6}, \mathrm{n} \in \mathrm{Z}$
b. $2 \sin ^{2} x+\sin ^{2} 2 x=2$
or, $2 \sin ^{2} x+4 \sin ^{2} x \cdot \cos ^{2} x-2=0$
or, $2 \sin ^{2} x+4 \sin ^{2} x\left(1-\sin ^{2} x\right)-2=0$
or, $2 \sin ^{2} x+4 \sin ^{2} x 4 \sin ^{4} x-2=0$
or, $-4 \sin ^{4} x-6 \sin ^{2} x-2=0$
or, $2 \sin ^{4} x-3 \sin ^{2} x+1=0$

$$
\left(\sin ^{2} x-1\right)\left(2 \sin ^{2} x-1\right)=0
$$

Either

$$
\begin{array}{lr}
\sin ^{2} x-1=0 & \text { or, } 2 \sin ^{2} x-1=0 \\
\sin ^{2} x=1 & \sin ^{2} x=\left(\frac{1}{\sqrt{2}}\right)^{2}
\end{array}
$$

c. $\tan p x=\operatorname{cotq} x$
$\frac{\sin p x}{\cos p x}=\frac{\cos q x}{\sin q x}$
or, $\operatorname{cospx} \cdot \cos q x-\sin p x \cdot \sin q x=0$

$$
\cos (p x+q x)=0
$$

or, $\cos (p+q) x=0$
$\therefore \quad(p+q) x=(2 n+1) \frac{\pi}{2}$
$\therefore \quad x=\frac{(2 n+1)}{p+q} \cdot \frac{\pi}{2}$
$\sin ^{2} x=\sin ^{2} \frac{\pi}{2} \quad \sin ^{2} x=\sin ^{2}\left(\frac{\pi}{4}\right)$
$\therefore \quad \mathrm{x}=\mathrm{n} \pi \pm \frac{\pi}{2} \quad \therefore \quad \mathrm{x}=\mathrm{n} \pi \pm \frac{\pi}{4}$
Hence, $x=n \pi \pm \frac{\pi}{2}, n \pi \pm \frac{\pi}{4}$
9. Find the solutions of
a. $\tan 2 x=\tan x(-\pi \leq x \leq \pi)$
b. $\tan x-3 \cot x=2 \tan 3 x$ for $0 \leq x \leq 2 \pi$

Solution:

a. $\tan ^{2} x=\tan x(-\pi \leq x \leq \pi)$
or, $\frac{2 \tan x}{1-\tan ^{2} x}=\tan x$
or, $2 \tan x-\tan x\left(1-\tan ^{2} x\right)=0$
or, $\tan x\left(2-1+\tan ^{2} x\right)=0$
or, $\tan x\left(1+\tan ^{2} x\right)=0$
Either $\tan x=0$
$\tan \mathrm{x}=\tan 0^{\circ}, \tan \pi, \tan (-\pi)$
$\therefore \quad \mathrm{x}=0^{\circ}, \pi,-\pi$
b. $\quad \tan x-3 \cot x=2 \tan ^{3} x \quad(0 \leq x \leq 2 \pi)$
$\tan x-\frac{3}{\tan x}=2\left(\frac{3 \tan x-\tan ^{3} x}{1-3 \tan ^{2} x}\right)$
or, $\frac{\tan ^{2} x-3}{\tan x}=\frac{6 \tan x-2 \tan ^{3} x}{1-3 \tan ^{2} x}$
or, $\tan ^{2} x-3 \tan ^{4} x-3+9 \tan ^{2} x=6 \tan ^{2} x-2 \tan ^{4} x$
or, $\tan ^{3} x-4 \tan ^{2} x+3=0$
or, $\tan ^{4} x-3 \tan ^{2} x-\tan ^{2} x+3=0$
or, $\tan ^{2} x\left(\tan ^{2} x-3\right)-1\left(\tan ^{2} x-3\right)=0$
or, $\left(\tan ^{2} x-1\right)\left(\tan ^{2} x-3\right)=0$
Either, $\tan ^{2} x-1=0$
$\Rightarrow \tan ^{2} x=1$
or, $\tan x= \pm 1$
or, $\tan x=\tan \frac{\pi}{4}, \tan \frac{3 \pi}{4}, \tan \frac{5 \pi}{4}, \tan \frac{7 \pi}{4}$
$\therefore \quad x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
or, $\tan ^{2} x=3$
$\therefore \quad \tan x= \pm \sqrt{3}$
$\tan x=\tan \frac{\pi}{3}, \tan \frac{2 \pi}{3}, \tan \frac{4 \pi}{4}, \tan \frac{5 \pi}{3}$
$\therefore \quad \mathrm{x}=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
Hence, $x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}, \frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
10. Find the solutions of the equation (general solution not required)
$\cot x+\cot y=2$ and $2 \sin x \cdot \sin y=1$

Solution:

Given equations
$\cot x+\cot y=2 \ldots \ldots \ldots$ (i) and $2 \sin x \cdot \sin y=1$
$\Rightarrow \frac{\cos x \cdot \sin y+\sin x \cos y}{\sin x \cdot \sin y}=2$
or, $\sin x \cos y+\cos x \cdot \sin y=2 \sin x \cdot \sin y$
or, $\sin (x+y)=1$ using (ii)
or, $\sin (x+y)=\sin 90^{\circ}$
$\therefore x+y=90^{\circ} \ldots \ldots \ldots$ (iii)

Also, $2 \sin x$. $\sin y=1$
or, $\cos (x-y)=\cos (x+y)=1$
or, $\cos (x-y)=\cos 90^{\circ}=1$
or, $\cos (x-y)=0=1$
or, $\cos (x-y)=1$
or, $\cos (x-y)=\cos 0^{\circ}$
$\therefore \quad x-y=0^{\circ}$ \qquad
Solving (iii) and (iv) we get
$x=45^{\circ}=\frac{\pi}{4}$ and $y=45^{\circ}=\frac{\pi}{4}$
$\therefore \quad \mathrm{x}=\frac{\pi}{4}, \mathrm{y}=\frac{\pi}{4}$

CHAPTER 10

CONIC SECTION

EXERCISE 10.1

1. Find the eccentricity, co-ordinates of the vertices and foci, the length of the latus rectum, major axis and minor axis of the following ellipses.
a. $\frac{\mathrm{x}^{2}}{16}+\frac{\mathrm{y}^{2}}{4}=1$
b. $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$
c. $3 x^{2}+4 y^{2}=36$
d. $5 x^{2}+9 y^{2}=45$
e. $5 x^{2}+4 y^{2}=1$

Solution:

a. $\frac{\mathrm{x}^{2}}{16}+\frac{\mathrm{y}^{2}}{4}=1$

Comparing (1) with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we get
$a^{2}=16, b^{2}=4$
$\therefore \quad a=4, b=2$
Now, eccentricity $(e)=\sqrt{1-\frac{b^{2}}{a^{2}}}=\sqrt{1-\frac{4}{16}}=\frac{\sqrt{3}}{2}$
Co-ordinate of vertices $=(\pm a, 0)=(\pm 4,0)$
Co-ordinate of foci $=(\pm \mathrm{ae}, 0)=(14 \cdot \sqrt{32}, 0)=(\pm 2 \sqrt{3}, 0)$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 4}{4}=2$
Major axis $=2 \mathrm{a}=2 \times 4=8$
Minor axis $=2 b=2 \times 2=4$
b. $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$ \qquad
Compare (1) with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we get
$a^{2}=9, b^{2}=25$
$\therefore a=3, b=5$
Now, eccentricity $(e)=\sqrt{1-\frac{a^{2}}{b^{2}}}=\sqrt{1-\frac{9}{25}}=\frac{4}{5}$
Co-ordinate of vertices $=(0, \pm b)=(0, \pm 5)$
Co-ordinate of foci $=(0, \pm \mathrm{be})=\left(0, \pm \times \frac{4}{5}\right)=(0, \pm 4)$
Length of latus rectum $=\frac{2 \mathrm{a}^{2}}{\mathrm{~b}}=\frac{2 \times 9}{5}=\frac{18}{5}$
Major axis $=2 b=2 \times 5=10$
Minor axis $=2 \mathrm{a}=2 \times 3=6$
c. $3 x^{2}+4 y^{2}=36$
or, $\frac{3 x^{2}}{36}+\frac{4 y^{2}}{36}=1$
or, $\frac{x^{2}}{12}+\frac{y^{2}}{9}=1$
Comparing (1) with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we get
$\mathrm{a}^{2}=12, \mathrm{~b}^{2}=9$
$\therefore \quad a=2 \sqrt{3}, b=3$
Now, eccentricity $(e)=\sqrt{1-\frac{b^{2}}{a^{2}}}=\sqrt{1-\frac{9}{12}}=\frac{\sqrt{3}}{\sqrt{12}}=\frac{1}{2}$
Co-ordinate of vertices $=(\pm a, 0)=(\pm 2 \sqrt{3}, 0)$
Co-ordinate of foci $=(\pm$ ae, 0$)=\left(\pm 2 \sqrt{3} \frac{1}{2}, 0\right)=(\pm \sqrt{3}, 0)$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 9}{2 \sqrt{3}}=3 \sqrt{3}$
Major axis $=2 \mathrm{a}=2 \times 2 \sqrt{3}=4 \sqrt{3}$
Minor axis $=2 \mathrm{~b}=2 \times 3=6$
d. $5 x^{2}+9 y^{2}=45$
$\Rightarrow \frac{x^{2}}{9}+\frac{y^{2}}{5}=1$
Here, $a^{2}=9, b^{2}=5$
Now,
Eccentricity $(e)=\sqrt{1-b^{2} / a^{2}}=\sqrt{1-5 / 9}=\frac{2}{3}$
Vertices $=(\pm 3,0)$
Foci $=\left(\pm 3 \times \frac{2}{3}, 0\right)$

$$
=(\pm 2,0)
$$

Lotus rectum $=\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}=\frac{2 \times 5}{3}=\frac{10}{3}$
Major axis $=2 \mathrm{a}=2 \times 3=6$
Minor axis $=2 b=2 \times \sqrt{5}=2 \sqrt{5}$
e. We have,
$5 x^{2}+4 y^{2}=1$
$\Rightarrow \frac{\mathrm{x}^{2}}{(1 / 5)}+\frac{\mathrm{y}^{2}}{(1 / 4)}=1$
Here, $\mathrm{a}^{2}=\frac{1}{5}$ and $\mathrm{b}^{2}=\frac{1}{4}$
$\therefore \quad \mathrm{b}>\mathrm{a}>0$
Eccentricity $(e)=\sqrt{1-\mathrm{a}^{2} / \mathrm{b}^{2}}$

$$
\begin{aligned}
& =\sqrt{1-\frac{(1 / 5)}{(1 / 4)}} \\
& =\sqrt{1-\frac{4}{5}}=\frac{1}{\sqrt{5}}
\end{aligned}
$$

Vertices $=\left(0, \pm \frac{1}{2}\right)$

$$
\begin{aligned}
\text { Foci } & =(0, \pm \text { be }) \\
& =\left(0, \pm \frac{1}{2} \times \frac{1}{\sqrt{5}}\right)=\left(0, \pm \frac{1}{2 \sqrt{5}}\right)
\end{aligned}
$$

Latus rectum
$=\frac{2 \mathrm{a}^{2}}{\mathrm{~b}}=\frac{2 \times \frac{1}{5}}{\frac{1}{2}}=\frac{4}{5}$

Major axis $=2 \mathrm{a}=2 \times \frac{1}{\sqrt{5}}=\frac{2}{\sqrt{5}}$
Minor axis $=2 b=2 \times \frac{1}{2}=1$
2. Deduce the equation of ellipse in standard position with the following data.
a. A focus at $(-2,0)$ and a vertex at $(5,0)$
b. Vertex at $(0,10)$ and eccentricity $=\frac{4}{5}$
c. Foci at $(\pm 2,0)$ and eccentricity $=\frac{1}{2}$
d. A vertex at $(0,8)$ and passing through $\left(3, \frac{32}{5}\right)$
e. Passing through the points $(1,4)$ and $(-3,2)$.

Solution:

a. Here, $a=5, a e=2$
$\therefore \quad 5 \mathrm{e}=2 \Rightarrow \mathrm{e}=\frac{2}{5}$
Now, using $\mathrm{b}^{2}=\mathrm{a}^{2}\left(1-\mathrm{e}^{2}\right)=25\left(1-\frac{4}{25}\right)=21$
So, the equation of the ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
or, $\quad \frac{x^{2}}{25}+\frac{y^{2}}{21}=1$
b. Here, major axis is along the y-axis.

So, $b=10 \Rightarrow b^{2}=100$ and $e=\frac{4}{5}$
Now, using $\mathrm{a}^{2}=\mathrm{b}^{2}\left(1-\mathrm{e}^{2}\right)=100\left(1-\frac{16}{25}\right)=36$
So, the equation of ellipse is $\frac{x^{2}}{36}+\frac{y^{2}}{100}=1$
c. Here, foci $=(\pm 2,0)=(\pm \mathrm{ae}, 0) \Rightarrow \mathrm{ae}=2$ and $\mathrm{e}=\frac{1}{2} \Rightarrow \mathrm{a}=\frac{2}{1 / 2}=4$
and $\mathrm{e}^{2}=1-\frac{\mathrm{b}^{2}}{16} \Rightarrow \frac{1}{4}=\frac{16-\mathrm{b}^{2}}{16} \Rightarrow 4=16-\mathrm{b}^{2} \Rightarrow \mathrm{~b}^{2}=12$
Using equation of ellipse is $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$
or, $3 x^{2}+4 y^{2}=48$
d. Here, major axis is along the y-axis.

So, $b=8$
The equation of ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{64}=1$
which passes through $\left(3, \frac{32}{5}\right)$, so
or, $\frac{9}{a^{2}}+\frac{(32 / 5)^{5}}{64}=1$
or, $\frac{9}{\mathrm{a}^{2}}+\frac{1025}{25 \times 64}=1$
or, $\frac{9}{a^{2}}+\frac{16}{25}=1$
or, $\frac{9}{a^{2}}=\frac{9}{25} \Rightarrow a^{2}=25$
\therefore The equation of ellipse is $\frac{x^{2}}{25}+\frac{y^{2}}{64}=1$
e. Let the equation of ellipse be $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Since, (1) passes through $(1,4)$ and $(-3,2)$, so
$\frac{1}{\mathrm{a}^{2}}+\frac{16}{\mathrm{~b}^{2}}=1$ and $\frac{9}{\mathrm{a}^{2}}+\frac{4}{\mathrm{~b}^{2}}=1$
Solving these two equations, we get

$$
\mathrm{a}^{2}=\frac{140}{12}=\frac{35}{3} \text { and } \mathrm{b}^{2}=\frac{140}{8}=\frac{35}{2}
$$

From equation (1), equation of ellipse is $\frac{x^{2}}{35 / 3}+\frac{y^{2}}{35 / 2}=1$
or, $\frac{3 x^{2}}{35}+\frac{2 y^{2}}{35}=1$
or, $3 x^{2}+2 y^{2}=35$
3. Find the eccentricity, the co-ordinates of the centre and the foci of the following ellipse.
a. $\frac{(x+2)^{2}}{16}+\frac{(y-5)^{2}}{9}=1$
b. $\frac{(x-3)^{2}}{9}+\frac{(y-5)^{2}}{25}=1$
c. $x^{2}+4 y^{2}-4 x+24 y+24=0$
d. $9 x^{2}+5 y^{2}-30 y=0$
e. $9 x^{2}+4 y^{2}+40 y+18 x+73=0$

Solution:

a. Comparing (i) with $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$

We get, $h=-2, k=5, a^{2}=16, b^{2}=9$
$\therefore \quad a=4, b=3$
Now, $e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\sqrt{1-\frac{9}{16}}=\frac{\sqrt{7}}{4}$
The co-ordinate of vertices $=(\mathrm{h} \pm \mathrm{a}, \mathrm{k})=(-2 \pm 4,5)=(-6,5)$ and $(2,5)$
So, the co-ordinate of centre $=\left(-\frac{6+2}{2}, \frac{5+5}{2}\right)=(-2,5)$
And co-ordinate of foci $=(h \pm$ ae, $k)=\left(-2 \pm 4 \cdot \frac{\sqrt{7}}{4}, 5\right)=(-2 \pm \sqrt{7}, 5)$
b. We have,
$\frac{(x-3)^{2}}{9}+\frac{(y-5)^{2}}{25}=1$ which is in the form of $\frac{(x-h)^{2}}{9}+\frac{(y-k)^{2}}{25}=1$
where $h=3, k=5, a^{2}=9$ and $b^{2}=25$
$\therefore \quad a=3$ and $b=5$
Since (b) (a) 0 . So, the ellipse in along y-axis.
eccentricity $(e)=\sqrt{1-\frac{a^{2}}{b^{2}}}=\sqrt{1-\frac{9}{25}}=\frac{4}{5}$
Co-ordinate of the center $=(\mathrm{h}, \mathrm{k})=(3,5)$
Foci of the ellipse $=(\mathrm{h}, \mathrm{k} \pm \mathrm{be})=\left(3,5 \pm 5 \times \frac{4}{5}\right)=(3,1)$ and $(3,9)$
c. $x^{2}+4 y^{2}-4 x+24 y+24=0$
or, $(x-2)^{2}+4(y+3)^{2}=4+36-24=16$
or, $\frac{(x-2)^{2}}{16}+\frac{(y+3)^{2}}{4}=1$
Comparing (i) with $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$, we get
$a^{2}=16, b^{2}=4, h=2, k=-3$
Now, $e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\sqrt{1-\frac{4}{16}}=\frac{\sqrt{3}}{2}$
Foci $=(h \pm a e, k)=\left(2 \pm 4 \cdot \frac{\sqrt{3}}{2},-3\right)=(2 \pm 2 \sqrt{3},-3)$ and centre $(h, k)=(2,-3)$
d. We have,
$9 x^{2}+5 y^{2}-30 y=0$
$\Rightarrow 9 x^{2}+5\left(y^{2}-6 y\right)=0$
$\Rightarrow 9 x^{2}+5\left(y^{2}-2 \cdot y \cdot 3+3^{2}-3^{2}\right)=0$
$\Rightarrow 9 x^{2}+5\left[(y-3)^{2}-9\right]=0$
$\Rightarrow 9 x^{2}+5(y-3)^{2}=45$
Dividing by 45 on both sides, we get
$\frac{x^{2}}{5}+\frac{(y-3)^{2}}{9}=1$ which is in the form of $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$; where $h=0, k=3$,
$\mathrm{a}^{2}=5$ and $\mathrm{b}^{2}=9$
Since $\mathrm{b}>\mathrm{a}>0$. So, the ellipse is along y -axis.
Hence, Eccentricity $(\mathrm{e})=\sqrt{1-\mathrm{a}^{2} / \mathrm{b}^{2}}=\sqrt{1-\frac{5}{9}}=\frac{2}{3}$
Co-ordinate of the center $=(\mathrm{h}, \mathrm{k})=(0,3)$
Foci of the ellipse $=(\mathrm{h}, \mathrm{k} \pm$ be $)=\left(0,3 \pm 3 \times \frac{2}{3}\right)=(0,5)$ and $(0,1)$
e. We have,
$9 x^{2}+4 y^{2}+40 y+18 x+73=0$
$\Rightarrow\left(9 x^{2}+18 \mathrm{x}\right)+\left(4 \mathrm{y}^{2}+40 \mathrm{y}\right)+73=0$
$\Rightarrow 9\left[x^{2}+2 . x .1+1^{2}-1^{2}\right]+4\left[y^{2}+2.5 \cdot y+5^{2}-5^{2}\right]+73=0$
$\Rightarrow 9\left[(x+1)^{2}-1\right]+4\left[(y+5)^{2}-25\right]+73=0$
$\Rightarrow 9(x+1)^{2}-9+4(y+5)^{2}-100+73=0$
$\Rightarrow 9(x+1)^{2}+4(y+5)^{2}=36$
$\Rightarrow \frac{(x+1)^{2}}{4}+\frac{(y+5)^{2}}{9}=1$; which is in the form of $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$; where h $=-1, k=-5, a^{2}=4$ and $b^{2}=9$
$\therefore \quad a=2$ and $b=3$
Since $b>a>0$. So, the ellipse is along y-axis
Hence, eccentricity (e) $=\sqrt{1-\frac{a^{2}}{b^{2}}}=\sqrt{1-\frac{4}{9}}=\frac{\sqrt{5}}{3}$
Co-ordinate of the center $(\mathrm{h}, \mathrm{k})=(-1,-5)$
Foci of the ellipse $=(h, k \pm$ be $)=\left(-1,-5 \pm 3 \times \frac{\sqrt{5}}{3}\right)=(-1,-5 \pm \sqrt{5})$
4. Find the equation of ellipse whose
a. Major axis is twice its minor axis and which passes through the point $(0,1)$.
b. Latus rectum 3 and eccentricity is $\frac{1}{\sqrt{2}}$.
c. Distance between the two foci is 8 and the semi latus rectum is 6 .
d. Latus rectum is equal to the half its major axis and which passes through the point $(4,3)$.
e. Foci are at $(\pm 2,0)$ and length of latus rectum is 6 .

Solution:

a. The equation of the ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

It is given that $\mathrm{a}=2 \mathrm{~b}$ and ellipse passes through (0,1)
So, $\frac{0}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
or, $\mathrm{b}^{2}=1 \quad \therefore \mathrm{~b}=1$
and $a=2 b=2$
from (1), $\frac{x^{2}}{4}+\frac{y^{2}}{1}=1$
$x^{2}+4 y^{2}=4$ is the required equation of an ellipse.
b. Here, equation of ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

It is given, length of latus rectum $=3$
or, $\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}=3 \quad \therefore \mathrm{~b}^{2}=\frac{3 \mathrm{a}}{2}$
Using $e^{2}=1-\frac{b^{2}}{a^{2}}$
or, $\frac{1}{2}=1-\frac{3 a}{2 a^{2}}$
or, $\mathrm{a}=2 \mathrm{a}-3$
or, $a=3$
and $\mathrm{b}^{2}=\frac{3.3}{2}=\frac{9}{2}$
So, the equation of ellipse is $\frac{x^{2}}{a}+\frac{y^{2}}{9 / 2}=1$
or, $x^{2}+2 y^{2}=9$
c. Let the equation of ellipse be $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and let $\mathrm{a}>\mathrm{b}$ distance between foci $=$ 8
i.e. $2 \mathrm{ae}=8 \therefore \mathrm{ae}=4$
and semi latus rectum $=\frac{b^{2}}{a}=6$
or, $b^{2}=6 a$
Using $b^{2}=a^{2}\left(1-e^{2}\right)$
or, $6 a=a^{2}\left(1-\frac{16}{a^{2}}\right) \quad(\therefore e=4 / a)$
or, $6=a\left(\frac{a^{2}-16}{a^{2}}\right)$
or, $a^{2}-6 a-16=0$
or, $a=8,-2$ (but $a \neq-2$)
So, $b^{2}=6 \times 8=48$
\therefore The equation of ellipse is $\frac{\mathrm{x}^{2}}{64}+\frac{\mathrm{y}^{3}}{48}=1$
or, $3 x^{2}+4 y^{2}=192$
d. Let the equation of ellipse be $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \ldots \ldots \ldots$ (1)
which passes through $(4,3)$
So, $\frac{16}{\mathrm{a}^{2}}+\frac{9}{\mathrm{~b}^{2}}=1$
Also, $\frac{2 b^{2}}{a}=\frac{1}{2} 2 a$
or, $\quad a b^{2}=a^{2}$
Put $a^{2}=2 b^{2}$ in (ii), then
or, $\frac{16}{2 \mathrm{~b}^{2}}+\frac{9}{\mathrm{~b}^{2}}=1$
or, $8+9=\mathrm{b}^{2} \therefore \mathrm{~b}^{2}=17$
and, $a^{2}=2 \times b^{2}=34$
So, from (1), equation of ellipse is $\frac{x^{2}}{34}+\frac{y^{2}}{17}=1$
or, $x^{2}+2 y^{2}=34$
e. Here, foci $=(\pm \mathrm{ae}, 0)=(\pm 2,0)$
$\Rightarrow \mathrm{ae}=2 \quad \therefore \mathrm{e}=\frac{2}{\mathrm{a}}$
and length of latus rectum $\frac{2 b^{2}}{a}=6$
or, $\quad b^{2}=3 a$
Also, $e=\sqrt{1-\frac{b^{2}}{a^{2}}}$
or, $\frac{2}{a}=\sqrt{1-\frac{3 a}{a^{2}}}$
or, $\quad \frac{4}{a^{2}}=1-\frac{3}{a}$
or, $\quad \frac{4}{a}=a-3$
or, $\quad 4=a^{2}-3 a$
or, $\quad a^{2}-3 a-4=0$
or, $\quad a^{2}-4 a+a-4=0$
or, $\quad a(a-4)+1(a-4)=0$
$\therefore \quad a=-1,4$ (but $a \neq-1$)
and $b^{2}=3 \times 4=12$
Hence, the equation of ellipse is $\frac{x^{2}}{16}+\frac{y^{2}}{12}=1$

EXERCISE 10.2

1. Find the eccentricity, co-ordinates of the vertices and foci, length of latus rectum, length of transverse axis and conjugate axis of the hyperbola.
a. $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$
b. $\frac{x^{2}}{9}-\frac{y^{2}}{25}=-1$
c. $3 x^{2}-4 y^{2}=36$

Solution:

a. $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$

Compare (1) with $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, we get
$a^{2}=25, b^{2}=16$
$\therefore a=5, b=4$
Now, eccentricity $(e)=\sqrt{1+\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}}=\sqrt{1+\frac{16}{25}}=\frac{\sqrt{41}}{5}$
Co-ordinate of vertices $(\pm \mathrm{a}, 0)=(\pm 5,0)$
Co-ordinate of foci $(\pm \mathrm{ae}, 0)=\left(\pm 5 . \frac{\sqrt{41}}{5}, 0\right)=(\pm \sqrt{41}, 0)$
Length of latus rectum $=\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}=\frac{2 \times 16}{5}=\frac{32}{5}$
Length of transverse axis $=2 \mathrm{a}=2 \times 5=10$ Length of conjugate $\mathrm{axis}=2 \mathrm{~b}=2 \times 4=8$
b. $\frac{x^{2}}{9}-\frac{y^{2}}{25}=1$

We have,
$\frac{x^{2}}{9}-\frac{y^{2}}{25}=1$ which is in the form of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 ;$ where $\mathrm{a}^{2}=9$ and $\mathrm{b}^{2}=25$
$\therefore \quad \mathrm{a}=3$ and $\mathrm{b}=5$
Since the hyperbola is along y-axis
Hence, eccentricity $(e)=\sqrt{1+\frac{a^{2}}{b^{2}}}=\sqrt{1+\frac{9}{25}}=\frac{\sqrt{34}}{5}$
Co-ordinate of the vertices $=(0, \pm \mathrm{b})=(0, \pm 5)$
Foci of the hyperbola $=(0, \pm$ be $)=\left(0, \pm \times \frac{\sqrt{34}}{5}\right)=(0, \pm \sqrt{34})$
Lenth of the latus rectum $=\frac{2 \mathrm{a}^{2}}{\mathrm{~b}}=\frac{2 \times 9}{5}=\frac{18}{5}$
Length of transverse axis $=2 b=2 \times b=2 \times 5=10$
Length of conjugate axis $=2 \mathrm{a}=2 \times 3=6$
c. $3 x^{2}-4 y^{2}=36$
or, $\frac{x^{2}}{12}-\frac{y^{2}}{9}=1$ which is in the form of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$; where $a^{2}=12, b^{2}=9$
$\therefore \quad a=2 \sqrt{3}$ and $b=3$
Since the hyperbola is along x-axis
Hence, eccentricity $(e)=\sqrt{1+\frac{b^{2}}{a^{2}}}=\sqrt{1+\frac{9}{12}}=\frac{\sqrt{21}}{2 \sqrt{3}}=\frac{\sqrt{7}}{2}$
Co-ordinate of the vertices $=(\pm a, 0)=(\pm 2 \sqrt{3}, 0)$
Foci of the hyperbola $=(\pm \mathrm{ae}, 0)=\left(\pm 2 \sqrt{3} \cdot \frac{\sqrt{7}}{2}, 0\right)=(\pm \sqrt{21}, 0)$
Length of the latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 9}{2 \sqrt{3}}=3 \sqrt{3}$
Length of the transverse axis $=2 \mathrm{a}=2 \times 2 \sqrt{3}=4 \sqrt{3}$
Length of the conjugate axis $=2 b=2 \times 3=6$
2. Find the eccentricity, co-ordinates of vertices and foci, length of latus rectum, length of transverse axis and conjugate axis of the hyperbola.
a. $\frac{(x+1)^{2}}{144}-\frac{(y-1)^{2}}{25}=1$
b. $5 x^{2}-20 y^{2}-20 x=0$
c. $16 x^{2}-9 y^{2}+96 x-72 y+144=0$

Solution:

a. $\frac{(x+1)^{2}}{144}-\frac{(y-1)^{2}}{25}=1$

Compare (1) with $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$, we get
$h=-1, k=1, a^{2}=144, b^{2}=25$
Now, eccentricity $(e)=\sqrt{1+\frac{b^{2}}{a^{2}}}=\sqrt{1+\frac{25}{144}}=\frac{13}{12}$
Cor-ordinate of vertices $=(h \pm a, k)$

$$
=(-1 \pm 12,1)=(-13,1) \text { and }(11,1)
$$

Co-ordinate of foci $=(h \pm a e, k)=\left(-1 \pm 12 \times \frac{13}{12}, 1\right)=(-14,1)$ and $(12,1)$

Length of latus rectum $=\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}=\frac{2 \times 25}{12}=\frac{25}{6}$
Length of conjugate axis $=2 b=2 \times 5=10$
Length of transverse axis $=2 \mathrm{a}=2 \times 12=24$
b. $5 x^{2}-20 y^{2}-20 x=0$
or, $x^{2}-4 y^{2}-4 x=0$
or, $(x-2)^{2}-4 y^{2}=4$
or, $\frac{(x-2)^{2}}{4}-\frac{y^{2}}{1}=1$
Compare (1) with $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$, then $(h, k)=(2,0), a=2, b=1$
Now, eccentricity $(e)=\sqrt{1+\frac{b^{2}}{a^{2}}}=\sqrt{1+\frac{1}{4}}=\frac{\sqrt{5}}{2}$
Co-ordinate of vertices $=(h \pm a, k)=(2 \pm 2,0)=(4,0) \mid$ and $(0,0)$
Co-ordinate of foci $=(\mathrm{h} \pm \mathrm{ae}, \mathrm{k})=\left(2 \pm 2 \cdot \frac{\sqrt{5}}{2}, 0\right)=(2 \pm \sqrt{5}, 0)$
Length of latus rectum $=\frac{2 b^{2}}{a}=2 \cdot \frac{1}{2}=1$
Length of transverse axis $=2 \mathrm{a}=2.2=4$
Length of conjugate axis $=2 b=2.1=2$
c. $16 x^{2}-9 y^{2}+96 x-72 y+144=0$
or, $16\left(x^{2}+6 x\right)-9\left(y^{2}+8 y\right)+144=0$
or, $16(x+3)^{2}-9(y+4)^{2}+144-144+144=0$
or, $16(x+3)^{2}-9(y+4)^{2}=-144$
or, $\frac{(x+3)^{2}}{9}-\frac{(y+4)^{2}}{16}=-1$
Compare (1) with $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=-1$, we get $(h, k)=(-3,-4), a^{2}=9, b^{2}=16 .(b>a)$
Now, eccentricity $(e)=\sqrt{1+\frac{a^{2}}{b^{2}}}=\sqrt{1+\frac{9}{16}}=\frac{5}{4}$
Co-ordinate of vertices $=(h, k \pm b)=(-3,-4 \pm 4)=(-3,0)$ and $(-3,-8)$
Co-ordinate of foci $=(\mathrm{h}, \mathrm{k} \pm \mathrm{be})=\left(-3,-4 \pm 4 \cdot \frac{5}{4}\right)=(-3,1)$ and $(-3,-9)$
Length of latus rectum $=\frac{2 \mathrm{a}^{2}}{\mathrm{~b}}=2 \cdot \frac{9}{4}=\frac{9}{2}$
Length of transverse axis $=2 b=2 \times 4=8$
Length of conjugate axis $=2 \mathrm{a}=2 \times 3=6$
3. Find the equation of hyperbola in standard position satisfying the given conditions.
a. Transverse and conjugate axis are respectively 4 and 5.
b. Foci at $(\pm 3,0)$ and eccentricity $\frac{3}{2}$.
c. Latus rectum is 4 and eccentricity is 3 .
d. Vertex at $(0,8)$ and passing through $(4,8 \sqrt{2})$
e. Vertices at $(0, \pm 7), \mathrm{e}=\frac{4}{3}$
f. Focus at $(6,0)$ and a vertex at $(4,0)$

Solution:

a. Let the equation of hyperbola be

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \tag{1}
\end{equation*}
$$

Where, $2 \mathrm{a}=4$ and $2 \mathrm{~b}=5 \Rightarrow \mathrm{a}=2, \mathrm{~b}$

$$
=\frac{5}{2}
$$

\therefore from (1), equation of hyperbola is
$\frac{x^{2}}{4}-\frac{y^{2}}{25 / 4}=1$
or, $\frac{x^{2}}{4}-\frac{4 y^{2}}{25}=1$
b. Foci $=(\pm 3,0)$, eccentricity $(e)=\frac{3}{2}$

Here, e $=3$ and $\mathrm{ae}=3$
$\Rightarrow a=\frac{3 x^{2}}{3}=2$
Using, $b^{2}=a^{2}\left(e^{2}-1\right)$
or, $b^{2}=4\left(\frac{9}{4}-1\right)=5$
\therefore The equation of hyperbola is $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$
c. Here, $e=3$ and $\frac{2 b^{2}}{a}=4$

Now, $b^{2}=\frac{4 a}{2}$
Using $b^{2}=a^{2}\left(e^{2}-1\right)$
$\frac{4 a}{2}=a^{2}(9-1)$
or, $2=8 \mathrm{a} \Rightarrow \mathrm{a}=\frac{1}{4} \quad \therefore \mathrm{a}^{2}=\frac{1}{16}$
and $\mathrm{b}^{2}=\frac{4 \mathrm{a}}{2}=\frac{4 \frac{1}{4}}{2}=\frac{1}{2}$
So, the equation of hyperbola is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
or, $\frac{x^{2}}{1 / 16}-\frac{y^{2}}{1 / 2}=1$
or, $16 x^{2}-2 y^{2}=1$
d. Here, vertex $=(0, \pm b)=(0,8)$
$\Rightarrow \mathrm{b}=8$
Let the equation of hyperbola be $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$
Which passes through $(4,8 \sqrt{2})$, then
$\frac{4^{2}}{a^{2}}-\frac{(8 \sqrt{2})^{2}}{64}=-1$
or, $\frac{16}{\mathrm{a}^{2}}-\frac{128}{64}=-1$
or, $\frac{16}{a^{2}}=-1+2 \Rightarrow a^{2}=16$
Hence, from (1), $\frac{x^{2}}{16}-\frac{y^{2}}{64}=-1$
e. Here, $b=7, e=\frac{4}{3}$

Using $\mathrm{a}^{2}=\mathrm{b}^{2}\left(\mathrm{e}^{2}-1\right)=49\left(\frac{16}{9}-1\right)=49 \times \frac{7}{9}=\frac{343}{9}$
Hence, the equation of hyperbola is

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1
$$

138 Kriti's Principles of Mathematics-XII

or, $\quad \frac{x^{2}}{343 / 9}-\frac{y^{2}}{49}=-1$
or, $\quad 9 x^{2}-7 y^{2}=-343$
or, $\quad 9 x^{2}-7 y^{2}+343=0$
f. Here, $\mathrm{ae}=6$ and $\mathrm{a}=4$

Then, $e=\frac{6}{4}=\frac{3}{2}$
Using $b^{2}=a^{2}\left(e^{2}-1\right)$
$b^{2}=16\left(\frac{9}{4}-1\right)=16 \times \frac{5}{4}=20$
Now, the equation of hyperbola is

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \\
& \text { or, } \quad \frac{x^{2}}{16}-\frac{y^{2}}{20}=1
\end{aligned}
$$

CHAPTER 11

CO-ORDINATE IN SPACE

EXERCISE 11.1

1. Find the distance between the points:
a. $(-2,1,0)$ and $(3,5,-2)$
b. $(-4,7,-7)$ and $(-2,1,-10)$

Solution:

a. $A(-2,1,0)$ and $B(3,5,-2)$

Here,

$$
\begin{array}{ll}
x_{1}=-2 & x_{2}=3 \\
y_{1}=1 & y_{2}=5 \\
z_{1}=0 & z_{2}=-2
\end{array}
$$

Using distance formulae,

$$
\begin{aligned}
A B & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} \\
& =\sqrt{(3-(-2))^{2}+(5-1)^{2}+(-2-0)^{2}} \\
& =\sqrt{5^{2}+4^{2}+(-2)^{2}}=\sqrt{25+16+4} \\
& =\sqrt{45}=3 \sqrt{5} \text { units }
\end{aligned}
$$

b. $\quad \mathrm{P}(-4,7,-7)$ and $\mathrm{Q}(-2,1,-10)$

Here,

$$
\begin{array}{ll}
x_{1}=-4 & x_{2}=-2 \\
y_{1}=7 & y_{2}=1 \\
z_{1}=-7 & z_{2}=-10
\end{array}
$$

Using distance formula,

$$
\begin{aligned}
P Q & =\sqrt{\left(x_{2}-x_{1}\right)_{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} \\
& =\sqrt{(-2-(-4))^{2}+(1-7)^{2}+(-10-(-7))^{2}} \\
& =\sqrt{(-2+4)^{2}+(-6)^{2}+(-10+7)^{2}} \\
& =\sqrt{2^{2}+(-6)^{2}+(-3)^{2}}=\sqrt{4+36+9} \\
& =\sqrt{49}=7 \text { units }
\end{aligned}
$$

2. Show that the following points are collinear.
a. $(3,-2,4),(1,1,1)$ and $(-1,4,-2)$
b. $(1,-2,3),(2,3,-4)$ and $(0,-7,10)$
c. $(1,2,3),(4,0,4)$ and $(-2,4,2)$

Solution:

a. Using distance formula
$A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}=\sqrt{(1-3)^{2}+(1+2)^{2}+(1-4)^{2}}$
$=\sqrt{(-2)^{2}+3^{2}+(-3)^{2}}=\sqrt{4+9+9}=\sqrt{22}$ units
Again,

$$
\begin{aligned}
B C & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}=\sqrt{(-1-1)^{2}+(4-1)^{2}+(-2-1)^{2}} \\
& =\sqrt{(-2)^{2}+(3)^{2}+(-3)^{2}}=\sqrt{4+9+9}=\sqrt{22} \text { units }
\end{aligned}
$$

Finally,

$$
\begin{aligned}
A C & =\sqrt{(-1-3)^{2}+(4+2)^{2}+(-2-4)^{2}}=\sqrt{(-4)^{2}+(6)^{2}+(-6)^{2}} \\
& =\sqrt{16+36+36}=\sqrt{88}=2 \sqrt{22} \text { units }
\end{aligned}
$$

Now, $A B+B C=2 \sqrt{22}$
Since, $A B+B C=A C$, the given points are collinear.
b. Using distance formula,

$$
P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}=\sqrt{(2-1)^{2}+(3+2)^{2}+(-4-3)^{2}}
$$

$$
=\sqrt{1^{2}+5^{2}+(-7)^{2}}=\sqrt{1+25+49}=\sqrt{75}=5 \sqrt{3} \text { units }
$$

Again,
$\mathrm{QR}=\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)^{2}}=\sqrt{(0-2)^{2}+(-7-3)^{2}+(10+4)^{2}}$

$$
=\sqrt{(-2)^{2}+(-10)^{2}+(14)^{2}}=\sqrt{4+100+196}=\sqrt{300}=10 \sqrt{3} \text { units }
$$

Finally,

$$
\begin{aligned}
\mathrm{PR} & =\sqrt{\left(\mathrm{x}_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}=\sqrt{(0-1)^{2}+(-7+2)^{2}+(10-3)^{2}} \\
& =\sqrt{(-1)^{2}+(-5)^{2}+7^{2}}=\sqrt{1+25+49}=\sqrt{75}=5 \sqrt{3} \text { units }
\end{aligned}
$$

Now, $P Q+P R=10 \sqrt{3}$
Since $P Q+P R=Q R$, the given points are collinear.
c. Using distance formula,

$$
\begin{aligned}
x y & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} \\
& =\sqrt{(4-1)^{2}+(0-2)^{2}+(4-3)^{2}} \\
& =\sqrt{(4-1)^{2}+(0-2)^{2}+(4-3)^{2}} \\
& =\sqrt{3^{2}+(-2)^{2}+1^{2}} \\
& =\sqrt{9+4+1} \\
& =\sqrt{14} \text { units }
\end{aligned}
$$

Again,
$y z=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}\left(z_{2}-z_{1}\right)^{2}}=\sqrt{(-2-4)^{2}+(4-0)^{2}+(z-4)^{2}}$

$$
=\sqrt{(-6)^{2}+4^{2}+(-2)^{2}}=\sqrt{36+16+4}=\sqrt{56}=2 \sqrt{14} \text { units }
$$

Finally,

$$
\begin{aligned}
x z & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}\left(z_{2}-z_{1}\right)^{2}}=\sqrt{(-2-1)^{2}+(4-2)^{2}+(2-3)^{2}} \\
& =\sqrt{(-3)^{2}+2^{2}+(-1)^{2}}=\sqrt{9+4+1}=\sqrt{14} \text { units }
\end{aligned}
$$

Since, $y z=x z+x y$
So, the points are collinear.
3. Find the Co - ordinates of the mid - points of the line joining the points.
a. $(-2,6,-4)$ and $(4,0,8)$
b. $(-1,-2,-1)$ and $(4,7,6)$

Solution:

a. $(-2,6,-4)$ and $(4,0,8)$

Here,
$x_{1}=-2 \quad x_{2}=4$
$y_{1}=6 \quad y_{2}=0$
$z_{1}=-4 \quad z_{2}=8$
Now,
Using mid-point formula,
$\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
$=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)$
$=\left(\frac{-2+4}{2}, \frac{6+0}{2}, \frac{-4+8}{2}\right)$
$=\left(\frac{2}{2}, \frac{6}{2}, \frac{4}{2}\right)$
$\therefore \quad$ Mid-points $=(1,3,2)$
b. (-1, -2, -1) and (4, 7, 6)

Here,

$$
\begin{array}{ll}
x_{1}=-1 & x_{2}=4 \\
y_{1}=-2 & y_{2}=7 \\
z_{1}=-1 & z_{2}=6
\end{array}
$$

Now,
Using mid-point formula, $\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
$=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)$
$=\left(\frac{-1+4}{2}, \frac{-2+7}{2}, \frac{-1+6}{2}\right)$
$=\left(\frac{3}{2}, \frac{5}{2}, \frac{5}{2}\right)$
$\therefore \quad$ Mid-point $=\left(\frac{3}{2}, \frac{5}{2}, \frac{5}{2}\right)$
4. Find the Co- ordinate of the point which divides the join of the points $(3,3,1)$ and $(3,-6,4)$ internally in the ratio 2 : 1 .

Solution:

Here,
Let the points of line be $A(3,3,1)$ and $B(3,-6,4)$. And the ratio that divides the line is $2: 1$. So,
$\mathrm{x}_{1}=3$
$x_{2}=3$
$y_{1}=3$
$y_{2}=-6$
$z_{1}=1$
$z_{2}=4$

Also, $\mathrm{m}: \mathrm{n}=2$: 1
Using section formula we get,

$$
\begin{aligned}
P(x, y, z) & =\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}, \frac{m z_{2}+n z_{1}}{m+n}\right) \\
& =\left(\frac{2 \times 3+1 \times 3}{2+1}, \frac{2 \times(-6)+1 \times 3}{2+1}, \frac{2 \times 4+1 \times 1}{2+1}\right)=\left(\frac{9}{3}, \frac{-9}{3}, \frac{9}{3}\right)
\end{aligned}
$$

$\therefore P(x, y, z)=(3,-3,3)$
5. Find the Co- ordinates of the point which divides the Join of the points (3, 4, $5)$ and $(1,3,-2)$ externally in the ratio $5: 4$.

Solution:

Here,
Let the point of the line be $M(3,4,-5)$ and $N(1,3,-2)$ and the ratio that divides the time is 5:4. So,
$\mathrm{x}_{1}=3$ $\mathrm{x}_{2}=1$
$\mathrm{y}_{1}=4 \quad \mathrm{y}_{2}=3$
$m: n=5: 4$
$z_{1}=-5$
$z_{2}=-2$
Using section formula we get

$$
\begin{aligned}
P(x, y, z) & =\left(\frac{m x_{2}-n x_{1}}{m-n}, \frac{m y_{2}-n y_{1}}{m-n}, \frac{m z_{2}-n z_{1}}{m-n}\right) \\
& =\left(\frac{5 \times 1-4 \times 3}{5-4}, \frac{5 \times 3-4 \times 4}{5-4}, \frac{5 \times(-2)-4 \times(-5)}{5-4}\right) \\
& =(5-12,15-16,-10+20)
\end{aligned}
$$

$\therefore P(x, y, z)=(-7,-1,10)$
6. If the internal section of two points $P(2,-4,3)$ and $Q(x, y, z)$ in the ratio 2: 1 is $(-2,2,-3)$, then find Q .

Solution:

Here,
The internal section of two points $P(2,-4,3)$ and $Q(x, y, z)$ in the ratio $2: 1$ is A(-2, 2, -3). So,

$x_{1}=2$	$x_{2}=x$	and internal point $m: n$
$y_{1}=-4$	$y_{2}=y$	$p=-2=2: 1$
$z_{1}=3$	$z_{2}=z$	$q=2$

$r=-3$
Now,
Using section formula we get,

$$
\begin{aligned}
& \mathrm{p}=\frac{-\mathrm{mx}_{2}+\mathrm{nx} x_{1}}{m+n} \\
& \text { or, }-2=\frac{2 \times \mathrm{x}+1 \times 2}{2+1} \\
& \text { or, }-2 \times 3=2 x+2 \\
& \text { or, }-6=2 x+2 \\
& \text { or, } 2 x=-8
\end{aligned}
$$

$\therefore \quad \mathrm{x}=-4$
Similarly, $q=\frac{m y_{2}+n y_{1}}{m+n}$
or, $2=\frac{2 \times y+1 \times(-4)}{2+1}$
or, $6=2 y-4$
or, $2 \mathrm{y}=6+4$
or, $\mathrm{y}=\frac{10}{2} \therefore \mathrm{y}=5$
Again,

$$
r=\frac{m z_{2}+n z_{1}}{m+n}
$$

or, $-3=\frac{2 \times z+1 \times 3}{2+1}$
or, $-3 \times 3=2 z+3$
or, $-9=2 z+3$
or, $2 z=-9-3$
or, $z=\frac{-12}{2} \quad \therefore z=-6$
Hence, $\mathrm{Q}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(-4,5,-6)$
7. a. Given three Collinear Points $A(3,2,-4), B(5,4,-6)$ and $C(9,8,-10)$. Find the ratio in which B divides $A C$.
b. Find the ratio in which the xy-plane divides the join of the points $(-2,4,7)$ and $(3,-5,8)$.
c. Find the Co- ordinates of a point where the line through the point $\mathrm{A}(1,2$, $3)$ and $B(4,-4,9)$ meets the $z x$ - plane.

Solution:

a. Given, $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)=(3,2,-4)$

$$
B(x, y, z)=(5,4,-6)
$$

and $C\left(x_{2}, y_{2}, z_{2}\right)=(9,8,-10)$ be three collinear points.
So, let B divide $A C$ in the ratio $x: 1$
So, $x=\frac{k x_{2}+x_{1}}{k+1}$
or, $5=\frac{k \times 9+3}{k+1}$
or, $5 k+5=9 k+3$
or, $5 \mathrm{k}-9 \mathrm{k}=3-5$
or, $-4 \mathrm{k}=-2$
$\therefore \mathrm{k}=\frac{1}{2}$ i.e. $\mathrm{k}: 1=1: 2$
$\therefore \quad B$ divides $A C$ in the ratio of $1: 2$
c. Let $x z$ plane divides the line jointing the points $A(1,2,3)$ and $B(4,-4,9)$ in the ratio $\mathrm{k}: 1$.
At the $x z$ - plane, $y=0$
Now, Using the section formula,
or, $\mathrm{y}=\frac{\mathrm{my} y_{2}+n y_{1}}{m+n}$
or, $y=\frac{k x_{2}+y_{1}}{k+1}$
or, $0=\frac{k(-4)+2}{k+1}$
or, $-4 \mathrm{k}+2=0$
or, $4 \mathrm{k}=2$
$\therefore \mathrm{k}=\frac{1}{2}$ or, $\mathrm{k}: 1=1: 2$
\therefore Required ratio is $1: 2$
Then using $\mathrm{x}=\frac{\mathrm{mx}_{2}+\mathrm{nx}_{1}}{\mathrm{~m}+\mathrm{n}}=2$ and $\mathrm{z}=\frac{\mathrm{mz}_{2}+\mathrm{nz} \mathrm{z}_{1}}{\mathrm{~m}+\mathrm{n}}=5$
\therefore The required point is $(2,0,5)$.
8. a. Find the locus of a points which are equidistance from the two fixed points $(1,2,1)$ and $(3,-4,2)$
b. Find the locus of a point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ satisfying the conditions $\mathrm{PA}^{2}+\mathrm{PB}^{2}=6$, where $A(-1,2,-1)$ and $B(0,3,-2)$ are two fixed points.

Solution:

a. Let $P(x, y, z)$ be any point on the locus. Let

Let $A(1,2,1)$ and $B(3,-4,2)$ be two points.
By the given condition
$P A=P B$
or, $\mathrm{PA}^{2}=\mathrm{PB}^{2}$
or, $(x-1)^{2}+(y-2)^{2}+(2-1)^{2}=(x-3)^{2}+(y+4)^{2}+(z-2)^{2}$
or, $x^{2}-2 x+1+y^{2}-4 y+4+z^{2}-2 z+1=x^{2}-6 x+9+y^{2}+8 y+16+z^{2}-4 z+4$
or, $x^{2}-x^{2}+y^{2}-y^{2}+z^{2}-z^{2}-2 x+6 x-4 y-8 y-2 z+4 z+1+4+1-9-16-4=0$
or, $4 x-12 y+2 z-23=0$ is the required equation of locus.
b. Here, $\mathrm{PA}^{2}=(x+1)^{2}+(y-2)^{2}+(z-1)^{2}=x^{2}+y^{2}+z^{2}+2 x-4 y+2 z+6$
and $P B^{2}=x^{2}+(y-3)^{2}+(z+2)^{2}=x^{2}+y^{2}+z^{2}-6 y+4 z+113$
Since $P A^{2}+P B^{2}=6$
So, we have

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2}+2 x-4 y+2 z+6+x^{2}+y^{2}+z^{2}-6 y+4 z+13=6 \\
\Rightarrow & 2 x^{2}+2 y^{2}+2 z^{2}+2 x-10 y+6 z+13=0
\end{aligned}
$$

which is the required equation of the locus of a point.
9. Find the point where the line Joining the points $(2,-3,1)$ and $(3,-4,-5)$ cuts the plane $2 x+y+z=7$.

Solution:

Let $(2,-3,1)$ and $(3,-4,5)$ divides the plane $2 x+y+z=7$ in the ratio $k: 1$.
So,

$$
\begin{align*}
(x, y, z) & =\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}, \frac{m z_{2}+n z_{1}}{m+n}\right) \\
& =\left(\frac{k \cdot 3+2}{k+1}, \frac{-4 k-3}{k+1}, \frac{-5 k+1}{k+1}\right) \ldots \text { (i) } \tag{i}
\end{align*}
$$

Also, (x, y, z) satisfies the plane $2 x+y+z=7$
So, $2\left(\frac{3 k+2}{k+1}\right)+\left(\frac{-4 k-3}{k+1}\right)+\left(\frac{-5 k+1}{k+1}\right)=7$
or, $6 k+4-4 k-3-5 k+1=7 k+7$
or, $2 k-5 k-7 k=7-4+3-1 \quad \therefore k=\frac{-1}{2}$
Put the value of $k=\frac{-1}{2}$ in (i), we get the required point $(x, y, z)=(1,-2,7)$.

144 Kriti's Principles of Mathematics-XII

10. Prove that the centre of the sphere that passes through $(3,2,2),(-1,1,3)$, $(2,1,2)$ and $(1,0,4)$ is at $(1,3,4)$. Find also the radius of sphere.

Solution:

Let $P(x, y, z)$ be the centre of the sphere passing through the points $A(3,2,2)$, $B(-1,1,3), C(2,1,2)$ and $D(1,0,4)$.
Here, According to the question,
$\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(1,3,4)$
Now, Using distance formula,

$$
\begin{equation*}
D^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2} \text { we have, } \tag{i}
\end{equation*}
$$

or, $A P^{2}=(x-3)^{2}+(y-2)^{2}+(z-2)^{2}=x^{2}-6 x+9+y^{2}-4 y+4+z^{2}-4 z+4$
or, $B P^{2}=(x+1)^{2}+(y-1)^{2}+(z-3)^{2}$
$=x^{2}+2 x+1+y^{2}-2 y+1+z^{2}-6 z+9$ \qquad
or, $C P^{2}=(x-2)^{2}+(y-1)^{2}+(z-2)^{2}=x^{2}-4 x+4+y^{2}-2 y+1+z^{2}-4 z+4$.
$D P^{2}=(x-1)^{2}+(y-0)^{2}+(z-4)^{2}=x^{2}-2 x+1+y^{2}+z^{2}-8 z+16$
$\therefore \quad \mathrm{AP}=\mathrm{BP}$
$\Rightarrow A P^{2}=B P^{2}$
$\Rightarrow x^{2}+y^{2}+z^{2}-6 x-4 y-4 z+17=x^{2}+y^{2}+z^{2}+2 x-2 y-6 z+11$
$\Rightarrow 2 x+6 x-2 y+4 y-6 z+4 z=17-11$
$\Rightarrow 8 x+2 y-2 z=6$
$\Rightarrow 4 x+y-z=3$
Similarly making (i) equal to (iii) and (i) equal to (iv)
We have,

$$
\begin{equation*}
x^{2}-6 x+17+y^{2}-4 y+z 2-4 z=x^{2}+y^{2}+z^{2}-4 x-2 y-4 z+9 \tag{B}
\end{equation*}
$$

or, $-2 x-2 y=-8$
or, $x+y=4$
Also, solving equation (iii) and (iv) we get
$-x-y+2 z=4$ \qquad
Hence, solving equation (A), (B) and (C) we get
$P(x, y, z)=(1,3,4)$
Hence proved.
Also, radius $(r)=A P=\sqrt{x^{2}+y^{2}+z^{2}-6 x-4 y-4 z+17}$

$$
=\sqrt{1+9+16-6-12-16+17}=\sqrt{9}=3 \text { units }
$$

11. a. Prove that the points $(-4,9,6),(0,7,10)$ and $(-1,6,6)$ are the vertices of a right angled isosceles triangle.
b. Show that the points $(2,0,-4),(4,2,4)$ and $(10,2,-2)$ are the vertices of an equilateral triangle.

Solution:

Let $A(0,7,10), B(-1,6,6)$ and $C(-4,9,6)$ be three points.
For AB
$A B^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z^{2}-z_{1}\right)^{2}$

$$
=(-1-0)^{2}+(6-7)^{2}+(6-70)^{2}=1+1+16=18
$$

$A B=\sqrt{18}=3 \sqrt{2}$ units
For BC
$B C^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}$

$$
=(-4+1)^{2}+(9-6)^{2}+(6-6)^{2}=9+9+0=18
$$

$B C=\sqrt{18}=3 \sqrt{2}$ units
For AC
$C A^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}$ $=(0+4) 2+(7-9)^{2}+(10-6)^{2}=16+4+16=36$
$C A=\sqrt{36}=6$ units

Now, By Pythagoras theorem
We have,
$C A^{2}=A B^{2}+B C^{2}$
Also $A B=A C$
$\therefore \quad \mathrm{A}, \mathrm{B}$ and C are the vertices of right angled isosceles triangle.
b. Let $A(2,0,-4) B(4,2,4)$ and $C(10,2,-2)$ be three points.

$$
\left.A B^{2}=14-2\right)^{2}+(2-0)^{2}+(4+4)^{2}=4+4+64=72
$$

Again, $\mathrm{BC}^{2}=(10-4)^{2}+(2-2)^{2}+(-2-4)^{2}=36+0+36=72$
Similarly, $\mathrm{CA}^{2}=(2-10)^{2}+(0-2)^{2}+(-4+2)^{2}=64+4+4=72$
So, $\mathrm{AB}=\mathrm{BC}=\mathrm{CA}$
$\therefore \mathrm{A}, \mathrm{B}$ and C are the vertices of an equilateral triangle.
12. a. Show that the points $(1,2,3),(-1,-2,-1),(2,3,2)$ and $(4,7,6)$ are the verticels of a parallelnram. Also show that this is not a rectangle.
b. Three consecutive vertices of a parallelnram ABCD are $\mathrm{A}(-5,5,2), \mathrm{B}(-9,-1$, 2) an $C(-3,-3,0)$.Find the Co-ordinates of the fourth vertex.

Solution

a. Let $\mathrm{A}(1,2,3), \mathrm{B}(-1,-2,-1), \mathrm{C}(2,3,2)$ and $\mathrm{D}(4,7,6)$ be four points
$A B^{2}=(-1-1)^{2}+(-2-2)^{2}+(-1-3)^{2}=36$
$\therefore \quad A B=6$

$$
\mathrm{BC}^{2}=(2+1)^{2}+(3+2)^{2}+(2+1)^{2}=43
$$

$\therefore B C=\sqrt{43}$

$$
C D^{2}=(4-2)^{2}+(7-3)^{2}+(6-2)^{2}=36
$$

$\therefore \mathrm{CD}=6$

$$
\mathrm{DA}^{2}=(1-4)^{2}+(2-7)^{2}+(3-6)^{2}=43
$$

$\therefore \quad D A=\sqrt{43}$
Hence, $A B=C D$ and $B C=D A$ so, A, B, C and D are the vertices of a parallelnram.
Here, $A C=\sqrt{(2-1)^{2}+(3-2)^{2}+(2-3)^{2}}=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3}$ units
Again, $\mathrm{BD}=\sqrt{(4+2)^{2}+(7+2)^{2}+(6+1)^{2}}=\sqrt{36+81+49}=\sqrt{166}$ units
Since, the two diagonals $A C$ and $B D$ are not equal.
\therefore The points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D do not represent a rectangle.
b. Let, $D(\bar{x}, \bar{y}, \bar{z})$ be the point of intersection of the diagonals $A C$ and $B D$.

For AC: A $(-5,5,2)$ and $\mathrm{C}(-3,-3,0)$
The coordinates of the mid-point AC
$=\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}, \frac{z_{2}+z_{1}}{2}\right)=\left(\frac{-3-5}{2}, \frac{5-3}{2}, \frac{2+0}{2}\right)=(-4,1,1)$
For $\mathrm{BD}: \mathrm{B}(-9,-1,2)$ and $\mathrm{D}(\overline{\mathrm{x}}, \overline{\mathrm{y}}, \overline{\mathrm{z}})$
Since mid point of $A C=$ midpoint of $B D$
or, $x=\frac{x_{1}+x_{2}}{2}$
or, $-4=\frac{-9+x}{2}$

$$
\text { or, }-8=-9+\overline{\mathrm{x}} \quad \therefore \overline{\mathrm{x}}=-8+9=1
$$

or, $y=\frac{y_{1}+y_{2}}{2}$
or, $1=\frac{-1+\bar{y}}{2}$
or, $2=-1+\bar{y}$
$\therefore \overline{\mathrm{y}}=2+1=3$
or, $z=\frac{z_{1}+z_{2}}{2}$
or, $1=\frac{2+z}{2}$
or, $2=2+\bar{z}$
$\therefore \overline{\mathrm{z}}=2-2=0$
$\therefore \quad$ The coordinates of $D=(\bar{x}, \bar{y}, \bar{z})=(1,3,0)$
13. Find the third vertex of the triangle whose centroid is $(7,-2,5)$ and other two vertices are $(2,6,-4)$ and $(15,-10,16)$.

Solution:

Let $\left(x_{1}, y_{1}, z_{1}\right)=(2,6,-4)$
$\left(x_{2}, y_{2}, z_{2}\right)=(15,-10,16),(x, y, z)=(7,-2,5)$ and $\left(x_{3}, y_{3}, z_{3}\right)=$?
By the centroid formula,
or, $x=\frac{x_{1}+x_{2}+x_{3}}{3}$
or, $7=\frac{2+15+x_{3}}{3}$
or, $21=17+x_{3}$
$\therefore \quad x_{3}=21-17=4$
$y=\frac{y_{1}+y_{2}+y_{3}}{3}$
or, $-6=-4+y_{3}$
$\therefore \quad y_{3}=-6+4=-2$
or, $z=\frac{z_{1}+z_{2}+z_{3}}{3}$
or, $5=\frac{-4+16+z_{3}}{3}$
or, $15=12+z_{3}$
or, $z_{3}=15-12$
$\therefore \quad \mathrm{z}_{3}=3$
$\therefore \quad\left(\mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{z}_{3}\right)=(4,-2,3)$

EXERCISE 11.2

1. If a line makes an angle $\frac{\pi}{4}$ with each of the x - axis and y - axis, what angle does it makes with z - axis?

Solution:

$\alpha=\frac{\pi}{4}, \beta=\frac{\pi}{4}$
But $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
or, $\cos ^{2} \frac{\pi}{4}+\cos ^{2} \frac{\pi}{4}+\cos ^{2} \gamma=1$
or, $\frac{1}{2}+\frac{1}{2}+\cos ^{2} \gamma=1$
or, $1+\cos ^{2} \gamma=1$
or, $\cos ^{2} \gamma=0$
or, $\cos \gamma=0$
$\therefore \gamma=\cos ^{-1}(0) \therefore \gamma=\frac{\pi}{2}$
\therefore The angle is $\frac{\pi}{2}$.
2. Find the direction cosines of a line which is equally inclined with the axes of co-ordinates.

Solution:

Let the angle made by a line with 3 axes be α, α, α.
Now, we know
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
or, $\cos ^{2} \alpha+\cos ^{2} \alpha \cos ^{2} \alpha=1$
or, $3 \cos ^{2} \alpha=1$
or, $\cos \alpha= \pm \frac{1}{\sqrt{3}}$
Similarly, for $\cos ^{2} \alpha$ and $\cos ^{2} \alpha$
$\cos \alpha= \pm \frac{1}{\sqrt{3}}$ and $\cos \alpha= \pm \frac{1}{\sqrt{3}}$
\therefore The direction cosines $=\left(\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}\right)$
3. If α, β and γ are the direction angles of a line prove that $\cos 2 \alpha+\operatorname{Cos} 2 \beta+\operatorname{Cos}$ $2 \gamma+1=0$.

Solution:

Given, $f \alpha, \beta$ and γ be the angles made by the line with the co-ordinates axis.
$\operatorname{Cos}^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
Multiplying by 2 on both sides we get,
or, $2 \cos ^{2} \alpha+2 \cos ^{2} \beta+2 \cos ^{2} \gamma=2$
or, $1+\cos ^{2} \alpha+1+\cos ^{2} \beta+1+\cos ^{2} \gamma=2$
or, $3+\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=2$
$\therefore \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+1=0$
4. Find the direction cosines of each of the lines whose direction ratios are.
a. $6,2,-3$
b. $-1,-2,-3$

Solution:

a. Here, $a=6, b=2$ and $c=-3$

The direction cosines are
$I=\frac{1}{\sqrt{a^{2}+b^{2}+c^{2}}}=\frac{6}{\sqrt{6^{2}+2^{2}+(-3)^{2}}}=\frac{6}{\sqrt{49}}=\frac{6}{7}$
$m=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}=\frac{2}{\sqrt{49}}=\frac{2}{7}$ and, $n=\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}=\frac{-3}{\sqrt{49}}=\frac{-3}{7}$
\therefore The direction cosines $(1, m, n)=\left(\frac{6}{7}, \frac{2}{7}, \frac{-3}{7}\right)$
b. Here, $a=-1, b=-2$, and $c=-3$

Now, The direction cosines are:

$$
\begin{aligned}
I & =\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, m=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, n=\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}} \\
& =\frac{-1}{\sqrt{(-1)^{2}+(-2)^{2}+(-3)^{2}}}=\frac{-2}{\sqrt{(-1)^{2}+(-2)^{2}+(-3)^{2}}}=\frac{-3}{\sqrt{(-1)^{2}+(-2)^{2}+(-3)^{2}}} \\
& =\frac{-1}{\sqrt{14}}=\frac{-2}{\sqrt{14}}=\frac{-3}{\sqrt{14}}
\end{aligned}
$$

\therefore The direction cosines are $(1, \mathrm{~m}, \mathrm{n})=\left(\frac{-1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}\right)$

148 Kriti's Principles of Mathematics-XII

5. Find the direction cosines of each of the following lines joining the points.
a. $(-2,1,-8)$ and $(4,3-5)$
b. $(5,2,8)$ and $(7,-1,9)$

Solution:

a. $\left(x_{1}, y_{1}, z_{1}\right)=(-2,1,-8)$ and $\left(x_{2}, y_{2}, z_{2}\right)=(4,3,-5)$
$P Q=r=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}=\sqrt{(4+2)^{2}+(3-1)^{2}(-5+8)^{2}}$

$$
=\sqrt{6^{2}+2^{2}+3^{2}}=\sqrt{36+4+9}=\sqrt{49}=7
$$

\therefore The direction cosines of $P Q$ are

$$
I=\frac{x_{2}-x_{1}}{r}=\frac{4+2}{7}=\frac{6}{7}, \quad m=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{r}=\frac{3-1}{7}=\frac{2}{7}, \quad n=\frac{z_{2}-z_{1}}{r}=\frac{-5+8}{7}=\frac{3}{7}
$$

\therefore The direction cosines are $(1, m, n)=\left(\frac{6}{7}, \frac{2}{7}, \frac{3}{7}\right)$
b. $\left(x_{1}, y_{1}, z_{1}\right)=(5,2,8)$ and $\left(x_{2}, y_{2}, z_{2}\right)=(7,-1,9)$

$$
\begin{aligned}
A B= & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}=\sqrt{(7-5)^{2}+(-1-2)^{2}+(9-8)^{2}} \\
& =\sqrt{2^{2}+(-3)^{2}+1^{2}}=\sqrt{4+9+1}=\sqrt{14}
\end{aligned}
$$

\therefore The direction cosines of $A B$ are:
$I=\frac{x_{2}-x_{1}}{r}, m=\frac{y_{2}-y_{1}}{r}, n=\frac{z_{2}-z_{1}}{r}=\frac{7-5}{\sqrt{14}}=\frac{-1-3}{\sqrt{14}}=\frac{9-8}{\sqrt{14}}=\frac{2}{\sqrt{14}}=\frac{-3}{\sqrt{14}}=\frac{1}{\sqrt{14}}$
$\therefore \quad$ The direction cosines $(1, m, n)=\left(\frac{2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{1}{\sqrt{14}}\right)$
6. a. Find the angle between the line whose direction cosines are proportional to $1,2,2$ and $2,3,6$.
b. If A, B, C are the points $(1,4,2),(-2,1,2)$ and $(2,-3,4)$ respectively, find the angles of triangle ABC .

Solution:

a. $\mathrm{a}_{1}=1$
$b_{1}=2$,
$c_{1}=2$
$\mathrm{a}_{2}=2$,
$b_{2}=3$,
$\mathrm{C}_{2}=6$
We have,
$\operatorname{Cos} \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}+c_{1}{ }^{2}} \sqrt{a_{2}{ }^{2}+b_{2}{ }^{2}+c_{2}{ }^{2}}}=\frac{1 \times 2+2 \times 3+2 \times 6}{\sqrt{1^{2}+2^{2}+2^{2}} \sqrt{2^{2}+3^{2}+6^{2}}}=\frac{20}{3 \times 7}$
or, $\theta=\cos ^{-1}\left(\frac{20}{21}\right)$
$\therefore \quad \theta=\cos ^{-1}\left(\frac{20}{21}\right)$
b. For AB :
$A B=\sqrt{(1+2)^{2}+(4-1)^{2}+(2-2)^{2}}=\sqrt{9+9+0}=3 \sqrt{2}$ units
and $\left(l_{1}, m_{1}, n_{1}\right)=\left(\frac{-2-1}{3 \sqrt{2}}, \frac{1-4}{3 \sqrt{2}}, \frac{2-2}{3 \sqrt{2}}\right)=\left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, 0\right)$
For BC
$B C=\sqrt{(2+2)^{2}+(-3-1)^{2}+(4-2)^{2}}=\sqrt{16+16+4}=\sqrt{36}=6$ units
and $\left(l_{2}, m_{2}, n_{2}\right)=\left(\frac{2+2}{6}, \frac{-3-1}{6}, \frac{4-2}{6}\right)=\left(\frac{2}{3}, \frac{-2}{3}, \frac{1}{3}\right)$
We know,
$\cos B=I, l_{2}+m_{1} m_{2}+n_{1} n_{2}=\frac{-1}{\sqrt{2}} \times \frac{2}{3}+-\frac{1}{\sqrt{2}} \times \frac{-2}{3}+0 \times \frac{1}{3}=\frac{-\sqrt{2}}{3}+\frac{\sqrt{2}}{3}+0=0$
or, $\cos B=0$
or, $\mathrm{B}=\frac{\pi}{2} \therefore \mathrm{~B}=\frac{\pi}{2}=90^{\circ}$
Hence, the lines are perpendicular.
For AC
$A C=\sqrt{(2-1)^{2}+(-3-4)^{2}+(4-2)^{2}}=\sqrt{1+49+4}=\sqrt{54}=3 \sqrt{6}$ units.
Again, $\left(\mathrm{l}_{2}, \mathrm{~m}_{2}, \mathrm{n}_{2}\right)=\frac{2-1}{3 \sqrt{6}}, \frac{-3-4}{3 \sqrt{6}}, \frac{4-2}{3 \sqrt{6}}=\left(\frac{1}{3 \sqrt{6}}, \frac{-7}{3 \sqrt{6}}, \frac{2}{3 \sqrt{6}}\right)$
Similarly,
$\operatorname{Cos} A=l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}$

$$
=\frac{-1}{\sqrt{2}} \times \frac{1}{3 \sqrt{6}}+\frac{-1}{\sqrt{2}} \times \frac{-7}{3 \sqrt{6}}+0 \times \frac{2}{3 \sqrt{6}}=\frac{-\sqrt{3}}{18}+\frac{7 \sqrt{3}}{18}+0=\frac{1}{\sqrt{3}}
$$

$\Rightarrow \cos \mathrm{A}=\frac{1}{\sqrt{3}}$
$\therefore \quad A=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
7. a. Show that the line Joining the points $(1,2,3)$ and $(-1,-2,-3)$ is parallel, to the line Joining points $(2,3,4)$ and $(5,9,13)$.
b. Prove that the line joining the points $(0,4,1)$ and $(2,6,2)$ is perpendicular to the line Joining the points $(4,5,0)$ and $(2,6,2)$.

Solution:

a. For the live joining the points $(1,2,3)$ and $(-1,-2,-3)\left(x_{1}, y_{1}, z_{1}\right)=(1,2,3)$ and $\left(x_{2}, y_{2}, z_{2}\right)=(-1,-2,-3)$
$a_{1}=x_{2}-x_{1}=-1-1=-2 \quad b_{1}=y_{2}-y_{1}=-2-2=-4 \quad c_{1}=z_{2}-z_{1}=-3-3=-6$
For the live joining the points $(2,3,4)$ and $(5,9,13)\left(x_{1}, y_{1}, z_{1}\right)=(2,3,4)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)=(5,9,13)$
$\mathrm{a}_{2}=\mathrm{x}_{2}-\mathrm{x}_{1}=5-2=3$
$b_{2}=y_{2}-y_{1}=9-3=6$
$\mathrm{c}_{2}=\mathrm{z}_{2}-\mathrm{z}_{1}=13-4=9$
Now,
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{-2}{3}, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{-4}{6}=\frac{-2}{3}, \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{-6}{9}=\frac{-2}{3} \therefore \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
Hence, the two lines are parallel.
b. For the line joining the points $(0,4,1)$ and $(2,6,2)\left(x_{1}, y_{1}, z_{1}\right)=(0,4,1)$ and
$\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)=(2,6,2)$
$a_{1}=x_{2}-x_{1}=2-0=2$
$b_{1}=y_{2}-y=6-4=2$
$c_{1}=2_{2}-2_{1}=2-1=1$
For the line joining the points $(4,5,0)$ and $(2,6,2)\left(x_{1}, y_{1}, z_{1}\right)=(4,5,0)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)=(2,6,2)$
$\mathrm{a}_{2}=\mathrm{x}_{2}-\mathrm{x}_{1}=2-4=-2 \quad \mathrm{~b}_{2}=\mathrm{y}_{2}-\mathrm{y}_{1}=6-5=1 \quad \mathrm{c}_{2}=\mathrm{z}_{2}-\mathrm{z}_{1}=2-0=2$
Now, $\mathrm{a}_{1} \mathrm{a}_{2}=-4 \quad \mathrm{~b}_{1} \mathrm{~b}_{2}=2$
$\therefore \quad a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
or, $-4+2+2=0$
or, $-4+4=0$
$\therefore 0=0$
8. a. For what value of k is the line joining the points $(1,2,3)$ and $(4,5, k)$ parallel to the line joining points $(-4,3,-6)$ and $(2,9,2)$?
b. For what value of k is the line joining the points $(k, 2,3)$ and $(-1,-2,-3)$ is perpendicular to the line Joining the points $(-2,1,5)$ and $(3,3,2)$?

150 Kriti's Principles of Mathematics-XII

Solution:

a. Here,

The two points of a line $(1,2,3)$ and $(4,5, k)$ is parallel to two points of a line (-4 , $3,-6)$ and (2, 9, 2).
So,
$a_{1}=x_{2}-x_{1}=4-1=3, b_{1}=y_{2}-y_{1}=5-2=3, c_{1}=k-3=k-3$
Again, $a_{2}=x_{2}-x=2+4=6_{1}, b_{2}=9-3=6, c_{2}=z_{2}-z_{1}=2+6=8$
Since the two lines are parallel to each other we know,

$$
\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}
$$

or, $\frac{3}{6}=\frac{3}{6}=\frac{\mathrm{k}-3}{8}$
or, $\frac{3}{6}=\frac{k-3}{8}$
or, $24=64-18$
or, $24+18=64$
or, $\mathrm{k}=\frac{42}{6} \therefore \mathrm{k}=7$
b. Here, the line joining the points $(k, 2,3)$ and $(-1,-2,-3)$ is perpendicular to the line joining the points $(-2,1,5)$ and $(3,3,2)$
Now, The direction ratios are:
$a_{1}=x_{2}-x_{1}=-1-k, b_{1}=y_{2}-y_{1}=-2-2=-4, c_{1}=z_{2}-z_{1}=-3-3=-6$
Again,
$a_{2}=x_{2}-x_{1}=3+2=5, b_{2}=y_{2}-y_{1}=3-1=2, c_{2}=z_{2}-z_{1}=2-5=-3$
Since the two lines are perpendicular to each other. We know,
$a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
or, $(-1-k) \times 5+(-4) \times 2+(-6) \times(-3)=0$
or, $18-13=5 k+0$
or, $5-0=5 \mathrm{k} \therefore \mathrm{k}=1$
9. Find the direction cosines of the line which is perpendicular to the lines with directions cosines proportional to $1,2,3$ and $-1,3,5$.

Solution:

Here,
Let I, m and n be the direction cosines of the line perpendicular to the given line.
$1+2 m+3 n=0$
$-1+3 m+5 n=0$
By cross = multiplication method
$\frac{1}{10-9}=\frac{m}{-5-3}=\frac{n}{3+2}$
or, $\frac{1}{1}=\frac{m}{-8}=\frac{n}{5}=\frac{1}{\sqrt{1^{2}+8^{2}+5^{2}}}=\frac{1}{\sqrt{90}}$
$\therefore \quad I=\frac{1}{\sqrt{90}}, \mathrm{~m}=\frac{-8}{\sqrt{90}}, \mathrm{n}=\frac{5}{\sqrt{90}}$
10. The projection of a line on the axes are 1, 2, 2. Find the length of the line and it's direction cosines.

Solution

Suppose I, m, n are the direction cosines of a line and its length
Then, $l \mathrm{r}=1$
$\mathrm{mr}=2$
$\mathrm{nr}=2$
Squaring and adding there relations
$r^{2}\left(f+m^{2}+n^{2}\right)=12+22+22=9$
or, $r^{2}=9 \quad \therefore r=3$ units
So length of the line $=3$
Hence, $I=\frac{1}{r}=\frac{1}{3}$
$\mathrm{m}=\frac{2}{\mathrm{r}}=\frac{2}{3}, \mathrm{n}=\frac{2}{\mathrm{r}}=\frac{2}{3}$
11. Find the Projection of the Join of pair of points $(3,-1,2)$ and $(5,-7,4)$ on the following lines.
a. On a line whose direction cosines are proportional to $1,-1,2$.
b. On a line joining the points $(0,1,0)$ and $(1,3,7)$

Solution

$\left(x_{1}, y_{1}, z_{1}\right)=(3,-1,2)$ and $\left(x_{2}, y_{2}, z_{2}\right)=(5,-7,4)$
Here,
a. $a=1, b=-1, c=2$
$\therefore \quad I=\frac{a}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}}=\frac{1}{\sqrt{1+1+4}}=\frac{1}{\sqrt{6}}$
$m=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}=\frac{-1}{\sqrt{1+1+4}}=\frac{-1}{\sqrt{6}} \quad n=\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}=\frac{2}{\sqrt{1+1=4}}=\frac{2}{\sqrt{6}}$
The required projection on the line
$=\left(x_{2}-x_{1}\right) I+\left(y_{2}-y_{1}\right) m+\left(z_{2}-z_{1}\right) n$
$=(5-3) \times \frac{1}{\sqrt{6}}+(-7+1) \times-\frac{1}{\sqrt{6}}+(4-2) \times \frac{2}{\sqrt{6}}=2 \sqrt{6}$
b. Here,
$r=\sqrt{(1-0)^{2}+(3-1)^{2}+(7-0)^{2}}=\sqrt{54}=3 \sqrt{6}$
Now,
$I=\frac{x_{2}-x}{r}=\frac{1-0}{3 \sqrt{6}}=\frac{1}{3 \sqrt{6}}$,
$m=\frac{y_{2}-y_{1}}{r}=\frac{3-1}{3 \sqrt{6}}=\frac{2}{3 \sqrt{6}}$ and $n=\frac{z_{2}-z_{1}}{r}=\frac{7-0}{3 \sqrt{6}}=\frac{7}{3 \sqrt{6}}$
The projection
$=\left(x_{2}-x_{1}\right) /+\left(y_{2}-y_{1}\right) m+\left(z_{2}-z_{1}\right) n$
$=(5-3) \times \frac{1}{3 \sqrt{6}}+(-7+1) \times \frac{2}{3 \sqrt{6}}+(4-2) \times \frac{7}{3 \sqrt{6}}=\frac{4}{3 \sqrt{6}}$
12. Find the direction Cosines $l, \mathrm{~m}, \mathrm{n}$ of two lines which satisfy the equation
a. $\quad 4 l+3 \mathrm{~m}-2 \mathrm{n}=0$ and $l \mathrm{~m}-\mathrm{mn}+\mathrm{n} l=0$
b. $2 l+2 \mathrm{~m}-\mathrm{n}=0$ and $\mathrm{mn}+\mathrm{n} l+l \mathrm{~m}=0$

Solution

a. Here, $4 I+3 m-2 n=0$
$/ m+m n+n /+0$
From the equation (i), $n=\frac{41+3 m}{2}$
From the equation (ii)

$$
I m-m \frac{(4 I+3 m)}{2}+1 \frac{(4 I+3 m)}{2}=0
$$

or, $l m-\frac{4 m l}{2}-\frac{3 m^{2}}{2}+\frac{\left.4\right|^{2}}{2}+\frac{3 m l}{2}=0$
or, $l m-2 m l-\frac{3}{2} m^{2}+2 l^{2}+\frac{3 m l}{2}=0$
or, $2 F^{2}+\frac{m l}{2}-\frac{3}{2} m^{2}=0$
or, $4 P^{2}+m /-3 m^{2}=0$
or, $4 P^{2}+4 \mathrm{~m} /-3 \mathrm{~m} /-3 \mathrm{~m}^{2}=0$
or, $4 I(4 I+m)-3 m(I+m)=0$
or, $(I+m)(4 l-3 m)=0$
$\therefore \quad l+\mathrm{m}=0$
$4 /-3 m=0$
From equation (i) and (iii)
$4 I+3 m-2 n=0$ and $I+m+0 n=0$
$\therefore \quad \frac{1}{0+2}=\frac{m}{-2-0}=\frac{n}{4-3}$
or, $\frac{1}{2}=\frac{m}{-2}=\frac{n}{2}=\frac{\sqrt{1^{2}+m^{2}+n^{2}}}{\sqrt{4+k+1}}=\frac{1}{3}$
$\therefore \quad I=\frac{2}{3}, \mathrm{~m}=-\frac{2}{3}, \mathrm{n}=\frac{1}{3}$
From equation (i) and (iv)
$4 I+3 m-2 n=0$ and $4 I-3 m+0 n=0$
$\therefore \quad \frac{1}{0-6}=\frac{m}{-8-0}=\frac{n}{-12-12}$
or, $\frac{1}{6}=\frac{m}{8}=\frac{n}{2}=\frac{\sqrt{1^{2}+m^{2}+n^{2}}}{\sqrt{36+64+576}}=\frac{1}{\sqrt{676}}=\frac{1}{26}$
$\therefore \quad I=\frac{6}{26}=\frac{3}{13}$
$m=\frac{8}{26}=\frac{4}{13}, n=\frac{24}{26}=\frac{12}{13}$
b. Here,

$$
\begin{equation*}
2 l+2 m-n=0 \tag{i}
\end{equation*}
$$

$m n+n /+/ m=0$
Using equation (i) in equation (ii) we have

$$
\begin{equation*}
m(2 l+2 m)+l(2 l+2 m)+l m=0 \tag{ii}
\end{equation*}
$$

or, $2 / m+2 m^{2}+2 f^{2}+2 / m+1 m=0$
or, $2 m^{2}+5 / m+2 f^{2}=0$
or, $2 m^{2}+(4+1) / m+2 F^{2}=0$
or, $2 m^{2}+4 / m+/ m+2 R^{2}=0$
or, $2 m(m+2 l)+l(m+2 l)=0$
or, $(m+2 \Lambda)(2 m+\Lambda)=0$
$\therefore m+2 l=0$
$2 m+l=0$
(iv)
from (i) and (iii)
$2 l+2 m-n=0$ and $2 l+m+0 . n=0$
$\therefore \quad \frac{1}{0+1}=\frac{m}{0+2}=\frac{n}{2-4}$
or, $\frac{1}{1}=\frac{m}{2}=\frac{n}{-2}=\frac{\sqrt{1^{2}+m^{2}+n^{2}}}{\sqrt{1+k+4}}=\frac{1}{3}$
$\therefore \quad l=\frac{1}{3}, \mathrm{~m}=\frac{2}{3}, \mathrm{n}=-\frac{2}{3}$
from (i) and (iv)
$2 l+2 \mathrm{~m}-\mathrm{n}=0$ and $I+2 \mathrm{~m}+0 . \mathrm{n}=0$
$\therefore \quad \frac{1}{0+2}=\frac{m}{0+1}=\frac{n}{4-2}$
or, $\frac{1}{2}=\frac{m}{1}=\frac{n}{2}=\frac{\sqrt{1^{2}+m^{2}+n^{2}}}{\sqrt{4+1+4}}=\frac{1}{3}$
$\therefore \quad I=\frac{2}{3}, \mathrm{~m}=\frac{1}{3}, \mathrm{n}=\frac{2}{3}$
13. Find the angle between two lines whose direction cosines are given by $l+\mathrm{m}+$ $\mathrm{n}=0$ and $l^{2}+\mathrm{m}^{2}-\mathrm{n}^{2}=0$

Solution

Here, $l+m+n=0$
or, $\mathrm{n}=-1-\mathrm{m}$
Putting the value of n in
$r^{2}+m^{2}-n^{2}=0$
or, $P^{2}+m^{2}-(-1-m)^{2}=0$
or, $2 / m=0$
or, $/ m=0$
$\therefore \quad I=0$
and $m=0$
from (i) and (iii)
$I+\mathrm{m}+\mathrm{n}=0$ and $I+0 . \mathrm{m}+0 . \mathrm{n}=0$
or, $\frac{1}{0-0}=\frac{m}{1-0}=\frac{n}{0-1}$
or, $\frac{1}{0}=\frac{m}{1}=\frac{n}{-1}=\frac{1}{\sqrt{0+1+1}}=\frac{1}{\sqrt{2}}$
$\therefore \quad I=0, \mathrm{~m}=\frac{1}{\sqrt{2}}, \mathrm{n}=-\frac{1}{\sqrt{2}}$
from (i) and (iv)
$I+m+n=0$ and $0 . I+m+0 . n=0$
$\therefore \frac{1}{0-1}=\frac{m}{0-0}=\frac{n}{1-0}$
or, $\frac{1}{-1}=\frac{m}{0}=\frac{n}{1}=\frac{1}{\sqrt{1+0+1}}=\frac{1}{\sqrt{2}}$
$\therefore \quad I=-\frac{1}{\sqrt{2}}, \mathrm{~m}=0, \mathrm{n}=\frac{1}{\sqrt{2}}$
$\therefore \quad \cos \theta=0\left(\frac{1}{\sqrt{2}}\right)+\left(\frac{1}{\sqrt{2}}\right) \cdot 0+\left(\frac{-1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)=-\frac{1}{2}$
$\therefore \quad \theta=\frac{2 \pi}{3}=120^{\circ}$

EXERCISE 11.3

1. a. Find the intercepts made by plane $2 x+3 y+4 z=24$ on co- ordinates axes.
b. Reduce the equation $2 x-y+2 z=4$ to normal form also determine the direction cosines of the normal and length of perpendicular to it from the origin.

Solution:

a. The equation of the plane is $2 x+3 y+4 z=24$

Dividing both sides by $24, \frac{2 x}{24}+\frac{3 y}{24}+\frac{4 z}{24}=\frac{24}{24}$
or, $\frac{x}{12}+\frac{4}{8}+\frac{z}{6}=1$
The intercepts on the x-axis, y-axis and z-axis are 12,8 and 6 respectively.
b. To reduce the equation of the plane $2 x-y+2 z=4$ into normal form,

Divide each term by $\sqrt{2^{2}+(-1)^{2}+2^{2}}=3$
$\therefore \frac{2 \mathrm{x}}{3}-\frac{\mathrm{y}}{3}+\frac{2 \mathrm{z}}{3}=\frac{4}{3}$ is in normal form where length of perpendicular from origin is $\frac{4}{3}$ units.
The dc's are
$\frac{2}{\sqrt{2^{2}+(-1)^{2}+2^{2}}}, \frac{-1}{\sqrt{2^{2}+(-1)^{2}+2^{2}}}, \frac{2}{\sqrt{2^{2}+(-1)^{2}+2^{2}}}$
i.e. $\frac{2}{3},-\frac{1}{3}, \frac{2}{3}$
2. a. Find the equation of plane which makes the intercepts $2,3,4$ on $x-a x i s, y$ axis and z - axis respectively.
b. Find the equation of plane which makes equal intercepts on the axes and passes through the point $(2,3,4)$.

Solution:

a. The equation of plane which cuts intercepts $2,3,4$ on the coordinate axes is
$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
or, $\frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1$
$\therefore 6 x+4 y+3 z=12$
b. Here, $\mathrm{a}=\mathrm{b}=\mathrm{c}$

The equation of the plane is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
$x+y+z=a$ \qquad
If the plane (i) passes through $(2,3,4)$ then $2+3+4=a$
$\therefore \quad \mathrm{a}=9$
From equation (i) $x+y+z=9$ which is the equation of the plane.
3. a. Find the equation of the plane passing through the points
i. $(2,3,-3),(1,1,-2)$ and $(-1,1,2)$
ii. $(2,2,2),(3,1,1)$ and $(6,-4,-6)$
b. Show that the four points $(1,3,-1),(3,5,1),(0,2,-2)$ and $(2,1,-2)$ are coplanar.

Solution:

a.
i. The equation of the plane through $(2,3,-3) a(x-2)+b(y-3)+c(z+3)=0$

If the plane passes through $(1,1,-2)$ and $(-1,1,2)$ then,
$a(1-2)+b(1-3)+c(-2+3)=0$
or, $-a-2 b+c=0 \ldots \ldots . .$. (ii)
Again,
$a(-1-2)+b(1-3)+c(2+3)=0$
or, $-3 a-2 b+5 c=0$
From (ii) and (iii) and cross multiplication gives
$\frac{a}{-10+2}=\frac{b}{-3+5}=\frac{c}{2-6}$
$\frac{a}{-8}=\frac{b}{2}=\frac{c}{-4}=k$ (say)
$\therefore \quad a=-8 k, b=2 k c=-4 k$
Substituting the values of a, b and c in equation (i) we get,
$-8 h(x-2)+2 k(y-3)-4 k(2+3)=0$
or, $-8 x+16+2 y-6-4-12=0$
or, $-8 x+2 y-4 z-2=0$
or, $-4 x+y+4 z-2=0$
or, $4 x-y-4 z+2=0$
ii. The equation of the plane through $(2,2,2)$ is
$a(x-2)+b(y-2)+c(z-2)=0$
If the plane passes through $(3,1,1)$ and $(6,-4,-6)$ then,

$$
\begin{align*}
& a(3-2)+b(1-2)+c(1-2)=0 \tag{i}\\
& \text { or, } a-b-c=0 \ldots \ldots \ldots \ldots . \text { (ii) } \tag{ii}
\end{align*}
$$

Again,

$$
\begin{equation*}
a(6-2)+b(-4-2)+c(-6-2)=0 \tag{iii}
\end{equation*}
$$

or, $4 a-6 b-8 c=0$
From (ii) and (iii) and cross multiplication gives

$$
\frac{a}{8-6}=\frac{b}{-4+8}=\frac{c}{-6+4}
$$

$$
\frac{a}{2}=\frac{b}{4}=\frac{c}{-2}=k \text { (say) }
$$

$\therefore \quad a=2 k, b=4 k, c=-2 k$
Substituting the values of a, b and c in equation (i)

$$
2 k(x-2)+(4 k) y-2)+(-2)(z-2)=0
$$

or, $2 k-4+4 y-8-2 z+4=0$
or, $2 x+4 y-2 z=8$
or, $2 x+4 y-2 z=8$
or, $x+2 y-z=4$
b. The points $(1,3,-1),(3,5,1),(0,2,-2)$ and $(2,1,-2)$ are coplanar if

$$
\begin{aligned}
& \left|\begin{array}{ccc}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1} \\
x_{4}-x_{1} & y_{4}-y_{1} & z_{4}-z_{1}
\end{array}\right|=0 \\
& \Rightarrow\left|\begin{array}{ccc}
3-1 & 5-3 & 1+1 \\
0-1 & 2-3 & -2+1 \\
2-1 & 1-3 & -2+1
\end{array}\right|=0
\end{aligned}
$$

$\Rightarrow\left|\begin{array}{ccc}2 & 2 & 2 \\ -1 & -1 & -1 \\ 1 & -2 & -1\end{array}\right|=0$
$\Rightarrow-2\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & -2 & -1\end{array}\right|=0$
$\Rightarrow-2 \times 0=0 \Rightarrow 0=0$ (true)

Hence, the given four points are coplanar.
4. Show that the equation of the plane through (α, β, γ) and parallel to the plane $a x+b y+c z=0$ is $a x+b y+c z=a \alpha+b \beta+c \gamma$.

Solution:

The equation of the plane parallel to the plane $a x+b y+c z=0$ is
$a x+b y=c z+k=0$ \qquad
If the plane (i) passes through (α, β, γ) then

$$
\begin{equation*}
\mathrm{a} \alpha=\mathrm{b} \beta=\mathrm{c} \gamma+\mathrm{k}=0 \tag{i}
\end{equation*}
$$

$\therefore \mathrm{k}=-\mathrm{a} \alpha-\mathrm{b} \beta-\mathrm{c} \gamma$
Substituting the value of k in (i) we have
$a x+b y+c z=a \alpha+b \beta+c \gamma$
which is the required equation of the plane.
5. Find the angle between the planes:
a. $x+2 y+3 z=6$ and $3 x-3 y+z=1$
b. $3 x-4 y+5 z=0$ and $2 x-y-2 z=5$

Solution:

a. $x+2 y+3 z=6$ and $3 x-3 y+z=1$

Here,
$x+2 y+3 z-6=0$ and $3 x-3 y+2-1=0$
$a_{1}=1$
$\mathrm{a}_{2}=3$
$b_{1}=2$
$\mathrm{b}_{2}=-3$
$c_{1}=3$
$\mathrm{c}_{2}=1$

Now, Angle between the two planes

$$
\begin{aligned}
& \cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}+c_{1}^{2}} \sqrt{a_{2}{ }^{2}+b_{2}{ }^{2}+c_{2}^{2}}} \\
&=\frac{1 \times 3+2 \times(-3)+3 \times 1}{\sqrt{1^{2}+2^{2}+3^{2}} \sqrt{3^{2}+(-3)^{2}+1^{2}}}=\frac{0}{\sqrt{1+4+9} \sqrt{9+9+1}} \\
& \therefore \quad \cos \theta=0 \therefore \theta=\frac{\pi}{2}
\end{aligned}
$$

b. $3 x-4 y+5 z=0$ and $2 x-y-2 z=5$

Here, Repeating the same procedure as No. 5a
$\therefore \quad \theta=\frac{\pi}{2}$
6. For what value of k will the following pair of the planes be perpendicular?
a. $x-6 y+8 z=4$, and $4 x+k y+z=7 b . \quad 2 x-k y+5 z=9$ and $2 x+3 y+4 z=7$

Solution:

a. The equation of the two planes is given:
$x-6 y+8 z=4$ \qquad
$4 x+k y+z=7$
Now,
$a_{1}=1$
$\mathrm{a}_{2}=4$
$\mathrm{b}_{1}=-6$
$\mathrm{b}_{2}=\mathrm{k}$
$c_{1}=8$
$c_{2}=1$

We know, the equation for two planes being perpendicular is given by,

$$
\mathrm{a}_{1} \mathrm{a}_{2}=\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=0
$$

or, $1.4+(-6) \cdot k+8.1=0$
or, $4-6 k+8=0$
or, $-6 k=-12$
$\therefore \mathrm{k}=2$
b. The two equations of the plane is given
$2 x-k y+5 z=9$
$2 x+3 y+4 z=7$
We know,
The equation of two planes being perpendicular is given by
$\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=0$
or, $2 \times 2+(-4) \times 3+5 \times 4=0$
or, $-3 x=-24$
$\therefore \mathrm{k}=8$
7. Show that the plane $2 x+3 y-4 z=3$ is parallel to the plane $10 x+15 y-20 z=12$ and perpendicular to the plane $3 x+2 y+3 z=5$.

Solution:

For parallel
Two planes $a_{1} x+b_{1} y+c_{1} z+d_{1}=0$
and $a_{2} x+b_{2} y+c_{2} z+d_{2}=0$ are parallel, if
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
Here,
$a_{1}=2, b_{1}=3 c_{1}=-4$
$a_{2}=10, b_{2}=15, c_{2}=-20$
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{2}{10}=\frac{1}{5}, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{3}{15}=\frac{1}{5}, \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{-4}{-20}=\frac{-1}{-5}=\frac{1}{5}$
$\therefore \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
\therefore The planes $2 x+3 y-4 z=3$ and $10 x+15 y-202=12$ are parallel.
For perpendicular
Two planes $a_{1} x+b_{1} y+c_{1} z+d_{1}=0$
and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2} \mathrm{z}+\mathrm{d}_{2}=0$
are perpendicular if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
Here, $a_{1}=2, b_{1}=3, c_{1}=-4$

$$
a_{2}=3, b_{2}=2, c_{2}=3
$$

And $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=2 \times 3+3 \times 2-4 \times 3=6+6-12=12-12=0$
\therefore The two planes $2 x+3 y-4 z=3$ and $3 x+2 y+3 z=5$ are perpendicular.
8. a. Find the equation of plane through $(-2,3,4)$ and perpendicular to the planes
$2 x+3 y+4 z=6$ and $3 x+2 y+2 z=8$.
b. Find the equation of plane through the point $(1,2,3)$ and normal to the planes
$x-y-z=5$ and $2 x-5 y-3 z=7$.

Solution:

a. An equation of a plane passing through $(-2,3,4)$ so, the equation is
$a(x+2)+b(y-3)+c(z-4)=0$ \qquad
Now, It is perpendicular to the equation $2 x+3 y+4 z=6$ then,

$$
\begin{equation*}
a \times 2+b \times 3+c \times 4=0 \tag{i}
\end{equation*}
$$

or, $2 a+3 b+4 c=0$

Again,
It is perpendicular to the equation $3 x+2 y+2=9$ then,

$$
\begin{equation*}
a \times 3+2 \times b+2 \times c=0 \tag{iii}
\end{equation*}
$$

or, $3 a+2 b+2 c=0$
By cross multiplication

$$
\begin{aligned}
& 2 a+3 b+4 c=0 \\
& 3 a+2 b+2 c=0 \\
& \therefore \quad \frac{a}{6-8}=\frac{b}{12-4}=\frac{c}{4-9}=k \text { (say) } \\
& \quad \frac{a}{-2}=\frac{b}{8}=\frac{c}{-5}=k \text { (say) }
\end{aligned}
$$

$\Rightarrow a=-2 k, b=8 k, c=-5 k$
Substituting the values of a, b, c in equal (i) we have,
$-2 k(x+2)+8 k(y-3)+(-5 k)(z-4)=0$
or, $-2 x-4+8 y-24-5 z+20=0$
or, $-2 x+8 y-5 z-28+20=0$
or, $-2 x+8 y-5 z-8=0$
or, $2 x-8 y+5 z+8=0$ is the required equation of the plane.
b. Here,

Repeating the same procedure as in No. 8a
So, the required equation of the plane is $2 x-y+3 z=9$
9. a. Find the equation of plane through $P(a, b, c)$ and perpendicular to OP.
b. Find the equation of a plane through $(3,2,1)$ and is perpendicular to the line joining the points $(-5,3,7)$ and $(2,-4,5)$.

Solution:

a. The equation of the plane through $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ is
$A(x-a)+B(y-b)+C(z-c)=0$ (i)

The direction cosines of OP are proportional to $a-0, b-0, c-0$
i.e., a, b, c

Since the plane (i) is perpendicular to OP,
$\frac{\mathrm{A}}{\mathrm{a}}=\frac{\mathrm{B}}{\mathrm{b}}=\frac{\mathrm{C}}{\mathrm{c}}=\mathrm{k}$ (let)
$A=a k, B=b k, C=c k$
Substituting the values of A, B, C in (i)
$a k(x-a)+b k(y-b)+c k(z-c)=0$
or, $a(x-a)+b(y-b)+c(z-c)=0$
$\therefore a x+b y+c z=a^{2}+b^{2}+c^{2}$
b. The equation of the plane through $\mathrm{P}(3,2,1)$ is
$a(x-3)+b(y-2)+c(z-1)=0$ \qquad
The direction cosines of MN are proportional to $2+5,-4-3,5-7$
i.e, $7,-7,-2$

Since the plane (i) is perpendicular to MN,
$\frac{a}{7}=\frac{b}{-7}=\frac{c}{-2}=k$ (say)
$\therefore \mathrm{a}=7 \mathrm{k}, \mathrm{b}=-7 \mathrm{k}, \mathrm{c}=-2 \mathrm{k}$
Now,
Substituting the value of a, b, c in equation (i) we have,
$7 \mathrm{k}(\mathrm{x}-3)-7 \mathrm{k}(\mathrm{y}-2)-2 \mathrm{k}(\mathrm{z}-1)=0$
or, $7 x-21-7 y+14-2 z+2=0$
or, $7 x-7 y-2 z-5=0$ is the required equation of the plane.
10. a. Find the equation of plane which passes through the points $(-1,1,2)$ and $(1,-1,1)$ and is perpendicular to the plane $x+2 y+2 z=5$.
b. Find the equation of plane passing through the intersection of the plane $x+y+z=5$ and $2 x+3 y+4 z-5=0$ and passing through the origin.
c. Find the equation of plane through the line of intersection of the planes $x+2 y+3 z+4=0$ and $4 x+3 y+4 z+1=0$ and passing through the point ($1,-3,-1$).

Solution:

a. Any plane passing through $(-1,1,2)$ is
$a(x+1)+b(y-1)+c(z-2)=0$
But, it passes through $(1,-1,1)$ so
or, $a(1+1)+b(-1-1)+c(1-2)=0$
or, $2 \mathrm{a}-2 \mathrm{~b}-\mathrm{c}=0$
The plane (i) is perpendicular to the given plane $x+2 y+2 z=5$.
i.e. if $a+2 b+2 c=0$

From equation (ii) and (iii) we have
or, $\frac{a}{-4+2}=\frac{b}{-1-4}=\frac{c}{4+2}$
$\therefore \frac{a}{-2}=\frac{b}{-5}=\frac{c}{6}=k$ (say)
$\Rightarrow \mathrm{a}=-2 \mathrm{k}, \mathrm{b}=-5 \mathrm{k}, \mathrm{c}=6 \mathrm{k}$
From equation (i) we get
$-2 k(x+1)-5 k(y-1)+6 k(z-2)=0$
or, $-2 x-2-5 y+5+6 z-12=0$
or, $-2 x-5 y+6 z-9=0$
or, $2 x+5 y-6 z+9=0$
b. Here, two planes are
$x+y+z=5$ \qquad
and $2 x+3 y+4 z-5=0$
Then the equation of plane through intersection of (i) and (ii) is

$$
\begin{equation*}
x+y+z-5+\lambda(2 x+3 y+4 z-5)=0 \tag{ii}
\end{equation*}
$$

or, $x+y+z-5+2 \lambda x+3 \lambda y+4 \lambda z-5 \lambda=0$
or, $(1+z \lambda), c+(1+3 \lambda) y+(1+4 \lambda) z-5-5 \lambda=0$
and the plane (iii) passes through $(0,0,0)$ so
$(1+2 \lambda) 0+(1+3 \lambda) 0+(1+4 \lambda) 0-5-5 \lambda=0$
or, $-5-5 \lambda=0$
or, $-5=5 \lambda$
$\Rightarrow \lambda=-1$
So, the required equation of plane is
$x+y+z-5-1(2 x+3 y+4 z-5)=0$
or, $x+y+z-5-2 x-3 y-4 z+5=0$
or, $-x-2 y-3 z=0$
$\therefore x+2 y+3 z=0$
c. Here, two planes are:
$x+2 y+3 z+4=0$
$4 x+3 y+4 z+1=0$
The equation of the plane through the intersection is given by,
$x+2 y+3 z+4+\lambda(4 x+3 y+4 z+1)=0$
or, $x+2 y+3 z+4+4 \lambda x+3 \lambda y+4 \lambda z+\lambda=0$
or, $x(1+4 \lambda)+y(2+3 \lambda)+z(3+4 \lambda)+4+\lambda=0$
And, the plane (iii) passes through the point ($1,-3,-1$)
$1(1+4 \lambda)+(-3)(2+3 \lambda)+(-1)(3+4 \lambda)+4+\lambda=0$
or, $1+4 \lambda-6-9 \lambda-3-4 \lambda+4+\lambda=0$
or, $1-6-3+4-9 \lambda+\lambda=0$
or, $-9+5-8 \lambda=0$
or, $-4=8 \lambda$
$\therefore \lambda=-\frac{4}{8}=-\frac{1}{2}$
So, the required equation of the plane is
$x+2 y+32+4+\left(-\frac{1}{2}\right)(4 x+3 y+4 z+1)=0$
or, $x+2 y+3 z+4-\frac{4 x}{2}-\frac{3 y}{2}-\frac{4 z}{2}-\frac{1}{2}=0$
or, $x+2 y+3 z+4-2 x-\frac{3 y}{2}-2 z=\frac{1}{2}$
or, $-x-\frac{3 y}{2}+2 y+z+4-\frac{1}{2}=0$
or, $-x-\frac{3 y+4 y}{2}+z+\frac{8-7}{2}=0$
or, $-2 x+y+2 z+7=0$
or, $2 x-y-2 z=7$ is the required equation of the plane.
11. Find the equation of planes through the intersection of the planes $x+2 y+3 z-$ $4=0$ and $2 x+y-z=0$ and perpendicular to the plane $5 x+3 y+6 z+8=0$

Solution:

The equation of the plane through the intersection of the given planes is
$x+2 y+3 z-4+\lambda(2 x+y-z)=0$ \qquad
or, $x+2 y+3 z-4+2 \lambda x+\lambda y-\lambda z=0$
or, $(1+2 \lambda) x+(2+\lambda) y+(3-\lambda) z-4=0$
Since the plane (i) is perpendicular to the plane: $5 x+3 y+6 z+8=0$
So, $(1+2 \lambda) 5+(2+\lambda) 3+(3-\lambda) \cdot 6=0 \quad\left[\because a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0\right]$
or, $5+10 \lambda+6+3 \lambda+18-6 \lambda=0$
or, $29+7 \lambda=0$
or, $\lambda=-\frac{29}{7}$
Substituting the value of λ in equation (i) we get
or, $x+2 y+3 z-4-\frac{29}{7}(2 x+y-z)=0$
or, $x+2 y+3 z-4-\frac{58 x}{7}-\frac{29 y}{7}+\frac{29 z}{7}=0$
or, $7 x-58 x+14 y-29 y+21 z+29 z-28=0$
or, $-51 x-15 y+50 z-28=0$
$\therefore 51 x+15 y-50 z+28=0$ is the required equation of the planes.
12. a. Find the distance of the point
i. $(3,4,-5)$ from the plane $2 x-3 y+3 z+27=0$
ii. From the origin on the plane $3 x-2 y+6 z=17$
b. Prove that the points $(1,-1,3)$ and $(3,3,3)$ are equidistance from the plane $5 x+2 y-7 z+9=0$
c. Show that the distance between the parallel planes $3 x+3 y-6 z+1=0$ and $6 x+$ $4 y-12 z+9=0$ is $\frac{1}{2}$.

Solution:

a. i.The given plane is,

$$
2 x-3 y+3 z+27=0
$$

The distance from the point $(3,4,-5)$ to the plane $2 x-3 y+3 z+27=0$ is,

$$
\begin{aligned}
\pm \frac{2 \times 3-3 \times 4+3 \times-5+27}{\sqrt{2^{2}+(-3)^{2}+3^{2}}} & = \pm \frac{(6-12-15+27)}{\sqrt{4+9+9}} \\
& = \pm \frac{6}{\sqrt{22}}=\frac{6}{\sqrt{22}} \text { (in magnitude) }
\end{aligned}
$$

Solution:

The distance fromf the point $(1,-1,3)$ to the plane $5 x+2 y-7 z+9=0$ is $= \pm \frac{5 \times 1+2 \times(-1)-7 \times 3+9}{\sqrt{5^{2}+2^{2}+(-7)^{2}}}= \pm \frac{5-2-21+9}{\sqrt{78}}= \pm \frac{9}{\sqrt{78}}=\frac{9}{\sqrt{78}}$
Again, the distance from the point $(3,3,3)$ to the plane $5 x+2 y-7 z+9=0$ is
$\pm \frac{5 \times 3+2 \times(3)-7 \times 3+9}{\sqrt{5^{2}+2^{2}+(-7)^{2}}}$
$= \pm \frac{15+6-21+9}{\sqrt{78}}$
$= \pm \frac{9}{\sqrt{78}}=\frac{9}{\sqrt{78}}$
Hence, the given two points are equidistance from the given plane.
b. Here, the two points $(1,-1,3)$ and $(3,3,3)$ are equidistance from the equation of the plane $5 x+2 y-7 z+9=0$.
Firstly, $x_{1}=1, y_{1}=-1, z_{1}=3$
and the equation of the plane is given by $a x_{1}+b y_{1}+c z_{1}+d=0$
So,
Distance $=\left|\frac{a x_{1}+\mathrm{by}_{1}+\mathrm{cz} z_{1}+\mathrm{d}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}}\right|=\left|\frac{5 \times 1+2 \times(-1)+(-7) \times 3+9}{\sqrt{5^{2}+2^{2}+(-7)^{2}}}\right|$

$$
=\left|\frac{5-2-21+9}{\sqrt{25+4+49}}\right|=\left|-\frac{9}{\sqrt{78}}\right|
$$

Distance $=\frac{9}{\sqrt{78}}$ units
Similarly, $\mathrm{x}_{2}=3, \mathrm{y}_{2}=3, \mathrm{z}_{2}=3$

$$
\begin{aligned}
\text { Distance } & =\left|\frac{a x_{2}+b y_{2}+c z_{2}+d}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|=\left|\frac{5 \times 3+2 \times 3+(-7) \times 3+9}{\sqrt{5^{2}+2^{2}+(-7)^{2}}}\right| \\
& =\left|\frac{15+6-21+9}{\sqrt{25+4+49}}\right|=\left|\frac{9}{\sqrt{78}}\right|
\end{aligned}
$$

$\therefore \quad$ Distance $=\frac{9}{\sqrt{78}}$ units.
Since the two point $(1,-1,3)$ and $(3,3,3)$ are in at the same distance from the given plane.
\therefore They are at equidistance from the plane.
c. The equation of two parallel planes is given by,
$3 x+3 y-6 z+1=0$
$6 x+4 y-12 z+9=0$
Now, In equation (i) let $y=z=0$ then, $x=-\frac{1}{3}$
i.e, $\left(-\frac{1}{3}, 0,0\right)$ is the point which lies in equation (i) plane.
i.e, $\left(x_{1}, y_{1}, z_{1}\right)=\left(-\frac{1}{3}, 0,0\right)$

Distance $=\left|\frac{a x_{1}+b y_{1}+c z_{1}+d}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|=\left|\frac{6 \times\left(-\frac{1}{3}\right)+4 \times 0-12 \times 0+9}{\sqrt{6^{2}+4^{2}+(-12)^{2}}}\right|$

$$
=\left|\frac{7}{\sqrt{36+16=144}}\right|=\left|\frac{7}{\sqrt{196}}\right|=\left|\frac{7}{14}\right|
$$

\therefore Distance $=\frac{1}{2}$
Hence, according to the qn, the distance between the two planes is $\frac{1}{2}$ units
13. A variable plane is at a constant distance $3 p$ from the origin and meets the axes in the points A, B and C. Prove that the locus of the centroid of triangle $A B C$ is $\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{y}^{2}}+\frac{1}{\mathrm{z}^{2}}=\frac{1}{\mathrm{P}^{2}}$

Solution:

Let the plane ($\triangle \mathrm{ABC}$) whose vertices are
$A(a, 0,0), B(0, b, 0)$, and $(0,0, c)$ at a distance of $3 p$ units from the origin.
So, the plane is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
or, $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}-1=0$
Since, 1^{v} distance of the equation (i) from $(0,0,0)$ is $3 p$,
$\left|\frac{a x_{1}+b y_{1}+c z_{1}+d}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|=\left|\frac{\frac{1}{a} \cdot 0+\frac{1}{b} \cdot 0+\frac{1}{c} \cdot 0-1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}\right|$
or, $3 p=\frac{1}{\sqrt{\frac{1}{q^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}$
or, $\frac{1}{(3 p)^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}$
Let (α, β, α) be the centroid of $\triangle A B C$
So,

$$
\alpha=\frac{a+0+0}{3} \therefore \alpha=\frac{a}{3} \Rightarrow a=3 \alpha
$$

Similarly, $b=3 \beta$ and $c=3 v$
Now, From equation (ii)
$\frac{1}{9 p^{2}}=\frac{1}{(3 \alpha)^{2}}+\frac{1}{(3 \beta)^{2}}+\frac{1}{(3 v)^{2}}$
or, $\frac{1}{9 p^{2}}=\frac{1}{9 \alpha^{2}}+\frac{1}{9 \beta^{2}}+\frac{1}{9 v^{2}}$
or, $\frac{1}{\mathrm{p}^{2}}=\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}+\frac{1}{v^{2}} \therefore \frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}+\frac{1}{v^{2}}=\frac{1}{\mathrm{p}^{2}}$ proved.
Hence, the locus of the centroid of $\triangle A B C$ is $\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=\frac{1}{p^{2}}$

CHAPTER 12

PRODUCT OF VECTORS

EXERCISE 12.1

1. Find $\vec{a} \times \vec{b}$ if
a. $\overrightarrow{\mathrm{a}}=2 \overrightarrow{\mathrm{i}}-3 \overrightarrow{\mathrm{k}}, \overrightarrow{\mathrm{b}}=2 \overrightarrow{\mathrm{j}}+4 \overrightarrow{\mathrm{k}}$
b. $\vec{a}=2 \vec{i}+4 \vec{k}, \vec{b}=3 \vec{j}-2 \vec{k}$
c. $\vec{a}=2 \vec{i}+3 \vec{j}+\vec{k}, \vec{b}=-\vec{i}-2 \vec{j}+3 \vec{k}$

Solution

a. Given, $\vec{a}=2 \vec{i}-3 \vec{k}=(2,0,-3)$

$$
\vec{b}=2 \vec{j}+4 \vec{k}=(0,2,4)
$$

Now, $\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 2 & 0 & -3 \\ 0 & 2 & 4\end{array}\right|=\vec{i}\left|\begin{array}{cc}0 & -3 \\ 2 & 4\end{array}\right|-\vec{j}\left|\begin{array}{cc}2 & -3 \\ 0 & 4\end{array}\right|+\vec{k}\left|\begin{array}{cc}2 & 0 \\ 0 & 2\end{array}\right|=6 \vec{i}-8 \vec{j}$ $+4 \vec{k}$
b. Given vectors

$$
\begin{aligned}
& \overrightarrow{\mathrm{a}}=2 \overrightarrow{\mathrm{i}}+4 \overrightarrow{\mathrm{k}}=(2,0,4) \quad \vec{b}=3 \vec{j}-2 \overrightarrow{\mathrm{k}}=(0,3-2) \\
& \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc}
\overrightarrow{\mathrm{i}} & \vec{j} & \vec{k} \\
2 & 0 & 4 \\
0 & 3 & -2
\end{array}\right|=-12 \vec{i}+4 \vec{j}+6 \vec{k}
\end{aligned}
$$

c. Given,

$$
\begin{aligned}
& \vec{a}=2 \vec{b}=-\vec{i}+\vec{j}-2 \vec{j}+3 \vec{k} \\
& \vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
2 & 3 & 1 \\
-1 & -2 & 3
\end{array}\right|=\vec{i}\left|\begin{array}{cc}
3 & 1 \\
-2 & 3
\end{array}\right|-\vec{j}\left|\begin{array}{cc}
2 & 1 \\
-1 & 3
\end{array}\right|+\vec{k}\left|\begin{array}{cc}
2 & 3 \\
-1 & -2
\end{array}\right|=11 \vec{i}-7 \vec{j}-\vec{k}
\end{aligned}
$$

2. If $\vec{a}=3 \vec{i}+4 \vec{j}-5 \vec{k}$ and $\vec{b}=7 \vec{i}-3 \vec{j}+6 \vec{k}$, calculate $(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})$ and $\mid(\vec{a}+$ $\vec{b}) \times(\vec{a}-\vec{b}) \mid$

Solution:

Given $\vec{a}=3 \vec{i}+4 \vec{j}-5 \vec{k} \quad \vec{b}=7 \vec{i}-3 \vec{j}+6 \vec{k}$

$$
\begin{aligned}
& \vec{a}+\vec{b}=(3 \vec{i}+4 \vec{j}-5 \vec{k})+(7 \vec{i}-3 \vec{j}+6 \vec{k})=10 \vec{i}+\vec{j}+\vec{k} \\
& \vec{a}-\vec{b}=(3 i+4 j-5 k)-(7 \vec{i}-3 \vec{j}+6 \vec{k})=-4 \vec{i}+7 \vec{j}-11 \vec{k} \\
& (\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
10 & 1 & 1 \\
-4 & 7 & -11
\end{array}\right|=-18 \vec{i}+106 \vec{j}+74 \vec{k} \\
& |(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|=\sqrt{(-18)^{2}+(106)^{2}+(74)+}=\sqrt{17036}
\end{aligned}
$$

3. If $\vec{a}=\vec{i}+\vec{j}+\vec{k}, \vec{b}=2 \vec{i}+3 \vec{j}+\vec{k}$, find the value of $|(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|$.

Solution:

Here, $\vec{a}=\vec{i}+\vec{j}+\vec{k}$

$$
\vec{b}=2 \vec{i}+3 \vec{j}+\vec{k} \vec{i}
$$

$$
\begin{aligned}
& (\vec{a}+\vec{b})=(1+2) \vec{i}+(1+3) \vec{j}+(1+1) \vec{k}=3 \vec{i}+4 \vec{j}+2 \vec{k} \\
& (\vec{a}-\vec{b})=(1-2) \vec{i}+(1-3) \vec{j}+(1-1) \vec{k}=-\vec{i}-2 \vec{j}+0 \vec{k} \\
& (\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
3 & 4 & 2 \\
-1 & -2 & 0
\end{array}\right|=(0+4) \vec{i}-\vec{j}(0+2)+\vec{k}(-6+4)=4 \vec{i}-2 \vec{j}-2 \vec{k} \\
& |(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|=\sqrt{4^{2}+(-2)^{2}+(-2)^{2}}=\sqrt{24}=2 \sqrt{6}
\end{aligned}
$$

4. Find the vector and the unit vector orthogonal to each of the following pair of vectors.
a. $\vec{a}=4 \vec{i}-2 \vec{j}+3 \vec{k}$ and $\vec{b}=5 \vec{i}+\vec{j}-4 \vec{k}$
b. $\vec{a}=6 \vec{i}+3 \vec{j}-5 \vec{k}$ and $\vec{b}=\vec{i}-4 \vec{j}+2 \vec{k}$

Solution:

a. Given vectors $\vec{a}=4 \vec{i}-2 \vec{j}+3 \vec{k}$
$\vec{b}=5 \vec{i}+\vec{j}-4 \vec{k}$
The vector orthogonal to each of given vectors is given by $\vec{a} \times \vec{b}$
Now, $\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 4 & -2 & 3 \\ 5 & 1 & -4\end{array}\right|=(8-3) \vec{i}-(-16-15) \vec{j}+(4+10) \vec{k}=5 \vec{i}+31 \vec{j}+14 \vec{k}$
$|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{5^{2}+31^{2}+14^{2}}=\sqrt{1182}$
Unit vector is given as $\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}=\frac{5 \vec{i}+31 \vec{j}+14 \vec{k}}{\sqrt{1182}}$
b. Here,
$\vec{a}=(6,3,-5)$ and $\vec{b}=(1,-4,2)$
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 6 & 3 & -5 \\ 1 & -4 & 2\end{array}\right|$
$(6-20) \vec{i}-(12+5) \vec{j}+(-24-4) \vec{k}=-14 \vec{i}-17 \vec{j}-27 \vec{k}$
$|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{(-14)^{2}+(-17)^{2}+(-27)^{2}}=\sqrt{1214}$
\therefore Unit vector is $\frac{-14 \vec{i}-17 \vec{j}-27 \vec{k}}{\sqrt{1214}}$
5. a. If θ be the angle between the vectors $\vec{a}=2 \vec{i}-3 \vec{j}+5 \vec{k}$ and $\vec{b}=4 \vec{i}-7 \vec{k}$, find the value of $\sin \theta$.
b. Find the sine of the angle between the vectors

$$
\vec{a}=3 \vec{i}+\vec{j}+2 \vec{k} \text { and } \vec{b}=2 \vec{i}-2 \vec{j}+9 \vec{k}
$$

c. Find the sine of the angle between the vectors

$$
\overrightarrow{\mathrm{a}}=(3,1,2) \text { and } \overrightarrow{\mathrm{b}}=(2,-2,4)
$$

Solution:

a. Given, $\vec{a}=2 \vec{i}-3 \vec{j}+5 \vec{k}$
$\vec{b}=4 \vec{i}-7 \vec{k}$
$a=|\vec{a}|=\sqrt{4+9+25}=\sqrt{38} \quad b=|\vec{b}|=\sqrt{4^{2}+(-7)^{2}}=\sqrt{65}$
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 2 & -3 & 5 \\ 4 & 0 & -7\end{array}\right|=21 \vec{i}+34 \vec{j}+12 \vec{k}$
$|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{21^{2}+34^{2}+12^{2}}=\sqrt{1741}$
We know that $\sin \theta=\frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}=\frac{\sqrt{1741}}{\sqrt{38} \cdot \sqrt{65}}=\sqrt{\frac{1741}{2470}}$
b. Given, $\vec{a}=(3,1,2)$ and $\vec{b}=(2,-2,9)$
$a=|\vec{a}|=\sqrt{9+1+4}=\sqrt{14}$
$\mathrm{b}=|\overrightarrow{\mathrm{b}}|=\sqrt{4+4+81}=\sqrt{89}$
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 3 & 1 & 2 \\ 2 & -2 & 9\end{array}\right|=13 \vec{i}-23 \vec{j}-8 \vec{k}$
$|\vec{a} \times \vec{b}|=\sqrt{13^{2}+(-23)^{2}+(-8)^{2}}=\sqrt{762}$
$\sin \theta=\frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}=\frac{\sqrt{762}}{\sqrt{14 \times 89}}=\sqrt{\frac{762}{14 \times 89}}=\sqrt{\frac{381}{623}}$
c. Given rectors are $\vec{a}=(3,1,2)$ and $\vec{b}=(2,-2,4)$
$a=|\vec{a}|=\sqrt{9+1+4}=\sqrt{14}$
$b=|\vec{b}|=\sqrt{4+4+16}=\sqrt{24}$
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 3 & 1 & 2 \\ 2 & -2 & 4\end{array}\right|=8 \vec{i}-8 \vec{j}-\vec{k}$
$|\vec{a} \times \vec{b}|=\sqrt{64+64+64}=\sqrt{192}$
$\sin \theta=\frac{|\vec{a} \times \vec{b}|}{a b}=\sqrt{\frac{192}{14 \times 24}}=\frac{2}{\sqrt{7}}$
6. If the position vectors of the three points P, Q and R are respectively $\vec{i}+\vec{j}+2 \vec{k}, 2 \vec{i}+3 \vec{j}+\vec{k}$ and $3 \vec{i}-\vec{j}+4 \vec{k}$, find a vector orthogonal to the plane PQR.

Solution:

Let O be the origin
Given $O \vec{P}=\vec{i}+\vec{j}+2 \vec{k}$
$O \vec{Q}=2 \vec{i}+3 \vec{j}+\vec{k}$
$O \vec{P}=3 \vec{i}-\vec{j}+4 \vec{k}$
$\overrightarrow{P Q}=\overrightarrow{O Q}-O \vec{Q}=(2,3,1)-(1,1,2)=(1,2,-1)=\vec{i}+2 \vec{j}-\vec{k}$
$Q \vec{R}=O \vec{R}-O \vec{Q}=(3,-1,4)-(2,3,1)=(1,-4,3)=\vec{i}-4 \vec{j}+3 \vec{k}$
$\overrightarrow{P Q} \times \overrightarrow{Q R}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & -1 \\ 1 & -4 & 3\end{array}\right|=2 \vec{i}-4 \vec{j}-6 \vec{k}$
Hence, $2 \vec{i}-4 \vec{j}-6 \vec{k}$ is a vector perpendicular to both $P \vec{Q}$ and $Q \vec{R}$ and hence perpendicular to the plane PQR.
7. Find the area of the triangle determined by the following pairs of vectors.
a. $\vec{a}=3 \vec{i}+\vec{j}+\vec{k}, \vec{b}=\vec{i}-2 \vec{j}-\vec{k}$.
b. $\quad \vec{a}=3 \vec{i}+4 \vec{j}$ and $\vec{b}=-5 \vec{i}+7 \vec{j}$

Solution:

a. $\vec{a}=3 \vec{i}+\vec{j}+\vec{k} \quad \vec{b}=\vec{i}-2 \vec{j}-\vec{k}$
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 3 & 1 & 1 \\ 1 & -2 & -1\end{array}\right|=\vec{i}+4 \vec{j}-7 \vec{k}$
$|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{1+16+49}=\sqrt{66}$
\therefore Area of triangle determined by \vec{a} and \vec{b} is given by $\frac{1}{2}|\vec{a} \times \vec{b}|=\frac{1}{2} \sqrt{66}$ sq. units
b. Given vectors $\vec{a}=(3,4,0)$ and $\vec{b}=(-5,7,0)$
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 3 & 4 & 0 \\ -5 & 7 & 0\end{array}\right|=0 \vec{i}-0 \vec{j}+41 \vec{k}$
$|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{0^{2}+0^{2}+41^{2}}=41$
Area of triangle determined by the vectors \vec{a} and \vec{b} is given by
$\frac{1}{2}|\vec{a} \times \vec{b}|=\frac{1}{2} \times 41=20 \frac{1}{2}$ sq. unit
8. Prove that the area of the triangle whose vertices have $3 \vec{i}-\vec{j}+2 \vec{k}, \vec{i}-\vec{j}-3 \vec{k}$ and $4 \vec{i}-3 \vec{j}+2 \vec{k}$ as position vectors is $\frac{1}{2} \sqrt{141}$ square units.

Solution:

Let 0 be the origin. Let A, B and C be vertices of triangle
Then $O \vec{A}=3 \vec{i}-\vec{j}+2 \vec{k}$
$\mathrm{OB}=\overrightarrow{\mathrm{i}}-\overrightarrow{\mathrm{j}}-3 \overrightarrow{\mathrm{k}}$
$O \vec{C}=4 \vec{i}-3 \vec{j}+2 \vec{k}$
$A \vec{B}=O \vec{B}-O \vec{A}=-2 \vec{i}+0 \vec{j}-5 \vec{k}$
$B \vec{C}=O \vec{C}-O \vec{B}=3 \vec{i}-2 \vec{j}+5 \vec{k}$
$A \vec{B} \times B \vec{C}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ -2 & 0 & -5 \\ 3 & -2 & 5\end{array}\right|=-10 \vec{i}-5 \vec{j}+4 \vec{k}$
$|A \vec{B} \times B \vec{C}|=\sqrt{100+25+16}=\sqrt{141}$
\therefore Area of triangle $A B C=\frac{1}{2} \left\lvert\, A B C B C \quad=\frac{1}{2} \sqrt{141}\right.$ sq. units
9. Find the area of the parallelnram whose two adjacent sides are determined by the following pairs of vectors.
$\begin{array}{ll}\text { a. } & \vec{a}=7 \vec{i}+8 \vec{j}-\vec{k} \text { and } \vec{b}=10 \vec{i}-11 \vec{j}+12 \vec{k} b . \\ & \vec{a}=\vec{i}+2 \vec{j}+3 \vec{k} \text { and } \vec{b}=\vec{i}-2 \vec{j}+4 \vec{k} \\ \text { c. } & \vec{a}=\vec{i}-2 \vec{j}+3 \vec{k} \text { and } \vec{b}=3 \vec{i}+2 \vec{j}+2 \vec{k}\end{array}$

Solution:

a. Given, $\vec{a}=7 \vec{i}+8 \vec{j}-\vec{k} \quad \vec{b}=10 \vec{i}-11 \vec{j}+12 \vec{k}$ $\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 7 & 8 & -1 \\ 10 & -11 & 12\end{array}\right|=(96-11) \vec{i}-(84+10) \vec{j}+(-77-80) \vec{k}=85 \vec{i}-94 \vec{j}-157 \vec{k}$
$|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{85^{2}+94^{2}+157^{2}}=\sqrt{40710}$
\therefore Area of paralleInram whose adjacent sides are \vec{a} and \vec{b} is $\sqrt{40710}$ sq. units.
b. $\vec{a}=\vec{i}+2 \vec{j}+3 \vec{k}$

$$
\vec{b}=\vec{i}-2 \vec{j}+4 \vec{k}
$$

$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & 3 \\ 1 & -2 & 4\end{array}\right|=(8+6) \vec{i}-(4-3) \vec{j}+(-2-2) \vec{k}=14 \vec{i}-\vec{j}-4 \vec{k}$
$|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{14^{2}+1^{2}+4^{2}}=\sqrt{196+1+16}=\sqrt{213}$
\therefore Area of parallelnram $=|\vec{a} \times \vec{b}|=\sqrt{213}$ sq units.
c. Given, $\vec{a}=(1,-2,3)$ and $\vec{b}=(3,2,2)$

$$
\begin{aligned}
& \vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & -2 & 3 \\
3 & 2 & 2
\end{array}\right|=(-4-6) \vec{i}-(2-9) \vec{j}+(2+6) \vec{k} \vec{k}=-10 \vec{i}+7 \vec{j}+8 \vec{k} \\
& |\vec{a} \times \vec{b}|=\sqrt{100+49+64}=\sqrt{213}
\end{aligned}
$$

\therefore Area of paralleInram $=|\vec{a} \times \vec{b}|=\sqrt{213}$ sq units
10. Find the area of the parallelnram whose diagonals represent the vectors $\vec{i}+\vec{j}-\vec{k}$ and $\vec{i}-\vec{j}+\vec{k}$.

Solution:

Let $\vec{d}_{1}=\vec{i}+\vec{j}-\vec{k}$ and $\vec{d}_{2}=\vec{i}-\vec{j}+\vec{k}$ be two diagonals of a parallelnram.
$\vec{d}_{1} \times \vec{d}_{2}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & -1 \\ 1 & -1 & 1\end{array}\right|=0 \vec{i}-2 \vec{j}-2 \vec{k}$
$\left|\overrightarrow{d_{1}} \times \vec{d}_{2}\right|=\sqrt{0^{2}+2^{2}+2^{2}}=\sqrt{8}=2 \sqrt{2}$
Area of parallelnram whose diagonals \vec{d}_{1} and \vec{d}_{2} is given by $\frac{1}{2}\left|\vec{d}_{1} \times \vec{d}_{2}\right|$ sq. units $=\frac{1}{2} \cdot 2 \sqrt{2}$ sq. units $=\sqrt{2}$ sq. units
11. a. If $|\vec{a}|=15,|\vec{b}|=4$ and $|\vec{a} \times \vec{b}|=36$, find the value of $\vec{a} \cdot \vec{b}$.
b. Given $|\vec{a}|=9,|\vec{b}|=5$ and $\vec{a} \cdot \vec{b}=36$, find $|\vec{a} \times \vec{b}|$.
c. Given any three vectors \vec{a}, \vec{b} and \vec{c}, prove that

$$
\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})=0
$$

d. If $\vec{a}+\vec{b}+\vec{c}=0$, prove that $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$.

Solution:

a. Given $|\vec{a}|=15,|\vec{b}|=4$ and $|\vec{a} \times \vec{b}|=36$

If θ be the angle between two vectors \vec{a} and \vec{b} then
$\sin \theta=\frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}=\frac{36}{15 \times 4}=\frac{9}{15}=\frac{3}{5}$
$\therefore \cos \theta=\sqrt{1-\sin ^{2} \theta}=\sqrt{1-\frac{9}{25}}=\frac{4}{5}$
Also, we know that $\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$
$\therefore \quad \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta=15 \times 4 \times \frac{4}{5}=48$
$\therefore \vec{a} \cdot \vec{b}=48$
b. Given, $|\vec{a}|=9,|\vec{b}|=5$ and $\vec{a} \cdot \vec{b}=36$

If θ be the angle between \vec{a} and \vec{b}
Then, $\cos \theta=\frac{\vec{a} \cdot \vec{b}}{a b}=\frac{36}{9 \times 5}=\frac{4}{5}$
$\therefore \quad \sin \theta=\sqrt{1 \cos ^{2} \theta}=\frac{3}{5}$
Also, $|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta=9 \times 5 \times \frac{3}{5}=27$
c. $L H S=\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})$

$$
\begin{aligned}
&=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}+\vec{b} \times \vec{c}+\vec{b} \times \vec{a}+\vec{c} \times \vec{a}+\vec{c} \times \vec{b} \\
&= \vec{a} \times \vec{b}-\vec{c} \times \vec{a}+\vec{b} \times \vec{c}-\vec{a} \times \vec{b}+\vec{c} \times \vec{a}-\vec{b} \times \vec{c}=0 \text { RHS }
\end{aligned}
$$

d. Suppose
$\vec{a}+\vec{b}+\vec{c}=0$
$\vec{a}+\vec{b}=-\vec{c}$.
Taking cross product with \vec{a} on both sides
$\vec{a} \times(\vec{a}+\vec{b})=\vec{a} \times \vec{c})$
or, $\vec{a} \times \vec{a}+\vec{a} \times \vec{b}=\vec{c} \times \vec{a}$
or, $0+\vec{a} \times \vec{b}=\vec{c} \times \vec{a}$
or, $\vec{a} \times \vec{b}=\vec{c} \times \vec{a}$
Again, taking cross product with \vec{b} on equation (i) both sides
$\vec{b} \times(\vec{a}+\vec{b})=\vec{b} \times(-\vec{c})$
$\vec{b} \times \vec{a}+\vec{b} \times \vec{b}=-\vec{b} \times \vec{c}$
or, $-\vec{a} \times \vec{b}=0=-\vec{b} \times \vec{c}$
$\therefore \vec{a} \times \vec{b}=\vec{b} \times \vec{c}$

Combining (ii) and (iii) we get,
$\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$ Proved.
12. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are the position vectors of the vertices of a quadrilateral $A B C D$, prove that the vector area of the quadrilateral $A B C D$ is
$\frac{1}{2}[\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{d}+\vec{d} \times \vec{a}]$.

Solution:

Let 0 be the origin suppose A, B, C, D are vertices of a quadrilateral $A B C D$.
Let $O \vec{A}=\vec{a}, O \vec{B}=\vec{b}, O \vec{C}=\vec{c}$ and $O \vec{D}=\vec{d}$
Now, $A \vec{B}=O \vec{B}-O \vec{A}=\vec{b}-\vec{a}$
$B \vec{C}=O \vec{C}-O \vec{B}=\vec{c}-\vec{b}$
$A \vec{C}=O \vec{C}-O \vec{A}=\vec{c}-\vec{a}$

$C \vec{D}=O \vec{D}-O \vec{C}=\vec{d}-\vec{C}$
Vector area of $\triangle \mathrm{ABC}$
$=\frac{1}{2} A \vec{B} \times B \vec{C}=\frac{1}{2}(\vec{b}-\vec{a}) \times(\vec{c}-\vec{b})=\frac{1}{2}[\vec{b} \times \vec{c}-\vec{b} \times \vec{b}-\vec{a} \times \vec{c}+\vec{a} \times \vec{b}]$
$=\frac{1}{2}[\vec{b} \times \vec{c}-0+\vec{c} \times \vec{a}+\vec{a} \times \vec{b}]=\frac{1}{2}[\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}]$
Again, vector area of $\triangle A C D$
$=\frac{1}{2}(A \vec{C} \times C \vec{D})=\frac{1}{2}[(\vec{c}-\vec{a}) \times(\vec{d}-\vec{c})]$
$=\frac{1}{2}[\vec{c} \times \vec{d}-\vec{c} \times \vec{c}-\vec{a} \times \vec{d}+\vec{a} \times \vec{c}]=\frac{1}{2}[\vec{c} \times \vec{d}+\vec{d} \times \vec{a}+\vec{a} \times \vec{c}]$
\therefore Vector of quadrilateral $A B C D=$ vector area of
$\triangle \mathrm{ABC}+$ vector area of $\triangle \mathrm{ACD}$
$=\frac{1}{2}[\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}+\vec{c}+\vec{d}+\vec{d} \times \vec{a}+\vec{a} \times \vec{b} \times \vec{c}]$
$=\frac{1}{2}[\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}+\vec{c}+\vec{d}+\vec{d} \times \vec{a}-\vec{c} \times \vec{a}]=\frac{1}{2}[\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{d}+\vec{d} \times \vec{a}]$
13. If $\vec{a}=3 \vec{i}-\vec{j}+2 \vec{k}, \vec{b}=2 \vec{i}+\vec{j}-3 \vec{k}$ and $\vec{c}=\vec{i}-2 \vec{j}+2 \vec{k}$, then find
a. $(\vec{a} \times \vec{b}) \times \vec{c}$
b. $\vec{a} \times(\vec{b} \times \vec{c})$ and hence show that $(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times(\vec{b} \times \vec{c})$

Solution:

Given,

$$
\begin{align*}
& \vec{a}=3 \vec{i}-\vec{j}+2 \vec{k} \\
& \vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
3 & -1 & 2 \\
2 & 1 & -3
\end{array}\right|=\vec{b}=2 \vec{i}+13 \vec{j}+5 \vec{j}-3 \vec{k} \quad \vec{c}=\vec{i}-2 \vec{j}+2 \vec{k} \\
& (\vec{a} \times \vec{b}) \times \vec{c}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 13 & 5 \\
1 & -2 & 2
\end{array}\right|=36 \vec{i}+3 \vec{j}-15 \vec{k} \ldots \ldots \text { (i) } \tag{i}
\end{align*}
$$

$$
\begin{align*}
& \overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
2 & 1 & -3 \\
1 & -2 & 2
\end{array}\right|=-4 \vec{i}-7 \vec{j}-5 \vec{k} \\
& \overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
3 & -1 & 2 \\
-4 & -7 & -5
\end{array}\right|=19 \vec{i}+7 \vec{j}-25 \vec{k} . . \tag{ii}
\end{align*}
$$

From (i) and (ii), Hence $(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times(\vec{b} \times \vec{c})$
14. If $\vec{a}=\vec{i}+\vec{j}+\vec{k}, \vec{c}=\vec{i}-\vec{j}$, then find \vec{b} such that $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{a} \cdot \vec{b}=3$

Solution:

$$
\begin{align*}
& \text { Given, } \vec{a}=\vec{i}+\vec{j}+\vec{k} \quad \vec{c}=\vec{i}-\vec{j} \\
& \qquad \begin{array}{l}
\text { et } \vec{b}=b_{1} \vec{i}+b_{2} \vec{j}+b_{3} \vec{k} \\
\vec{a} \cdot \vec{b}=(\vec{i}+\vec{j}+\vec{k}) \cdot\left(b_{1} \vec{i}+b_{2} \vec{j}+b_{3} \vec{k}\right) \\
3=b_{1}+b_{2}+b_{3} \ldots \ldots \ldots \text { (i) } \\
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 1 & 1 \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left(b_{3}-b_{2}\right) \vec{i}+\left(b_{1}-b_{3}\right) \vec{j}+\left(b_{2}-b_{1}\right) \vec{k} \\
\text { or, } \vec{c}=\left(b_{3}-b_{2}\right) \vec{i}+\left(b_{1}-b_{3}\right) \vec{j}+\left(b_{2}-b_{1}\right) \vec{k} \\
\quad \vec{i}-\vec{j}=\left(b_{3}-b_{2}\right) \vec{i}+\left(b_{1}-b_{3}\right) \vec{j}+\left(b_{2}-b_{1}\right) \vec{k}
\end{array}
\end{align*}
$$

Equating corresponding vectors
$b_{3}-b_{2}=1, b_{1}-b_{3}=-1$ and $b_{2}-b_{1}=0$
i.e. $b_{2}-b_{1}=0$
$\therefore \quad \mathrm{b}_{1}=\mathrm{b}_{2}$ \qquad
$b_{3}=1+b_{2} \ldots \ldots$ (iii) $b_{3}=1+b_{1} \ldots \ldots \ldots$ (iv)
or, $b_{1}+b_{2}+b_{3}=3$
or, $b_{1}+b_{1}+1+b_{1}=3$
or, $3 b_{1}=2$
$\therefore \quad \mathrm{b}_{1}=\frac{2}{3}$
\therefore from (ii) $\mathrm{b}_{2}=\frac{2}{3}$
from (iv) $b_{3}=1+\frac{2}{3}=\frac{5}{3}$
$\therefore \quad \vec{b}=\left(b_{1}, b_{2}, b_{3}\right)=\frac{2}{3} \vec{i}+\frac{2}{3} \vec{j}+\frac{5}{3} \vec{k}=\frac{1}{3}(2 \vec{i}+2 \vec{j}+5 \vec{k})$

CHAPTER 13

CORRELATION AND REGRESSION

EXERCISE 13.1

1. Find the correlation coefficient between the two variables under the following conditions.
a. $\operatorname{Cov}(X, Y)=-16.5, \operatorname{Var}(X)=2.89$ and $\operatorname{Var}(Y)=100$
b. $\quad N=13, \Sigma X=117, \Sigma X^{2}=1.313, \Sigma Y=260, \Sigma Y^{2}=6580, \Sigma X Y=2827$
c. $\mathrm{N}=15, \sigma_{\mathrm{x}}=3.2, \sigma_{\mathrm{y}}=3.4$ and $\Sigma(\mathrm{X}-\overline{\mathrm{X}})(\mathrm{Y}-\overline{\mathrm{Y}})=122$.

Solution:

a. Here, $\operatorname{cov}(x, y)=-16.5$
$\operatorname{var}(x)=2.89$
$\operatorname{var}(y)=100$
Coefficient off correlation

$$
\begin{aligned}
r & =\frac{\operatorname{cov}(x, y)}{\sqrt{\operatorname{var}(x)} \cdot \sqrt{\operatorname{var}(y)}} \\
& =\frac{-16.5}{\sqrt{2.89} \cdot \sqrt{100}} \\
& =\frac{-16.5}{1.7 \times 10} \\
& =\frac{-16.5}{17} \\
& =-0.97
\end{aligned}
$$

b. Here,

$$
\begin{array}{ll}
\text { Given, } N=13 & \Sigma x=117 \\
\Sigma x^{3}=1,313 & \Sigma y=260 \\
\Sigma y^{2}=6580 & \Sigma x y=2827
\end{array}
$$

Coefficient of correlation

$$
\begin{aligned}
r & =\frac{n \Sigma x y-\Sigma x . \Sigma y}{\sqrt{n \Sigma x^{2}-(\Sigma x)^{2}} \cdot \sqrt{n \Sigma y-(\Sigma y)^{2}}} \\
& =\frac{3 \times 2827-117 \times 260}{\sqrt{13 \times 1313}-\sqrt{13 \times 6580-\ldots .}} \\
& =\frac{36751-30420}{\sqrt{3380}-\sqrt{17940}} \\
& =\frac{6331}{58.13 \times 133.94}=0.81
\end{aligned}
$$

c. Here, $\mathrm{n}=15$
$\sigma_{x}=3.2 \quad \sigma_{y}=3 . y$
$\Sigma(x-\bar{x})(y-\bar{y})=122$
Coefficient of correlation $(r)=\frac{\Sigma(x-\bar{x})(y-\bar{y})}{n \sigma_{x} \sigma_{y}}=\frac{122}{15 \times 3.2 \times 3 . y}=\frac{122}{163.2}=0.75$
2. a. Karl Pearson's coefficient of correlation between two variables X and Y is 0.28 , their covariance is 0.76 . If the variance of X is 9 , find the standard deviation of Y series.
b. Given the following; correlation coefficient between X and $\mathrm{Y}=0.85$, $\operatorname{Cov}(X, Y)=6.5, \operatorname{Var}(X)=6.1$. Find the standard deviation of Y-series.

Solution:

a. Karl Pearson's coefficient of correlation between ' x ' and ' y ' $(r)=0.28$
$\operatorname{Cor}(x, y)=0.76, \operatorname{Var}(x)=9, \sigma_{y}=$?
Now, We have,
Coefficient of correlation $(r)=\frac{\operatorname{cov}(x, y)}{\sqrt{\operatorname{var}(x)} \cdot \sqrt{\operatorname{var}(y)}}$
or, $0.28=\frac{0.76}{\sqrt{9} \cdot \sqrt{\operatorname{var}(y)}}$
or, $0.36=\frac{1}{3 \cdot \sqrt{\operatorname{var}(y)}}$
or, $1.105 . \sqrt{\operatorname{var(y)}}=1$
or, $\sqrt{\operatorname{var}(y)}=0.904 \therefore \sigma_{y}=0.904$
b. Correlation coefficient between x and $y(r)=0.85$
$\operatorname{Cov}(x, y)=6.5$
$\operatorname{Var}(x)=6.1$
Standard derivation of $y\left(\sigma_{y}\right)=$?
Now, we have,
Coefficient of correlation $(r)=\frac{\operatorname{cov}(x, y)}{\sqrt{\operatorname{var}(x)} \cdot \sqrt{\operatorname{var}(y)}}$
or, $0.85=\frac{6.5}{\sqrt{6.1} \cdot \sqrt{\operatorname{var}(\mathrm{y})}}$
or, $0.13076 \times 2.4698 \cdot \sqrt{\operatorname{var}(y)}=1$
or, $\sqrt{\operatorname{var}(y)}=\frac{1}{0.32295}$
or, $\sqrt{\operatorname{var}(y)}=3.096$
or, $\sigma_{y}=3.096$
Hence, the required σ_{y} is 3.096
3. a. Calculate Karl Pearson's correlation coefficient between the two variables from the data given below.

Marks in Maths	48	35	17	23	47
Marks in Biolny	45	20	40	25	45

b. Calculate the coefficient of correlation from the following data of price and demand.

Data of price (Rs)	14	16	19	22	24	30
Demand (Rs)	24	22	20	24	23	28

c. Find the covariance and correlation coefficient between x and y for the following observations of
$(\mathrm{x}, \mathrm{y}):(20,7),(10,15),(20,12),(10,16),(17,17),(12,10),(15,11),(16,8)$

Solution:

a. Here,

Maths(x)	Biolny (y)	$\mathbf{x}=\mathbf{(x - \mathbf { x })}$	$\mathbf{y}=(\mathbf{y}-\mathbf{y})$	$\mathbf{x y}$	\mathbf{x}^{2}	\mathbf{y}^{2}
48	45	14	10	140	196	100
35	20	1	-15	-15	1	225
17	40	-17	5	-85	289	25
23	25	-11	-10	110	121	100
47	45	13	10	130	169	100
$\Sigma x=170$	$\Sigma y=175$			$\Sigma x y=280$	$\Sigma x^{2}=776$	$\Sigma y^{2}=550$

$\bar{x}=\frac{\Sigma \mathrm{x}}{\mathrm{n}}=\frac{170}{5}=34, \quad \overline{\mathrm{y}}=\frac{\Sigma \mathrm{y}}{\mathrm{N}}=\frac{175}{5}=35$
Karl Pearson's coefficient of correlation $(r)=\frac{\Sigma x y}{\sqrt{\Sigma x^{2}} \cdot \sqrt{\Sigma y^{2}}}=\frac{280}{\sqrt{776} \cdot \sqrt{550}}$

$$
\begin{aligned}
& =\frac{280}{\sqrt{776} \cdot \sqrt{550}}=\frac{280}{27.85 \times 23.45} \\
& =\frac{280}{653.0325}=0.42
\end{aligned}
$$

b. Calculation of correlation coefficient

Data of price (Rs.) (x)	Demand (Rs.) (y)	$\begin{array}{r} u=x- \\ 19 \end{array}$	$\begin{gathered} \hline v=v_{1}- \\ 20 \\ \hline \end{gathered}$	\mathbf{u}^{2}	\mathbf{v}^{2}	uV
14	24	-5	-4	25	16	20
16	22	-3	-2	9	4	6
19	20	0	0	0	0	0
22	24	3	4	9	16	12
24	23	5	3	25	9	15
30	28	11	8	121	64	88
		11	9	189	109	141

\therefore Required correlation coefficient is given by

$$
\begin{aligned}
r & =\frac{n \Sigma u v-\Sigma u \Sigma v}{\sqrt{n \sum u^{2}-\left(\sum u\right)^{2}} \sqrt{n \sum v^{2}-\left(\sum v\right)^{2}}}=\frac{6 \times 141-11 \times 9}{\sqrt{6 \times 189-(11)^{2}} \sqrt{6 \times 109-(9)^{2}}} \\
& =\frac{846-99}{\sqrt{1013} \sqrt{573}}=\frac{747}{31.83 \times 23.94}=\frac{747}{762.01}=0.98
\end{aligned}
$$

c. Calculation of co-varience and correlation coefficient

\mathbf{X}	\mathbf{Y}	$\mathbf{x}-\mathbf{X}$	$(\mathbf{x}-\mathbf{z})^{\mathbf{2}}$	$\mathbf{y}-\mathbf{y}$	$(\mathbf{y}-\mathbf{y})^{\mathbf{2}}$	$\mathbf{(\mathbf { x } - \mathbf { z }) (\mathbf { y } - \mathbf { y })}$
20	7	5	25	-5	25	-25
10	15	-5	25	3	9	-15
20	12	5	25	0	0	0
10	16	-5	25	4	16	-20
17	17	2	4	5	25	10
12	10	-3	9	-2	4	6
15	11	0	0	-1	1	0
16	8	1	1	-4	16	-4
$\mathbf{\Sigma x = 1 2 0}$	$\mathbf{\Sigma y = 9 6}$		$\mathbf{1 1 4}$		$\mathbf{9 4}$	$\boldsymbol{\Sigma}(\mathbf{x}-\mathbf{z})(\mathbf{y}-\mathbf{y})=\mathbf{4 8}$

Here, $\bar{x}=\frac{\Sigma x}{n}$ and $\bar{y}=\frac{\Sigma y}{n}$
$\Rightarrow \bar{x}=\frac{120}{8}$ and $\bar{y}=\frac{96}{8}$
$\therefore \quad \bar{x}=15$ and $\bar{y}=12$
\therefore Co-varience of $(\mathrm{x}, \mathrm{y})=\frac{\Sigma(\mathrm{x}-\overline{\mathrm{x}})(\mathrm{y}-\overline{\mathrm{y}})}{\mathrm{n}}=\frac{-48}{8}=-6$
And, the correlation coefficient is
$r=\frac{\Sigma(x-\bar{x})(y-\bar{y})}{\sqrt{\Sigma(x-\bar{x})^{2}} \sqrt{(y-\bar{y})^{2}}}=\frac{-48}{\sqrt{114} \sqrt{94}}=\frac{-48}{10.67 \times 9.70}=\frac{-48}{103.50}=-0.463$
4. a. From the following table calculate Karl Pearson's correlation coefficient between the two variables;

X	6	2	10	4	8
Y	9	11	$?$	8	7

Arithemetic means of X and Y series are 6 and 8 respectively.
b. From the following table calculate the missing data of X - series and correlation coefficient by Karl Pearson's method.

X	10	12	20	$?$	16	14
Y	9	12	15	18	14	16

The arithemetic means of X is 13 .

174 Kriti's Principles of Mathematics-XII

Solution:

a. Here,

\mathbf{X}	\mathbf{Y}	$\mathbf{x}=(\mathbf{X}-\overline{\mathbf{X}})$	$\mathbf{y}=(\mathbf{Y}-\overline{\mathbf{Y}})$	$\mathbf{x y}$	\mathbf{x}^{2}	$\mathbf{y}^{\mathbf{2}}$
6	9	0	1	0	0	1
2	11	-4	3	-12	16	9
10	5	4	-3	-12	16	9
4	8	-2	0	0	4	0
8	7	2	-1	-2	4	1
$\Sigma x=30$	$\Sigma y=40$	$\Sigma x=0$	$\Sigma y=0$	$\Sigma x y=26$	$\Sigma x^{2}=40$	$\Sigma y^{2}=20$

Hence, $\overline{\mathrm{y}}=\frac{\Sigma \mathrm{y}}{\mathrm{n}}, \overline{\mathrm{x}}=6$
or, $8=\frac{35+\mathrm{a}}{5}$
or, $40-35 \pm a$
$\therefore \quad \mathrm{a}=5$
Coefficient of correlation $(r)=\frac{\Sigma x y}{\sqrt{\Sigma x^{2}} \cdot \sqrt{\Sigma y^{2}}}=\frac{-26}{\sqrt{40} \cdot \sqrt{20}}=\frac{-26}{\sqrt{800}}=\frac{-26}{28.28}=-0.92$
b.

\mathbf{X}	\mathbf{Y}	$\mathbf{x}=\mathbf{(X - \overline { \mathbf { X } })}$	$\mathbf{y}=(\mathbf{Y}-\overline{\mathbf{Y}})$	\mathbf{x}^{2}	\mathbf{y}^{2}	$\mathbf{x y}$
10	9	-3	-5	9	25	15
12	12	-1	-2	1	4	2
20	15	7	1	49	1	7
$\mathbf{x}_{1}(6)$	18	-7	4	49	16	-28
16	14	3	0	9	0	0
14	16	1	2	1	4	2
$\boldsymbol{\Sigma x = 7 2 + \mathbf { x }}$	$\boldsymbol{\Sigma y = 8 4}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1 1 8}$	$\mathbf{5 0}$	$\mathbf{- 2}$

It is given that,
$\bar{x}=13$ and $\bar{y}=\frac{\Sigma y}{n}$
$\Rightarrow \frac{\Sigma \mathrm{x}}{\mathrm{n}}=13$ and $\overline{\mathrm{y}}=\frac{84}{6}$
$\Rightarrow \frac{72+x_{1}}{6}=13$ and $\bar{y}=14$
$\therefore \quad \mathrm{x}_{1}=6$
\therefore The correlation coefficient is given by

$$
r=\frac{\Sigma x y}{\sqrt{\Sigma x^{2}} \sqrt{\Sigma y^{2}}}=\frac{-2}{\sqrt{118} \sqrt{50}}=\frac{-2}{10.86 \times 7.07}=\frac{-2}{76.78}=-0.026
$$

5. Calculate the correlation coefficient for the following series of age of husband (X) and age of wife (Y).

X	41	44	45	48	40	42	44
Y	22	24	25	27	21	22	23

Solution:

X	Y	x^{2}	y^{2}	$x y$
41	22	1681	484	902
44	24	1936	576	1051

45	25	2025	625	1125
48	27	2304	729	1296
40	21	1600	441	840
42	22	1764	484	924
44	23	1936	529	1012
$\Sigma \mathrm{x}=304$	$\Sigma \mathrm{y}=164$	$\Sigma \mathrm{x}^{2}=13246$	$\Sigma \mathrm{y}^{2}=3868$	$\Sigma \mathrm{xy}=7155$

No. of items (n) $=7$

$$
\text { Coefficient of collection } \begin{aligned}
(r) & =\frac{n \Sigma x y-\Sigma x \cdot \Sigma y}{\sqrt{n \Sigma x^{2}-(\Sigma x)^{2}} \cdot \sqrt{n \Sigma y^{2}-(\Sigma y)^{2}}} \\
& =\frac{7 \times 7155-304 \times 164}{\sqrt{7 \times 13246-(304)^{2}} \cdot \sqrt{7 \times 3868 \cdot(-164)^{2}}} \\
& =\frac{50085-49856}{\sqrt{306} \sqrt{180}}=\frac{229}{17.49 \times 13.41}=0.976
\end{aligned}
$$

6. The following data gives the marks obtained by 10 students in mathematics and English.

Student	1	2	3	4	5	6	7	8	9	10
Marks in math	45	70	65	30	90	40	50	75	85	60
Marks in Eng	35	90	70	40	95	40	60	80	80	50

Find the coefficient of correlation and interprent it.

Solution:

Math (x)	Eng(y)	$\mathbf{x y}$	$\mathbf{x}^{\mathbf{2}}$	$\mathbf{y}^{\mathbf{2}}$
45	35	1575	2025	1225
70	90	6300	4900	8100
65	70	4550	4225	4900
30	40	1200	900	1600
90	95	8550	8100	9025
40	40	1600	1600	1600
50	60	3000	2500	3600
75	80	6000	5625	6400
85	80	6800	7225	6400
60	50	3000	3600	2500
$\Sigma x=610$	$\Sigma y=640$	$\Sigma x y=42575$	$\Sigma x^{2}=40700$	$\Sigma y^{2}=45350$

Coefficient of correlation $(r)=\frac{n \Sigma x y-\Sigma x . \Sigma y}{\sqrt{n \Sigma x^{2}-(\Sigma x)^{2}} \cdot \sqrt{n \Sigma y^{2}-(\Sigma y)^{2}}}$
$=\frac{10 \times 42575-610 \times 640}{\sqrt{10 \times 40700-(610)^{2}} \cdot \sqrt{10 \times 45360-\ldots}}$
$=\frac{425750-390400}{\sqrt{34900} \cdot \sqrt{43900}}=\frac{35350}{186.81 \times 209.52}$
$=\frac{35350}{39140.4312}=0.9033$
7. A person while calculating the correlation coefficient between the variables X and Y obtained the following $n=30, \Sigma X=120 \Sigma X^{2}=600, \Sigma Y=90, \Sigma Y^{2}=250$, $\Sigma X Y=356$. It was, however later discovered at the time of checking that it had copied down two pairs of observations as, $(8,10)$ and $(12,7)$ while correct
values were $(8,12)$ and $(10,8)$ obtain the correct value of correlation coefficient between them.

Solution:

Here, Corrected $\Sigma x=120-8-12+8+10=118$
Corrected $\Sigma y=90-10-7+12+8=93$
Corrected $\Sigma x^{2}=600-8^{2}-12^{2}+8^{2}+10^{2}=556$
Corrected $\Sigma y^{2}=250-10^{2}-7^{2}+12^{2}+8^{2}=309$
Corrected $\Sigma x y=356-8 \times 10-12 \times 7+8 \times 12+10 \times 8=368$
Now, Corrected value of $f=8$

$$
\begin{aligned}
r_{e} & =\frac{n \Sigma x y-\Sigma x \cdot \Sigma y}{\sqrt{n \Sigma x^{2}-(\Sigma x)^{2}} \cdot \sqrt{n \Sigma y^{2}-\left(\Sigma y^{2}\right)}}=\frac{30 \times 368-118 \times 93}{\sqrt{30 \times 556-(118)^{2}} \sqrt{30 \times 309-(93)^{2}}} \\
& =\frac{11040-10974}{\sqrt{16680-13924} \cdot \sqrt{9270-8649}}=\frac{66}{52.49 \times 24.91}=\frac{66}{1307.5259}=0.05
\end{aligned}
$$

8. Calculate Spearman's rank correlation coefficient between advertisement cost (X) and sales (Y) from the following data:

$\mathrm{X}:$	39	65	62	90	82	75	25	98	36	78
$\mathrm{Y}:$	47	53	58	86	62	68	60	91	51	84

Solution:

Here,

\mathbf{x}	Rank (R $\mathbf{x})$	\mathbf{y}	Rank $\left(\mathbf{R}_{\mathbf{y}}\right)$	$\mathbf{d}=\mathbf{R}_{\mathbf{x}}-\mathbf{R}_{\mathbf{y}}$	$\mathbf{d}^{\mathbf{2}}$
39	8	47	10	-2	4
65	6	53	8	-2	4
62	7	58	7	0	0
90	2	86	2	0	0
82	3	62	5	-2	4
75	5	68	4	1	1
25	10	60	6	4	16
98	1	91	1	0	0
36	9	51	9	0	0
78	4	84	3	1	1
				$\Sigma \mathrm{~d}^{2}=30$	

Rank $(\rho)=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)}=1-\frac{6 \times 30}{10 \times 99}=1-\frac{150}{990}=0.8485$
9. Two bank officers examined eleven loan applications and ranked them.

Compute the rank Correlation coefficient.

Loan applicants	A	B	C	D	E	F	G	H	I	J	K
Officer I	1	7	4	2	3	6	5	9	10	8	11
Officer II	1	6	5	2	3	4	7	11	8	10	9

Solution:

Here,

Officer (x)	Officer (y)	$\mathbf{x y}$	$\mathbf{x}^{\mathbf{2}}$	$\mathbf{y}^{\mathbf{2}}$
1	1	1	1	1
7	6	42	49	36
4	5	20	16	25
2	2	4	4	4
3	3	9	9	9
6	4	24	36	16
5	7	35	25	49

9	11	99	81	121
10	8	80	100	64
8	10	80	64	100
11	9	99	121	81
$\mathbf{\Sigma x = 6 6}$	$\mathbf{\Sigma y =} \mathbf{6 6}$	$\mathbf{\Sigma x} \mathbf{y}=\mathbf{4 9 3}$	$\mathbf{\Sigma \mathbf { x } ^ { 2 } = \mathbf { 5 0 6 }}$	$\mathbf{\Sigma \mathbf { y } ^ { 2 } = \mathbf { 5 0 6 }}$

Correlation coefficient $(r)=\frac{n \Sigma x y-\Sigma x . \Sigma y}{\sqrt{n \Sigma x^{2}-(\Sigma x)^{2}} \cdot \sqrt{n \Sigma y^{2}-\left(\Sigma y^{2}\right)}}$

$$
\begin{aligned}
& =\frac{11 \times 493-66 \times 66}{\sqrt{11 \times 506-(66)^{2}} \sqrt{11 \times 506-(66)^{2}}}=\frac{5423-4356}{\sqrt{1210} \cdot \sqrt{1210}} \\
& =\frac{1067}{1210}=0.882
\end{aligned}
$$

10. Seven methods of imparting business education were ranked by MBA students of two campuses as follows.

Methods of teaching	I	II	III	IV	V	VI	VII
Rank by student of A	2	1	3	5	4	6	7
Rank by student of B	1	3	2	4	7	5	6

Compute Spearman's rank correlation

Solution:

Calculation for spearman's rank correlation

Teaching method	Rank of st A $\left(\mathbf{R}_{\mathbf{A}}\right)$	Rank of std. B $\left(\mathbf{R}_{\mathbf{B}}\right)$	$\mathbf{d}=\mathbf{R}_{\mathbf{A}}-$ $\mathbf{R}_{\mathbf{B}}$	$\mathbf{d}^{\mathbf{2}}$
I	2	1	1	1
II	1	3	-2	4
III	3	2	1	1
IV	5	4	1	1
V	4	7	-3	9
VI	6	5	1	1
VII	7	6	1	1
				$\boldsymbol{\Sigma \mathbf { d } ^ { 2 } =}$
				$\mathbf{1 8}$

$\operatorname{Rank}(\rho)=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)}=1-\frac{6 \times 18}{7 \times 48}=1-\frac{108}{336}=\frac{228}{336}=0.68$
11. From the following data of the martks obtained by 8 students in accountancy and statistics paper, calculate Spearman's rank correlation:

Marks in Accoutancy (X)	25	68	45	50	80	74	50	68
Marks in Statistics (Y)	36	40	57	40	72	75	60	40

Solution:

Calculation of correlation coefficient

X	Y	R_{1}	R_{2}	$\mathrm{~d}=\mathrm{R}_{1}-\mathrm{R}_{2}$	$\mathrm{~d}^{2}$
25	36	8	8	0	0
68	40	3.5	6	-2.5	6.25
45	57	7	4	3	9
50	40	5.5	6	-0.5	0.25
80	72	1	2	-1	1
74	75	2	1	1	1
50	60	5.5	3	2.5	6.25
68	40	3.5	6	-2.5	6.25
					$\sum \mathrm{~d}^{2}=30$

178 Kriti's Principles of Mathematics-XII

$$
\text { Here, } \begin{aligned}
n & =8, m_{1}=2, m_{2}=2, m_{3}=3 R=? \\
\text { Now, } R & =1-\frac{6\left\{\sum d^{2}+\frac{m_{1}\left(m_{1}^{2}-1\right)}{12}+\frac{m_{2}\left(m_{2}^{2}-1\right)}{12}+\frac{m_{3}\left(m_{3}^{2}-1\right)}{12}\right\}}{N\left(N^{2}-1\right)} \\
& =1-\frac{6\left\{30+\frac{2(4-1)}{12}+\frac{2(4-1)}{12}+\frac{3(9-1)}{12}\right\}}{8(64-1)} \\
& =1-\frac{6(30+0.5+0.5+2)}{8 \times 63}=\frac{504-198}{504}=\frac{306}{504}=0.60
\end{aligned}
$$

EXERCISE 13.2

1. From the following results, find the regression coefficients.
a. $\sigma_{x}=20, \sigma_{y}=15, r=0.48$
b. $\sigma_{\mathrm{x}}=8, \sigma_{\mathrm{y}}=10, r=-0.6$

Solution:

a. Here, $\sigma_{x}=20, \sigma_{y}=15, r=0.48$

The regression coefficients are $b_{y x}=r \frac{\sigma_{y}}{\sigma_{x}}=0.48 \times \frac{15}{20}=0.36$
and $b_{x y}=r \frac{\sigma_{x}}{\sigma_{y}}=0.48 \times \frac{20}{15}=0.64$
b. $\sigma_{x}=8, \sigma_{y}=10, r=-0.6$

The regression coefficients are $b_{y x}=r \frac{\sigma_{y}}{\sigma_{x}}=-0.6 \times \frac{10}{8}=-0.75$ and $b_{x y}=r \frac{\sigma_{x}}{\sigma_{y}}=-0.6 \times \frac{8}{10}=-0.48$
2. Find the correlation coefficient between the two various under the following condition (if possible)
a. $b_{x y}=1.8$ and $b_{y x}=0.35$
b. $b_{y x}=0.84$ and $b_{x y}=1.15$
c. The two regression coefficients are 1.36 and 0.8 .

Solution:

a. Here, $b_{y x}=0.35, b_{x y}=1.8$

Now, correlation coefficient $(r)=\sqrt{b_{y x} \cdot b_{x y}}=\sqrt{0.35 \times 1.8}=\sqrt{0.63}=0.7937$
b. We have, $\Sigma x=60, \Sigma y=40, \Sigma x y=1150$
$\Sigma x^{2}=4160, \Sigma y^{2}=1720, N=10$
Here, $b_{y x}$

$$
=\frac{N \Sigma x y-\Sigma x \Sigma y}{N \Sigma x^{2}-(\Sigma x)^{2}}=\frac{10 \times 1150-60 \times 40}{10 \times 4160-(60)^{2}}=\frac{11500-2400}{4160-3600}=\frac{9100}{38000}=0.2394
$$

$b_{x y}=\frac{N \Sigma x y-\Sigma x \Sigma y}{N \Sigma y^{2}-(\Sigma y)^{2}}=\frac{10 \times 1150-60 \times 40}{10 \times 1720-(40)^{2}}=\frac{9100}{15600}=0.5833$
And, $\bar{x}=\frac{\Sigma x}{N}=\frac{60}{10}=6, \bar{y}=\frac{\Sigma y}{N}=\frac{40}{10}=4$
Now, Regression equation of y on x is,
$y-\bar{y}=b_{y x}(x-\bar{x})$
$\Rightarrow \mathrm{y}-4=0.2394(\mathrm{x}-6)$
$\Rightarrow \mathrm{y}-4=0.2394 \mathrm{x}-1.4364$
$\Rightarrow \mathrm{y}=2.5636+0.2394 \mathrm{x}$

Regression equation of x on y is,
$x-\bar{x}=b_{x y}(y-\bar{y})$
$\Rightarrow \mathrm{x}-6=0.5833(\mathrm{Y}-4)$
$\Rightarrow x-6=0.5833 y-2.3332$
$\Rightarrow x=3.6668+0.5833 y$
And, the correlation coefficient is
$r=\sqrt{b_{y x} \times b_{x y}}=\sqrt{0.2394 \times 0.5833}=\sqrt{0.1396}=0.3736$
c. We have,
$b_{y x}=2.002, b_{x y}=-0.461, \bar{x}=87.2$,
$\bar{y}=127.2$
\therefore Correlation coefficient is, $r=\sqrt{-2.002 \times-0.461}=-0.9606$
Since $b_{y x}<0, b_{x y}<0$ and $r>0$
3. a. On the basis of the given information find the regression coefficient of X on Y

$$
\begin{array}{lll}
\sum X Y=750 & \sum X^{2}=2085 & \sum Y^{2}=285 \\
\sum X=135 & \sum Y=45 & N=9
\end{array}
$$

b. Find the regression equations from the following data.
$\Sigma X=60, \Sigma Y=40, \Sigma X Y=1150$,
$\Sigma X^{2}=4160, \quad \Sigma Y^{2}=1720, N=10$
Also find the correlation coefficient between X and Y.
c. Regression coefficient of Y on X and X on Y are given as -2.002 and -0.461 . Find the value of correlation coefficient between X and Y. If mean of X and Y are 87.2 and 127.2, estimate X when $\mathrm{Y}=133$.
d. Find the most likely price in Kathmandu corresponding to the price of Rs. 70 at Birgunj from the following data:

Average price in Birgunj	Rs. 65
Average price in Kathmandu	Rs. 67
Standard deviation of Birgunj price	2.5
Standard deviation of Kathmandu price	3.5
Correlation co-efficient between the price in two cities	+0.08

Solution:

a. Here, $\Sigma x y=750, \Sigma x^{2}=2085, \Sigma y^{2}=285, \Sigma x=135, \Sigma y=45, N=9$

Now, The regression coefficient of x only is
$\mathrm{b}_{\mathrm{xy}}=\frac{\mathrm{n} \sum \mathrm{xy}-\sum \mathrm{x} . \sum \mathrm{y}}{\mathrm{n} \sum \mathrm{y}^{2}-\left(\sum \mathrm{y}\right)^{2}}=\frac{9 \times 750-135 \times 45}{9 \times 285-(45)^{2}}=\frac{6750-6075}{2565-2025}=\frac{675}{540}=1.25$
b. Here, $\sum x=60, \sum y=40, \sum x y=1150, \sum x^{2}=4160, \sum y^{2}=1720, n=10$

Now, the point through which the regression lines intersect to each other is
$(\bar{x}, \bar{y})=\left(\frac{\sum x}{n}, \frac{\sum y}{n}\right)=\left(\frac{60}{10}, \frac{40}{10}\right)=(6,4)$
Since the equation of regression line of y on x is
$y-\bar{y}=b_{y x}(x-\bar{x}) \ldots \ldots \ldots$ (i) and x on y is
$x-\bar{x}=b_{x y}(y-\bar{y})$
(ii) where
$b_{y x}=\frac{n \sum x y-\sum x \cdot \sum y}{n \sum x^{2}-\left(\sum x^{2}\right)}=\frac{10 \times 1150-60 \times 40}{10 \times 4160-60^{2}}=\frac{11500-2400}{41600-3600}=\frac{9100}{38000}=0.239$
and $b_{x y}=\frac{n \sum x y-\sum x . \sum y}{n \sum y^{2}-\left(\sum y\right)^{2}}=\frac{10 \times 1150-60 \times 40}{10 \times 1720-40^{2}}=\frac{9100}{15600}=0.583$

Hence, from (i) and (ii), the required equations are

$$
y-4=0.239(x-6)
$$

or, $y=2.566+0.239 x$
and $x-6=0.583(y-4)$
or, $x=3.668+0.583 y$
Also, correlation coefficient $(r)=\sqrt{b_{y x} \cdot b_{x y}}=\sqrt{0.239 \times 0.583}=\sqrt{0.139337}=$ 0.373
c. Here, $b_{y x}=-2.002$ and $b_{x y}=-0.461$

Now, $r=\sqrt{b_{y x} \cdot b_{x y}}=\sqrt{-2.002 \times-0.461}=\sqrt{0.922922}=-0.9607$
Also, $\bar{x}=87.2, \bar{y}=127.2, y=133, x=$?
Using, $x-\bar{x}=b_{x y}(y-\bar{y})$,
or, $x-87.2=-0.461(y-127.2)$
or, $x-87.2=-461(133-127.2)$
or, $x-87.2=-2.6738$
or, $x=84.5262$
d. Let average price in Birgunj $(\bar{x})=$ Rs. 65

Average price in Kathmandu ($\overline{\mathrm{y}}$) $=$ Rs. 67
$\sigma_{x}=2.5, \sigma_{y}=3.5, r=0.08$
Now, $b_{y x}=r \cdot \frac{\sigma_{y}}{\sigma_{x}}=0.08 \times \frac{3.5}{2.5}=0.112$
The equation of regression line of y on x is
$y-\bar{y}=b_{y x}(x-\bar{x})$
or, $y-67=0.112(x-65)$
or, $y-67=0.112 x-7.28$
or, $y=59.72+0.112 x$
If $x=$ Rs. 70 , then $y=59.72+0.112 \times 70=$ Rs. 67.56
4. From the following pair of regression equations, find the regression coefficients, correlation coefficients and the means of x and y series.
a. $3 x+2 y-26=0 ; 6 x+y-31=0$
b. $3 x+4 y=65,3 x+y=32$

Solution:

a. Here, the regression equations ae $3 x+2 y-26=0 ; 6 x+y-31=0$
or, $2 y=-3 x+26$ and $6 x=-y+31$
or, $y=\frac{-3}{2} x+13, x=-\frac{1}{6} y+\frac{31}{6}$
Implies the regression coefficient as $b_{y x}=-\frac{3}{2}$ and $b_{x y}=-\frac{1}{6}$
Now, correlation coefficient $(r)=\sqrt{b_{y x} \cdot b_{x y}}=\sqrt{\frac{-3}{2} \times-\frac{1}{6}}=-0.5$
After solving the given equations, we get the intersection point $(x, y)=(4,7)$
i.e, means of $x=\bar{x}=4$ and means of $y=\bar{y}=7$
b. We have, the given two regression equations are
$3 x+4 y=65$ and $3 x+y=31$
Since (\bar{x}, \bar{y}) lies on the given regression lines.
$3 \bar{x}+4 \bar{y}=65$ \qquad
$3 \bar{x}+\bar{y}=32$ \qquad
Subtracting (ii) from (i), we get
$3 \bar{y}=33$
$\bar{y}=11$
from (i), $3 \overline{\mathrm{x}}+4 \times 11=65 \Rightarrow 3 \overline{\mathrm{x}}=65-44=21$
$\overline{\mathrm{x}}=7$
$\bar{y}=11$
For the regression coefficients, we have
$3 x+4 y=65$
$\Rightarrow 4 y=65-3 x$
$y=\frac{65}{4}-\frac{3}{4} x$ which is in the form of $y=a+b x$; where

$$
b=-\frac{3}{4} \therefore b=b_{y x}=-\frac{3}{4}
$$

Again, we have,
$3 x+y=32$
$\Rightarrow 3 \mathrm{x}=32-\mathrm{y}$
$x=\frac{32}{3}-\frac{1}{3} y$ which is in the form of $x=a+b y$; where $b=-\frac{1}{3}$
$b=b_{x y}=-\frac{1}{3}$
Correlation coefficient $(r)=\sqrt{b_{x y}+b_{x y}}= \pm \sqrt{-\frac{3}{4} \times-\frac{1}{3}}$
$r=-\frac{1}{2}$
5. a. The regression coefficient of x on y and y on x are 1.5 and 0.65 respectively. If the arithmetic's mean \bar{x} and \bar{y} are 36 and 52 respectively, find the two regression equations. Also find the value of y when $\mathrm{x}=60$.

Solution.

Here, $b_{x y}=1.5, b_{y x}=0.65$
$\bar{x}=36$ and $\bar{y}=52$
Regression equation of y on x is
$y-\bar{y}=b_{y x}(x-\bar{x})$
$\Rightarrow y-52=0.65(x-36)$
$\Rightarrow \mathrm{y}=0.65 \mathrm{x}-23.4+52$
$y=0.65 x+28.6$
And, the regression equation of x on y is
$x-\bar{x}=b_{x y}(y-\bar{y})$
$x-36=1.5(y-52)$
$\mathrm{x}=1.5 \mathrm{y}-78+36$
$\mathrm{x}=1.5 \mathrm{y}-42$
When $x=60$ then from (i),
$y=0.65 \times 60+28.6=67.6$
b. Given the following, $\bar{x}=20, \bar{y}=120(\text { C.V. })_{x}=25,(\text { C.V. })_{y}=28.83, r=0.8$. Find x when $\mathrm{y}=150$.

Solution:

b. Given, $\bar{x}=20, \bar{y}=120, \operatorname{cov}_{\mathrm{x}}=25, \operatorname{cov}_{\mathrm{y}}=28.83, r=0.8, x=$? if $y=150$
$\operatorname{cov}_{\mathrm{x}}=25$, then $25=\frac{\sigma_{\mathrm{x}}}{\overline{\mathrm{x}}} \times 100$
or, $\frac{25 \times 20}{100}=\sigma_{x}$
or, $\sigma_{x}=5$
$\operatorname{Cov}_{\mathrm{y}}=28.83 \Rightarrow 28.83=\frac{\sigma_{y}}{\bar{y}} \times 100$
or, $\frac{28.83 \times 120}{100}=\sigma_{y}$
or, $\sigma_{y}=34.596$
$\therefore \quad b_{x y}=r \frac{\sigma_{x}}{\sigma_{y}}=0.8 \times \frac{5}{34.596}=0.1156$
Now, the equation of regression line of x on y is
$x-\bar{x}=b_{x y}(y-\bar{y})$
or, $x-20=0.1156(y-120)$
or, $x=0.1156 y-13.872+20$
$\therefore \quad x=0.1156 y+6.128$
when $y=150, x=0.1156 \times 150+6.128=23.46$
6. From the following results, obtain the two regression equations and estimate the yield, when the rainfall is 29 cms and the rainfall, when the yield is 600 kg :

	Yield in kg.(Y)	Rainfall in cms.(X)
Mean	508.4	26.7
Standard deviation	36.8	4.6

Coefficient of correlation between yield and rainfall is +0.52 .

Solution:

Here, average of rainfall $(\bar{x})=26.7 \mathrm{~cm}$
Average of yield $(\bar{y})=508.4 \mathrm{~kg}$
$\sigma_{x}=4.6, \sigma_{y}=36.8, r=0.52$
For x on y :
$b_{x y}=r \frac{\sigma_{x}}{\sigma_{y}}=0.52 \times \frac{4.6}{36.8}=0.065$
So, the equation is $x-\bar{x}=b_{x y}(y-\bar{y})$
or, $x-26.7=0.065(y-508.4)$
or, $x-26.7=0.065 y-33.046$
or, $x=0.065 y-6.346$
When yield $(y)=600 \mathrm{~kg}, \mathrm{x}=0.065 \times 600-6.346=32.654 \mathrm{~cm}$
For y on x
$b_{y x}=r \frac{\sigma_{y}}{\sigma_{x}}=0.52 \times \frac{36.8}{4.6}=4.16$
So, the equation is $y-\bar{y}=b_{y x}(x-\bar{x})$
or, $y-5084=4.16(x-26.7)$
or, $y-5084=4.16 x-111.072$
or, $y=4.16 x+397.328$
When rainfall $(x)=29 \mathrm{~cm}$
$y=4.16 \times 29+397.328=517.968 \mathrm{~kg}$
7. The advertisement expenses and sales of a new product are recorded as below:

Adv. \exp (Rs. '000)	1	5	6	8	10
Sales (Rs. '000)	50	60	80	100	110

Estimate the sales when advertising expenses is Rs. 15000.

Solution:

\mathbf{x}	\mathbf{y}	$\mathbf{x y}$	\mathbf{x}^{2}
1	50	50	1
5	60	300	25
6	80	480	36
8	100	800	64
10	110	1100	100
$\sum x=30$	$\sum y=400$	$\sum x y=2730$	$\sum x=226$

Here, $\bar{x}=\frac{\sum x}{n}=\frac{30}{5}=6$ and $\bar{y}=\frac{\sum y}{n}=\frac{400}{5}=80$
$b_{y x}=\frac{n \sum x y-\sum x \sum y}{n \sum x^{2}-\left(\sum x\right)^{2}}=\frac{5 \times 273-30 \times 400}{5 \times 226-(30)^{2}}=\frac{13650-12000}{1130-900}=\frac{1650}{230}=7.174$
The regression equation of y on x is
$y-\bar{y}=b_{y x}(x-\bar{x})$
or, $y-80=7.174(x-6)$
or, $y-80=7.174 x-43.04$
or, $y=7.174 x+36.96$
When advertising expenses is Rs. 15000 i.e. $x=15$,
$y=7.174 \times 15+36.96=144.57$ thousands
\therefore Estimated sales is Rs. 144570.
8. Find the regression of X on Y from the following data:

X	2	4	5	6	8	11
Y	18	12	10	8	7	5

Estimate the value of X when $\mathrm{Y}=12$.

Solution:

Calculation regression equation of x on y

x	y	x^{2}	y^{2}	$x y$
2	18	4	324	36
4	12	16	144	48
5	10	25	100	50
6	8	36	64	48
8	7	64	49	56
11	5	121	25	55
36	60	266	706	293

Here, $\bar{x}=\frac{\Sigma x}{n}$ and $\bar{y}=\frac{\Sigma y}{n}$
$\Rightarrow \bar{x}=\frac{36}{6}$ and $\bar{y}=\frac{60}{6}$
$\therefore \overline{\mathrm{x}}=6 \quad \therefore \overline{\mathrm{y}}=10$
Again, $b_{x y}=\frac{n \Sigma x y-\Sigma x \Sigma y}{n \Sigma y^{2}-(\Sigma y)^{2}}=\frac{6 \times 293-36 \times 60}{6 \times 706-(60)^{2}}=\frac{1758-2160}{4236-3600}=\frac{-402}{636}=-0.6320$
\therefore Regression equation of x on y is,
$x-\bar{x}=b_{x y}(y-\bar{y})$
$\Rightarrow \mathrm{x}-6=-0.6320(\mathrm{y}-10)$
$\Rightarrow x-6=-0.6320 y+6.32$
$\therefore \quad \mathrm{x}=12.32-0.6320 \mathrm{y}$
When $\mathrm{y}=12$ then $\mathrm{x}=12.32-0.6320 \times 12$
$\therefore \quad x=4.736$
9. While calculating the coefficient of correlation between two varioushes x and y the following results were obtained.
The number of observations $n=25, \Sigma x=125, \Sigma y=100, \Sigma x^{2}=650, \Sigma y^{2}=460$, $\Sigma x y=508$. It was however, later discovered at the time of checking that two pairs of observations (x, y) were copied $(6,14)$ and $(8,6)$ while the correct values were $(8,12)$ and $(6,8)$ respectively. Determine the correct value of coefficient of correlation. However find the correct equation of the two lines of regression.

Solution:

Here, $n=25, \Sigma x=125, \Sigma y=100, \Sigma x^{2}=650, \Sigma y^{2}=460, \Sigma x y=508$
But $(8,12)$ and $(6,8)$ were copied wrong as $(6,14)$ and $(8,6)$ respectively.
So, correct values are
$\mathrm{n}=25, \sum \mathrm{x}=125+8-6+6-8=125$
$\sum y=100+12-14+8-6=100$
$\sum x^{2}=650+8^{2}-6^{2}+8^{2}=650$
$\sum y^{2}=460+12^{2}-14^{2}+8^{2}-6^{2}=436$
$\sum x y=508+8 \times 12+6 \times 8-6 \times 14-8 \times 6=520$
Now, $\mathrm{b}_{\mathrm{xy}}=\frac{\mathrm{n} \sum \mathrm{xy}-\sum \mathrm{x} . \sum \mathrm{y}}{\mathrm{n} \sum \mathrm{y}^{2}-\left(\sum \mathrm{y}\right)^{2}}=\frac{25 \times 520-125 \times 100}{25 \times 436-(100)^{2}}=\frac{13000-12500}{10900-100000}=\frac{5}{9}$
and $b_{y x}=\frac{\mathrm{n} \sum \mathrm{xy}-\sum \mathrm{x} \cdot \sum \mathrm{y}}{\mathrm{n} \sum \mathrm{y}^{2}-\left(\sum \mathrm{y}\right)^{2}}=\frac{25 \times 520-12500}{25 \times 650-(125)^{2}}=\frac{500}{625}=\frac{4}{5}$
Now, coefficient of correlation $(r)=\sqrt{b_{y x} \times b_{x y}}=\sqrt{\frac{5}{9} \times \frac{4}{5}}=\frac{2}{3}$
Now, $\bar{x}=\frac{\sum x}{n}=\frac{125}{25}=5$
$\bar{y}=\frac{\sum y}{n}=\frac{100}{25}=4$
The equation of regression line of x on y is
$x-\bar{x}=b_{x y}(y-\bar{y})$
or, $x-5=\frac{5}{9}(y-4)$
or, $9 x-45=5 y-20$
or, $9 x-5 y=25$
$\therefore 5 y-9 x+25=0$
and the equation of regression line of y on x is
$y-\bar{y}=b_{y x}(x-\bar{x})$
or, $y-4=\frac{4}{5}(x-5)$
or, $5 y-20=4 x-20$
$\therefore 5 y-4 x=0$

CHAPTER 14

PROBABILITY

EXERCISE 14.1

1. A card is drawn at random from well shuffled deck of 52 cards, find the probability that
a. the card is either a club or diamond
b. the card is not a king
c. the card is either a face card or a club card.

Solution:

$\mathrm{n}=$ Total no. of cards $=52$
a. No. of club $=13$

No. of diamond $=13$
$\mathrm{m}=$ No. of possible cases $=13+13=26$
$P($ Either a club or diamond $)=\frac{m}{n}=\frac{26}{52}=\frac{1}{2}$
b. There are four kings
\therefore No. of possible cases $=52-4=48$
$\therefore \quad \mathrm{P}($ Not of king $)=\frac{48}{52}=\frac{12}{13}$
c. There are 12 face cards and 13 club cards.
$\therefore \quad \mathrm{m}=$ no. of cases $=12+13-3=22$
$\therefore P($ Either a face or a club $)=\frac{m}{n}=\frac{22}{52}=\frac{11}{26}$
2. From 20 tickets marked from 1 to 20 , one is drawn at random. Find the probability that
a. It is an odd number
b. A multiple of 4 or 5

Solution:

a. $P($ Odd number $)=$?

Among 20 tickets, there are 10 tickets marked with odd number.
$\therefore P($ Odd number $)=\frac{m}{n}=\frac{10}{20}=\frac{1}{2}$
b. $P(A$ multiple of 4 or 5$)=$?

There are 5 tickets marked with multiple of 4 and 4 tickets marked with multiple of 5 .
$=P($ Multiple of 4$)+P($ multiple of 5$)-P($ Multiple of 4$) \times P($ Multiple of 5$)$
$=\frac{5}{20}+\frac{4}{20}-\frac{5}{20} \times \frac{4}{20}=\frac{2}{5}$
3. A problem in mathematics is given to four students A, B, C, and D their chances of solving it are $1 / 2,1 / 3,1 / 4$ and $1 / 5$ respectively. Find the probability that the problem will
a. be solved
b. not be solved

Solution:

Given that,
$P(A)=$ Probability that A solves the problem $=\frac{1}{2}$
$P(B)=$ Probability that B solves the problem $=\frac{1}{3}$
$P(C)=$ Probability that C solves the problem $=\frac{1}{4}$
$P(D)=$ Probability that D solves the problem $=\frac{1}{5}$
$P(\bar{A})=$ Probability that A not solve the problem $=1-\frac{1}{2}=\frac{1}{2}$
$P(\bar{B})=$ Probability that B not solve the problem $1-\frac{1}{3}=\frac{2}{3}$
$P(\bar{C})=$ Probability that C not solve the problem $=1-\frac{1}{4}=\frac{3}{4}$
$P(\bar{D})=$ Probability that D not solve the problem $=1-\frac{1}{5}=\frac{4}{5}$
a. Probability that A, B, C, D not solve the problem $=\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \frac{4}{5}=\frac{1}{5}$
b. Probability that A, B, C, D solve the problem $=1-\frac{1}{5}=\frac{4}{5}$
4. Suppose 4 cards are drawn from a well-shuffled deck of 52 cards.
a. What is the probability that all 4 are spade?
b. What is the probability that all 4 are black?

Solution:

a. There are 13 spades

Now, $n=$ Total no. of possible cases $=$ No. of selection of 4 cards out of $52={ }^{52} \mathrm{C}_{4}$ $=$ No. of favourable cases $=$ No. of selection of 4 spades out of $13={ }^{13} \mathrm{C}_{4}$ $\mathrm{P}(4$ are spades $)=$?
Now, $\mathrm{P}(4$ are spades $)=\frac{\mathrm{m}}{\mathrm{n}}={ }^{{ }^{13} \mathrm{C}_{4}} \mathrm{C}_{4}=\frac{13!}{9!4!} \times \frac{48!\times 41}{52!}=\frac{11}{4165}$
b. There are 26 black. So, we have to choose 4 black among 26 blacks.

Now, $n=$ Total no. of possible cases
$=$ No. of selection of 4 cards out of $52={ }^{52} \mathrm{C}_{4}$
$\mathrm{m}=$ No. of favourable cases $=$ No. of selection of 4 black out of 26 black $={ }^{26} \mathrm{C}_{4}$
$\mathrm{P}(4$ are black) = ?
Now, $P(4$ are black $)=\frac{m}{n}={ }^{26} \mathrm{C}_{4} \mathrm{C}_{4}=\frac{46}{833}$
5. Two cards drawn successively one after other from well shuffled pack of 52 cards. If the cards are not replaced, find the probability that (a) all of them are kings. (b) one king and other is queen.

Solution:

a. Two cards can be drawn from a pack of 52 playing cards in ${ }^{52} \mathrm{C}_{2}$ ways
i.e. $\frac{52 \times 51}{2}=1326$ ways

The event that two kings appear in a single draw can appear in ${ }^{4} \mathrm{C}_{2}$ ways
\therefore The probability that the two cards drawn from a pack of 52 cards are kings

$$
=\frac{6}{1326}=\frac{1}{221}
$$

b. One king and one queen can be selected as $\frac{4}{52} \times \frac{4}{51}$ ways.

One queen and one king can be selected as $=\frac{4}{52} \times \frac{4}{51}$ ways
Total no. of ways $=\frac{4}{52} \times \frac{4}{51}+\frac{4}{52} \times \frac{4}{51}=\frac{8}{663}$
6. Out of 9 candidates, 6 men and 3 women apply for two vacancies of a manufacturing company what is the probability that one man and one woman are selected in that vacancies?

Solution:

Here, Total no. of candidates $=9$
Total no. of women $=3$
Total no. of men $=6$
\therefore Out of 2 , one man and one woman can be selected in the following ways.
$\therefore m=b c_{1} \times 9 c_{1}$
\therefore Total no. of vacancy can be chosen from total no. of candidates as $n=9 c_{2}$
$\therefore P(1$ man and 1 woman $)=\frac{6 \mathrm{C}_{1} \times 9 \mathrm{C}_{1}}{9 \mathrm{C}_{2}}=\frac{18}{36}=0.5$
7. A bog contains 7 white and 9 black balls two balls are drawn in succession at random with replacement. What is the probability that one of them is white and other is black?

Solution:

Since the bag consists of 7 white and 9 black balls.
\therefore Total balls $=7+9=16$
Total number of possible cases means the number of selection of 2 balls out of 16.

Since, the selection of 1 white and 1 black. So, the number of favourable cases is the selection of balls with 1 white and 1 black
$\therefore \quad \mathrm{m}=$ No. of favourable cases
$=$ No. of selection of 1 white out of 7 and 1 black out of $9={ }^{7} \mathrm{C}_{1} \times{ }^{9} \mathrm{C}_{1}$ $\mathrm{n}=$ Total no. of possible cases $=$ No. of selection of 2 balls out of 16. $={ }^{16} \mathrm{C}_{2}$
$\therefore \quad \mathrm{P}(1$ white and 1 black $)=\frac{\mathrm{m}}{\mathrm{n}}=\frac{{ }^{7} \mathrm{C}_{1} \times{ }^{9} \mathrm{C}_{1}}{{ }^{16} \mathrm{C}_{2}}=\frac{63}{120}$
8. A bag contains 8 red and 6 white balls. Two balls are drawn randomly from the bag one after other without replacement. Find the probability that (a) both balls are white (b) both balls are red (c) one is red and 1 white.

Solution:

There are $6+8=14$ balls (Total)
a. $\quad \mathrm{P}$ (both white) $=$?
$P($ First white $)=\frac{6}{14}$ and $P($ second white $)=\frac{5}{13}$
$P($ Both white $)=\frac{6}{14} \times \frac{5}{13}=\frac{15}{91}$
b. $\quad P($ Both red $)=$?
$P($ First red $)=\frac{8}{14}, P($ Second red $)=\frac{7}{13}$
$\therefore \quad P($ Both red $)=\frac{8}{14} \times \frac{7}{13}=\frac{4}{13}$
c. Since balls are drawn one after another without replacement.
$\mathrm{P}($ One red and one white $)=$?
$\therefore P($ First red $)=\frac{8}{14}, P($ Second white $)=\frac{6}{13}$
$P($ First white $)=\frac{6}{14} P($ Second red $)=\frac{8}{13}$
$\therefore P($ One red and one white $)=\frac{6}{14} \times \frac{8}{13}+\frac{8}{13} \times \frac{6}{13}=\frac{48}{91}$

188 Kriti's Principles of Mathematics-XII

9. If A and B are two events such that $P(A)=0.40, P(B)=0.80$ and $P(B / A)=0.60$. Find $P(A / B)$ and $P(A \cup B)$

Solution:

Given, $P(A)=0.40, P(B)=0.80, P(B / A)=0.60, P(A / B)=? P(A \cup B)=$?
$\therefore P(B / A)=\frac{P(A \cap B)}{P(A)}$
$\Rightarrow P(A \cap B)=P(A) \cdot P(B / A)=0.40 \times 0.60=0.24$
$\therefore P(A / B)=\frac{P(A \cap B)}{P(B)}=\frac{0.24}{0.80}=0.30$

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.40+0.80-0.3=0.90
$$

10. A box contained 6 red and 4 black balls. Two balls are drawn one at a time without replacing the first ball. Compute the following probabilities. $\mathrm{P}\left(\mathrm{B}_{2} / \mathrm{B}_{1}\right)$, $\mathrm{P}\left(\mathrm{R}_{2} / \mathrm{B}_{1}\right)$ and $\mathrm{P}\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)$

Solution:

$P\left(R_{2} / B_{1}\right)=$ Probability of getting a red ball given that the first ball is black.
First black ball
$\mathrm{n}=$ Total no. of possible cases
Total no. of balls $=6+4=10$
$\mathrm{m}=$ No. of favourable cases $=$ No. of black balls $=4$
$P\left(B_{1}\right)=\frac{m}{n}=\frac{4}{10}$

Second Red Ball

One black ball which is drawn is not replaced.
$\mathrm{n}=$ Total no. of possible cases $=$ No. of remaining balls $=6+3=9$
$\mathrm{m}=$ No. of favourable cases $=$ No. of red balls $=6$
$\mathrm{P}\left(\mathrm{R}_{2} / \mathrm{B}_{1}\right) \frac{\mathrm{m}}{\mathrm{n}}=\frac{6}{9}=\frac{2}{3}$
$P\left(R_{1}\right)=$ Probability of getting a red ball $=\frac{m}{n}=\frac{6}{10}$
$P\left(R_{2} / R_{1}\right)$ Probability that second ball is red when first also red $=\frac{m}{n}=\frac{5}{9}$
$\therefore P\left(R_{1} \cap R_{2}\right)=P\left(R_{1}\right) \cdot P\left(R_{2} / R_{1}\right)=\frac{6}{10} \times \frac{5}{9}=\frac{1}{3}$
11. A lot contains 12 items of which 5 are defective. If 5 items are chosen from the lot at random. One after another without replacement. Find the probability that all the five are defective.

Solution:

We have,
No. of total items $=12$
No. of defective items $=5$
\therefore Probability of getting first item defective, $P(A)=\frac{5}{12}$
Since, second item is drawn without replacement of first items.
So, probability of getting second item defective $P(B)=\frac{4}{11}$
Similarly,
Probability of getting $3^{\text {rd }}$ item defective, $P(C)=\frac{3}{10}$

Probability of getting $4^{\text {th }}$ item defective, $P(D)=\frac{2}{9}$
Probability of getting $5^{\text {th }}$ item defective, $P(E)=\frac{1}{8}$
Probability of getting all items defective
$=P(A) \times P(B) \times P(C) \times P(D) \times P(E)=\frac{5}{12} \times \frac{4}{11} \times \frac{3}{11} \times \frac{1}{9} \times \frac{1}{8}=\frac{1}{792}$
12. A bag contains 3 white, 2 black and 4 red balls. Two balls are drawn, the first replaced before the second is drawn, what is the probability that
a. They will be of same colour?
b. They will be of different colour?

Solution:

We have,
No. of white balls $=3 \quad$ No. of black balls $=2$
No. of red balls $=4$
Total no. of balls $=9$
Let $P(W)=$ Probability of getting a white ball $=\frac{3}{9}=\frac{1}{3}$
$P(B)=$ Probability of getting black ball $=\frac{2}{9}$
$P(R)=$ Probability of getting red ball $=\frac{4}{9}$
a. $\quad \mathrm{P}($ They will be of same colour $)=\mathrm{P}(W W$ or $B B$ or RR $)$

$$
\begin{aligned}
& =P(W W)+P(B B)+P(R R) \\
& =P(W) \times P(W)+P(B) \times P(B)+P(R) \times P(R) \\
& =\frac{1}{3} \times \frac{1}{3}+\frac{2}{9} \times \frac{2}{9}+\frac{4}{9} \times \frac{4}{9}=\frac{29}{81}
\end{aligned}
$$

b. Probability of getting different colours, there should be either WB or BW or BR or RB or WR or RW
$\therefore \mathrm{P}$ (That they are of different colour)
$=P(W B$ or $B W$ or BR or RB or WR or RW)
$=P(W) \times P(B)+P(B) \times P(W)+P(B) \times P(R)+P(W) \times P(R)+P(R) \times P(W)$
$=\frac{1}{3} \times \frac{2}{9}+\frac{2}{9} \times \frac{1}{3}+\frac{2}{9} \times \frac{4}{9}+\frac{4}{9} \times \frac{2}{9}+\frac{1}{3} \times \frac{4}{9}+\frac{4}{9} \times \frac{1}{3}=\frac{52}{81}$

EXERCISE 14.2

1. For a binomial distribution if mean $=25$ and variance $=5$, find the value of p and q.

Solution:

We have, mean $=n p=25 \ldots \ldots \ldots$ (i)
Variance $=n p q=5 \ldots \ldots \ldots$ (ii)
from (i) and (ii)
$25 q=5$
or, $q=\frac{5}{25}=\frac{1}{5}$
$\therefore p=1-q=1-\frac{1}{5}=\frac{4}{5}$
Hence, $p=\frac{4}{5}, q=\frac{1}{5}$
2. In a binomial distribution, find the mean and the standard deviation, if $p=\frac{3}{5}$ and $\mathrm{n}=50$.

Solution:

We have, $\mathrm{p}=\frac{3}{5}, \mathrm{n}=50$
$\therefore q=1-p=1-\frac{3}{5}=\frac{2}{5}$
$\therefore \quad$ Mean $=n p=50 \times \frac{3}{5}=30$
$S . D=\sqrt{n p q}=\sqrt{50 \times \frac{3}{5} \times \frac{2}{5}}=2 \sqrt{3}$
3. Determine the binominal distribution for which the mean is 4 and standard deviation is $\sqrt{3}$.

Solution:

We have, mean $=n p=4$
S.D. $=\sqrt{\mathrm{npq}}=\sqrt{3}$
or, $n p q=3$
\therefore from (i) and (ii)
$4 q=3$
$\Rightarrow q=\frac{3}{4}$
$\therefore p=1-q=1-\frac{3}{4}=\frac{1}{4}$
\therefore from (i), $\mathrm{n} \times \frac{1}{4}=4 \Rightarrow \mathrm{n}=16$
$\therefore \quad$ Binomial distribution $=(q+p)^{n}=\left(\frac{3}{4}+\frac{1}{4}\right)^{16}$
4. It is found that mean and variance of a binomial distribution are 7 and 11 respectively. Comment on the result.

Solution:

We have,

Mean = np = 7
Variance $=n p q=11$
\therefore from (i) and (ii)

$$
\begin{equation*}
7 \times q=11 \tag{ii}
\end{equation*}
$$

or, $q=\frac{11}{7}=1.57>1$
Since, q is probability of failture, which cannot be greater than 1 . So, the given statement is not correct.
5. Four coins are tossed simultaneously, what is the probability of getting
a. 2 heads and 2 tails
b. at least two heads
c. at least one head

Solution:

Here, $p=$ probability of getting ahead $=\frac{1}{2}$
$q=$ probability of getting a tail $=\frac{1}{2}$
$\mathrm{n}=$ no. of trials $=4$
$p(r)=$ probability of r success in n trials $=n_{c_{r}} p^{r} q^{n-r}$
a. $\mathrm{p}(2)=$ probability of 2 heads in 4 trials $={ }^{4} \mathrm{C}_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{4-2}=\frac{4 \times 3}{2} \cdot \frac{1}{4} \cdot \frac{1}{4}=\frac{3}{8}$
b. $p($ at least two heads $)=p(2)+p(3)+p(4)=4_{c 2} p^{2} q^{2}+4_{c 3} p^{3} q+4_{c 4} p^{4}$

$$
=\frac{4 \times 3}{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{2}+4\left(\frac{1}{2}\right)^{3} \frac{1}{2}+1\left(\frac{1}{2}\right)^{4}=\frac{11}{16}
$$

c. $P($ lat least one head $)=p(1)+p(2)+p(3)+p(4)$
$={ }^{4} \mathrm{C}_{1} \mathrm{p} 1 \mathrm{q}^{3}+{ }^{4} \mathrm{C}_{2} \mathrm{p}^{2} \mathrm{q}^{2}+{ }^{4} \mathrm{C}_{3} \mathrm{p}^{3} \mathrm{q}+{ }^{4} \mathrm{C}_{4} \mathrm{p}^{4}$
$={ }^{4} \mathrm{C}_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{3}+{ }^{4} \mathrm{C}_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{2}+{ }^{4} \mathrm{C}_{3}\left(\frac{1}{2}\right)^{3} \frac{1}{2}+1 .\left(\frac{1}{2}\right)^{4}=\frac{1}{4}+\frac{11}{16}=\frac{15}{16}$
6. A die is thrown 4 times. Getting 3 or 6 is considered to be a success. Find the probability of getting
a. at least one success
b. exactly two success.

Solution:

Let p be the probability of getting 3 or 6 .
$\therefore p=\frac{2}{6}=\frac{1}{3}, q=1-p=1-\frac{1}{3}=\frac{2}{3}$

$$
\mathrm{n}=\text { no. of trials }=4
$$

Now, probability of r success out of n trials is given by

$$
p(r)=n_{c r} p^{r} q^{n-r}=4_{c_{r}}\left(\frac{1}{3}\right)^{r} \cdot\left(\frac{1}{3}\right)^{4-r}=r \frac{1}{81} 4_{c r}
$$

a. Probability of getting at least one success $=p(\geq 1)=p(1)+p(2)+p(3)+p(4)$

$$
={ }^{4} C_{1} p^{1} q^{4-1}+{ }^{4} C_{2} p^{2} q^{4-2}+{ }^{4} C_{3} p^{3} p^{4-3}+{ }^{4} C_{4} p^{4} q^{4-4}
$$

$=\frac{4!}{3!1!}\left(\frac{1}{3}\right)^{1}\left(\frac{2}{3}\right)^{3}+\frac{4!}{2!2!}\left(\frac{1}{3}\right)^{2}\left(\frac{2}{3}\right)^{2}+\frac{4!}{3!1!}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{1}+\frac{4!}{0!4!}\left(\frac{1}{3}\right)^{4}$
$=\frac{4 \times 8}{81}+\frac{6 \times 4}{81}+\frac{4 \times 2}{81}+\frac{1}{81}=\frac{65}{81}$
b. Probability of exactly two success $=p(2)$

$$
=4_{c 2} p^{2} q^{2}=\frac{4!}{2!2!}\left(\frac{1}{3}\right)^{2}\left(\frac{2}{3}\right)^{2}=\frac{4 \times 3}{2} \times \frac{4}{81}=\frac{8}{27}
$$

7. From a pack of 52 cards five cards are drawn successively with replacement.

Find the probability that
a. all cards are diamond
b. only three are diamond
c. none is diamond

Solution:

Let X represents the number of diamond cards among the five cards drawn.
Since the drawing off cards is with replacement, the trials are Bornouli trial.
In a well-shuffled deck of 52 cards, there are 13 diamond cards.
$\Rightarrow \mathrm{p}=\frac{13}{52}=\frac{1}{4}, \mathrm{q}=1-\frac{1}{4}=\frac{3}{4}$
X has a Binomial distribution with $n=5$ and $p=\frac{1}{4}$
$\therefore p(x=x)={ }^{n} C_{x} p^{x} q^{n-x}$, where $x=0,1,2, \ldots n={ }^{5} C_{x}\left(\frac{3}{4}\right)^{5-x}\left(\frac{1}{4}\right)^{x}$
a. $p($ all 5 cards ae diamond $)=p(x=5)={ }^{5} C_{5}\left(\frac{3}{4}\right)^{0}\left(\frac{1}{4}\right)^{5}=\frac{1}{1024}$
b. $p($ only 3 cards ae diamond $)=p(x=3)={ }^{5} C_{3}\left(\frac{3}{4}\right)^{2}\left(\frac{1}{4}\right)^{3}=\frac{45}{512}$
c. $p($ none is spade $)=p(x=0)={ }^{5} C_{0}\left(\frac{3}{4}\right)^{5}\left(\frac{1}{4}\right)^{0}=\frac{243}{1024}$
8. Ten coins are tossed simultaneously. Find the probability of getting
a. exactly six heads
b. at least seven heads
c. not more than 3 heads.

Solution:

Let $p=$ the event of getting a head 10 coins being tossed simultaneously is the same as one coin being tossed 10 times.

$$
p(x=r)={ }^{10} C_{r} p^{r} \cdot q^{n-r}={ }^{10} C_{r}\left(\frac{1}{2}\right)^{10}
$$

a. $p($ exactly 6 heads $)={ }^{10} C_{6}\left(\frac{1}{2}\right)^{10}=\frac{10!}{6!4!} \times \frac{1}{1024}=\frac{105}{512}$
b. $p($ at least 7 heads $)=p(7$ heads or 8 heads or 9 heads or 10 heads)

$$
\begin{aligned}
& =1-[p(x=0)+p(x=1)+p(x=2)+p(x=3)+p(x=4)+p(x=5)+p(x=6)]\left(\frac{1}{2}\right)^{10} \\
& =1-(1+10+45+120+210+252+210) \frac{1}{1024}=\frac{176}{1024}
\end{aligned}
$$

c. $p($ not more than 3 heads $)=p(x \leq 3)$

$$
=p(x=0)+p(x=1)+p(x=2)+p(x=3)
$$

$$
=\left({ }^{10} \mathrm{C}_{0}+{ }^{10} \mathrm{C}_{1}+{ }^{10} \mathrm{C}_{2}+{ }^{10} \mathrm{C}_{3}\right) \cdot\left(\frac{1}{2}\right)^{10}=(1+10+45+120) \cdot \frac{1}{1024}=\frac{11}{64}
$$

9. If 4 dice are thrown, what is the probability of getting
a. no sixes
b. exactly 1 six
c. exactly two sixes.

Solution:

Given, Probability of getting a six in one throw $(p)=\frac{1}{6}$
$\therefore q=1-p=\frac{5}{6}$
No. of trials $(\mathrm{n})=4$
Now, probability of r success in 4 trials is given by

$$
\begin{equation*}
p(r)=n_{c r} p^{r} \cdot q^{n-r}={ }^{4} C_{r}\left(\frac{1}{6}\right)^{r} \cdot\left(\frac{5}{6}\right)^{4-r} \tag{i}
\end{equation*}
$$

a. $p(n o \operatorname{six})=p(0)={ }^{4} C_{0}\left(\frac{1}{6}\right)^{0}\left(\frac{1}{6}\right)^{4-0}=\frac{625}{1296}$
b. $\mathrm{p}($ exactly 1 six$)=\mathrm{p}(1)={ }^{4} \mathrm{C}_{\mathrm{x}}\left(\frac{1}{6}\right)^{1}\left(\frac{5}{6}\right)^{4-1}=\frac{125}{324}$
c. $p($ exactly two sixes $)=p(2)={ }^{4} C_{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{4-2}=\frac{25}{216}$
10. The overall percentage of failures in a certain exam is 40 . What is the probability that out of a group of 6 candidates at least 4 passed the examination?

Solution:

Probability of fail $=\frac{40}{100}=\frac{2}{5}=q \quad$ Probability of pass $=1-\frac{2}{5}=\frac{3}{5}=p$
$\mathrm{n}=6, \mathrm{q}=\frac{2}{5}$
$\mathrm{x} \rightarrow$ R.V.

We have Binomial condition,
$P(x=r)={ }^{n} C_{r} p^{r} \cdot q^{n-r}$
$p(x \geq 4)=$?
$\therefore p(x \geq 4)=p(x=4)+p(x=5)+p(x=6)$

$$
\begin{aligned}
& ={ }^{6} \mathrm{C}_{4}\left(\frac{3}{4}\right)^{4}\left(\frac{2}{5}\right)^{4}+{ }^{6} \mathrm{C}_{5}\left(\frac{3}{5}\right)^{5}\left(\frac{2}{5}\right)+{ }^{6} \mathrm{C}_{6}\left(\frac{3}{5}\right)^{6}\left(\frac{2}{5}\right)^{0} \\
& =\frac{6!}{4!2!} \times \frac{3^{4} \times 2^{2}}{5^{6}}+\frac{6!}{5!1!} \times \frac{3^{5} \times 2}{5^{6}}+\frac{6!}{6!} \times \frac{3^{6}}{5^{6}}=\frac{1701}{3125}
\end{aligned}
$$

11. Suppose that in a city 60% of all recorded births are male. If we select ten births from the population, what will be the probability that
a. none of them is male
b. exactly three of them are male
c. more than four are male.

Solution:

Given, $p=60 \%=\frac{60}{100}=\frac{3}{5}$
$\therefore q=-1-P=1-\frac{3}{5}=\frac{2}{5}$
$\mathrm{n}=$ number of trials $=10$
Now, probability of r successes in 10 trials is given by

$$
p(r)={ }^{10} C_{r} p^{r} \cdot q^{10-r}={ }^{10} C_{r}\left(\frac{3}{5}\right)^{r}\left(\frac{2}{5}\right)^{10}
$$

a. $P($ None of them male $)=p(0)={ }^{10} \mathrm{C}_{0}\left(\frac{3}{5}\right)^{0}\left(\frac{2}{5}\right)^{10-r}=\frac{10!}{0!10!} \times 1 \times \frac{2^{10}}{5^{10}}=0.0001049$
b. $P($ Exactly three male $)=p(3)={ }^{10} C_{3}\left(\frac{3}{5}\right)^{3}\left(\frac{2}{5}\right)^{10-3}=\frac{10!}{7!3!} \times \frac{3^{3} \times 2^{7}}{5^{3} \times 5^{7}}=0.04246$
c. $P($ More than 4 are male $)=P(r>4)=p(5)+p(6)+p(7)+p(8)+p(9)+p(10)$

$$
\begin{aligned}
= & { }^{10} \mathrm{C}_{5}\left(\frac{3}{5}\right)^{5}\left(\frac{2}{5}\right)^{10-5}+{ }^{10} \mathrm{C}_{6}\left(\frac{3}{5}\right)^{6}\left(\frac{2}{5}\right)^{10-6}+{ }^{10} \mathrm{C}_{7}\left(\frac{3}{5}\right)^{7}\left(\frac{2}{5}\right)^{10-7}+{ }^{10} \mathrm{C}_{8}\left(\frac{3}{5}\right)^{8} \\
& \left(\frac{2}{5}\right)^{10-8}+{ }^{10} \mathrm{C}_{9}\left(\frac{3}{5}\right)^{9}\left(\frac{2}{5}\right)^{10-9}+{ }^{10} \mathrm{C}_{10}\left(\frac{3}{5}\right)^{10}\left(\frac{2}{5}\right)^{0} \\
= & \frac{10!}{5!5!}\left(\frac{3}{5}\right)^{5}\left(\frac{2}{5}\right)^{5}+\frac{10!}{6!4!}\left(\frac{3}{5}\right)^{9}+\frac{10!}{3!7!}\left(\frac{3}{5}\right)^{7}\left(\frac{2}{5}\right)^{3}+\frac{10!}{8!2!}\left(\frac{3}{5}\right)^{8}\left(\frac{2}{5}\right)^{2} \\
& +\frac{10!}{9!1!}\left(\frac{3}{5}\right)^{9}\left(\frac{2}{5}\right)+\frac{10!}{10!}\left(\frac{3}{5}\right)^{10}=0.9447
\end{aligned}
$$

12. The probability of a man's hitting a target is $\frac{1}{5}$. If he fires 6 times, what is the probability of his hitting the target
a. exactly once
b. exactly twice.

Solution:

Here, $\mathrm{p}=$ Probability off hitting a target $=\frac{1}{5}$

$$
\begin{aligned}
& q=1-p=1-\frac{1}{5}=\frac{4}{5} \quad n=\text { No. of hitting }=6 \\
& p(r)=\text { Probability of } r \text { successful hitting }={ }^{n} C_{r} p^{r} q^{n-r}
\end{aligned}
$$

a. $p($ Exactly once $)=p(1)=$?

$$
={ }^{6} \mathrm{C}_{1}\left(\frac{1}{5}\right)^{1}\left(\frac{4}{5}\right)^{6-1}=\frac{6!}{5!1!} \times \frac{1}{5} \times\left(\frac{4}{5}\right)^{5}=0.3932
$$

b. $\mathrm{p}($ Exactly twice $)=\mathrm{p}(2)={ }^{6} \mathrm{C}_{2}\left(\frac{1}{5}\right)^{2}\left(\frac{4}{5}\right)^{6-2}=\frac{6!}{4!2!} \times\left(\frac{1}{5}\right)^{2} \times\left(\frac{4}{5}\right)^{4}=0.24576$
13. Assume that the probability a bomb dropped from an aeroplane will strike a target is $\frac{1}{4}$. If 5 bombs are dropped, find the probability that
a. none will strike the target
b. exactly three will strike the target
c. at least three will strike the target

Solution:

Given, $\mathrm{p}=$ Probability that a bomb dropped $=\frac{1}{4}$

$$
\begin{aligned}
& q=1-p=1-\frac{1}{4}=\frac{3}{4} \\
& n=\text { no. of dropped }=5
\end{aligned}
$$

a. $\quad P($ None will strike target $)=p(0)=n_{c r} p^{r} q^{n-r}$

$$
={ }^{5} \mathrm{C}_{0}\left(\frac{1}{4}\right)^{0}\left(\frac{3}{4}\right)^{5-3}=\frac{5!}{2!3!} \times\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)^{2}=\frac{243}{1024}
$$

b. $P(3)={ }^{5} C_{3} p^{3} q^{5-3}$

$$
\begin{aligned}
& ={ }^{5} \mathrm{C}_{3}\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)^{2} \\
& =0.0879
\end{aligned}
$$

c. $p($ At least three will strike target $)=p(x \leq 3)$

$$
\begin{aligned}
& =\mathrm{p}(3)+\mathrm{p}(4)+\mathrm{p}(5)={ }^{5} \mathrm{C}_{3}\left(\frac{1}{4}\right)^{3} \cdot\left(\frac{3}{4}\right)^{5-3}+{ }^{5} \mathrm{C}_{4}\left(\frac{1}{4}\right)^{4}\left(\frac{3}{4}\right)^{5-4} \times{ }^{5} \mathrm{C}_{5}\left(\frac{1}{4}\right)^{5} \\
& ={ }^{5} \mathrm{C}_{3}\left(\frac{1}{4}\right)^{3} \cdot\left(\frac{3}{4}\right)^{2}+\frac{5!}{4!1!} \times\left(\frac{1}{4}\right)^{4}\left(\frac{3}{4}\right)^{1}+\frac{5!}{5!}\left(\frac{1}{4}\right)^{5}=0.1035
\end{aligned}
$$

14. A company produces electronic chips by a process that normally average 20% defective product. A sample of four chips is selected at random and the parts are tested for certain characteristics, what is the probability that
a. no chip is defective
b. one chip is defective
c. more than one chip are defective

Solution:

Given, $p=$ detective products $=20 \%=\frac{20}{100}=\frac{!}{5}$

$$
q=1-p=1-\frac{1}{5}=\frac{4}{5}, n=4
$$

Now, the probability of r defective in 4 trials is given by

$$
p(r)={ }^{4} C_{r} p^{r} \cdot q^{4-r}={ }^{4} C_{r}\left(\frac{1}{5}\right)^{r}\left(\frac{4}{5}\right)^{4-r}
$$

a. $p($ No chip is defective $)=p(0)$

$$
={ }^{4} C_{0}\left(\frac{1}{5}\right)^{0}\left(\frac{4}{5}\right)^{4-0}=\frac{4!}{4!0!} \times 1 \times\left(\frac{4}{5}\right)^{4}=0.4096
$$

b. $p($ One chip is defective $)=p(1)$

$$
={ }^{4} C_{1}\left(\frac{1}{5}\right)^{1}\left(\frac{4}{5}\right)^{4-1}=\frac{4!}{1!3!} \times \frac{1}{5} \times\left(\frac{4}{5}\right)^{3}=\frac{4 \times 4 \times 4 \times 4}{5 \times 5 \times 5 \times 5}=0.4096
$$

c. p (more than one chip care defective)

$$
\begin{aligned}
& =p(2)+p(3)+p(4)={ }^{4} \mathrm{C}_{2}\left(\frac{1}{5}\right)^{2}\left(\frac{4}{5}\right)^{4-2}+{ }^{4} \mathrm{C}_{3}\left(\frac{1}{5}\right)^{3}\left(\frac{4}{5}\right)^{4-3}+{ }^{4} \mathrm{C}_{4}\left(\frac{1}{5}\right)^{4} \\
& =\frac{4!}{2!2!}\left(\frac{1}{5}\right)^{2}\left(\frac{4}{5}\right)^{2}+\frac{4!}{3!1!} \times\left(\frac{1}{5}\right)^{3}\left(\frac{4}{5}\right)+\frac{4!}{4!}\left(\frac{1}{5}\right)^{4}=0.1808
\end{aligned}
$$

CHAPTER 15

DERIVATIVES

EXERCISE 15.1

1. Find the limit of the following function at given points.
a. $\mathrm{f}(\mathrm{x})=\frac{\ln (1+\mathrm{x})}{\mathrm{x}}$ at $\mathrm{x}=0$
b. $f(x)=\left(\frac{1-x}{1+x}\right)^{1 / x}$ at $x=0$
c. $\mathrm{f}(\mathrm{x})=\frac{(1+\mathrm{x})^{\mathrm{n}}-1}{\mathrm{x}}$ at $\mathrm{x}=0$

Solution:

a. Since, we have,
$\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots$
Now, $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\log (1+x)}{x}=\lim _{x \rightarrow 0} \frac{1}{x}\left[x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots\right]$

$$
=\lim _{x \rightarrow 0}\left[1-\frac{x}{2}+\frac{x^{2}}{3}-\frac{x^{3}}{4}+\ldots\right]=\left[1-\frac{0}{2}+\frac{0^{2}}{3}-\frac{0^{3}}{4}+\ldots\right]=1
$$

$\therefore \lim _{x \rightarrow 0} f(x)=1$
b. Here, $y=\left(\frac{1-x}{1+x}\right)^{1 / x}$

Taking In on both sides,
$\ln y=\frac{1}{x} \ln \left(\frac{1-x}{1+x}\right) \quad\left[\because \ln m^{n}=n \operatorname{lnm}\right]$
or, $\ln y=\frac{1}{x} \ln \left[1-\frac{2 x}{1+x}\right]=\frac{1}{x} \ln \frac{\left[1+\left(\frac{-2 x}{1+x}\right)\right]}{\left(\frac{-2 x}{1+x}\right)} \times \frac{-2 x}{1+x}=\frac{\ln \left[1+\left(\frac{-2 x}{1+x}\right)\right]}{\frac{-2 x}{1+x}} \times \frac{-2}{1+x}$
Taking $\lim _{x \rightarrow 0}$ on both sides, we have,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \ln y & =\lim _{x \rightarrow 0} \frac{\ln \left[1+\left(\frac{-2 x}{1+x}\right)\right]}{\frac{-2 x}{1+x}} \times \frac{-2}{1+x}=1 \times \lim _{x \rightarrow 0}-\frac{2}{1+x}\left[\because \lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=1\right] \\
& =\frac{-2}{1+0}
\end{aligned}
$$

$\therefore \lim _{x \rightarrow 0} \ln y=-2$

$$
\text { i.e, } \lim _{x \rightarrow 0} y=e^{-2} \quad\left[\because \ln _{x} x=y \Leftrightarrow x=e^{y}\right]
$$

$\therefore \lim _{x \rightarrow 0}\left(\frac{1-x}{1+x}\right)^{1 / x}=e^{-2}$
c. $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{(1+x)^{n}-1}{x}$

$$
=\lim _{x \rightarrow 0} \frac{(1+x-1)\left[(1+x)^{n-1}+(1+x)^{n-2}+(1+x)^{n-3}+\ldots+(1+x)+1\right]}{x}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0}(1+x)^{n-1}+(1+x)^{x-2}+(1+x)^{n-3}+\ldots(1+x)+1 \\
& =1^{n-1}+1^{n-2}+1^{n-3}+\ldots 1+1=n-1+1=n
\end{aligned}
$$

2. a. A function $f(x)$ is defined as follows $f(x)=\left\{\begin{array}{c}-x-3 \text { for } x \leq-2 \\ \frac{2}{3} x+\frac{1}{3} \text { for }-2<x<1 \\ x^{2} \text { for } x \geq 1\end{array}\right.$ Test the continuity of $f(x)$ at $x=-2$ and $x=1$.
b. Show that the following function is continuous at

$$
x=4 . f(x)=\left\{\begin{array}{cc}
\frac{x^{2}-16}{x-4} & \text { for } x \neq 4 \\
8 & \text { for } x=4
\end{array}\right.
$$

c. A function $f(x)$ is defined as follows

$$
f(x)=\left\{\begin{array}{l}
3+2 x \text { for }-\frac{3}{2} \leq x<0 \\
3-2 x \text { for } 0 \leq x<\frac{3}{2} \text { Test the continuity of } f(x) \text { at } x=0 \text { and } x=\frac{3}{2} \\
-3-2 x \text { for } x \geq \frac{3}{2}
\end{array}\right.
$$

Solution:

a. Note: A function $f(x)$ is said to be continuous at a point $x=a$ if and only if,

$$
\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=f(a)
$$

Here, To test the continuity of $f(x)$ at $x=-2$, we proceed as follows:
Here, $f(x)$ at $x=-2$ is

$$
\begin{aligned}
f(-2) & =-x-3 \\
& =-2-3=-5(\text { a finite value })
\end{aligned} \quad[\because f(x)=-x-3 \text { for } x \leq-2]
$$

Now, left hand limit of $f(x)$ at $x=-2$ is,

$$
\begin{aligned}
\lim _{x \rightarrow-2^{-}} f(x) & =\lim _{x \rightarrow 2^{-}}(-x-3) \quad[\because f(x)=-x-3 \text { for } x \leq-2] \\
& =-2-3=-5
\end{aligned}
$$

Finally,
Right hand limit of $f(1)$ at $x=-2$ is,

$$
\begin{aligned}
& \begin{aligned}
\lim _{x \rightarrow-2^{+}} f(x) & =\lim _{x \rightarrow 2^{+}}\left(\frac{2}{3} x+\frac{1}{3}\right) \quad\left[\because f(x)=\frac{2}{3} x+\frac{1}{3} f o r-2<x<1\right] \\
& =\frac{2}{3} \times(-2)+\frac{1}{3}=-\frac{4}{3}+\frac{1}{3}=\frac{-4+1}{3}=-\frac{3}{3}=-1
\end{aligned} \\
& \therefore \lim _{x \rightarrow-2^{-}} f(x)=f(-2) \neq \lim _{x \rightarrow-2^{+}} f(x)
\end{aligned}
$$

So, $f(x)$ is discontinuous at a point $x=-2$.

$2^{\text {nd }}$ Part;

Again testing the continuity of $f(x)$ at $x=1$
For the functional value, $f(1)=x^{2}\left[\because f(x)=x^{2}\right.$ for $\left.x \geq 1\right]$

$$
=1^{2}=1
$$

LHL at $x=1$ is,

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(\frac{2}{3} x+\frac{1}{3}\right) \quad\left[\because f(x)=\frac{2}{3} x+\frac{1}{3} \text { for }-2<x<1\right]
$$

$$
=\frac{2}{3} \times 1+\frac{1}{3}=\frac{2}{3}+\frac{1}{3}=\frac{3}{3}=1
$$

RHL at $x=1$ is,

$$
\begin{aligned}
\lim _{x \rightarrow 1^{+}} f(x) & =\lim _{x \rightarrow 1^{+}}\left(x^{2}\right) \quad\left[\because f(x)=x^{2} \text { for } x \geq 1\right] \\
& =1^{2}=1
\end{aligned}
$$

Here, we have,

$$
\lim _{x \rightarrow 1^{-}} f(x)=f(1)=\lim _{x \rightarrow 1^{+}} f(x)
$$

Thus, the given function is continuous at $x=1$
b. Testing functional value at $x=4$;
$\mathrm{f}(4)=8$
$[\because f(x)=8$ when $x=4]$

Again, testing the limiting value at $x=4$, we have,

$$
\begin{aligned}
\lim _{x \rightarrow 4} f(x) & =\lim _{x \rightarrow 4}\left(\frac{x^{2}-16}{x-4}\right) \quad\left[\because f(x)=\frac{x^{2}-16}{x-4} \text { for } x \neq 4\right] \\
& =\lim _{x \rightarrow 4}\left(\frac{x^{2}-4^{2}}{x-4}\right) \quad \quad\left[\because \text { at } x=4, \frac{4^{3}-16}{4-4}=\frac{0}{0} \text { form }\right] \\
& =\lim _{x \rightarrow 4} \frac{(x+4)(x-4)}{(x-4)}=\lim _{x \rightarrow 4}(x+4)[\because x \neq 4] \\
& =4+4=8
\end{aligned}
$$

Here, we see, $\lim _{x \rightarrow 4} f(x)=f(4)=8$
Therefore, $f(x)$ is continuous at $x=4$
c. Testing the continuity of $f(x)$ at $x=0$,

For the functional value, $f(0)=3-2 x$

$$
\text { or, } \begin{aligned}
f(0) & =3-2 \times 0 \\
& =3 \text { (a finite value) }
\end{aligned}
$$

Again, LHL of $f(x)$ at $x=0$,

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} f(x) & =\lim _{x \rightarrow 0^{-}}(3+2 x) \\
& =3+2 \times 0=3
\end{aligned}
$$

Finally, RHL off $f(x)$ at $x=0$

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{+}}(3-2 x) \quad[\because f(x)=3-2 x \text { for } 0 \leq x<3 / 2] \\
& =3-2 \times 0=3
\end{aligned}
$$

Here, we see, $\lim _{x \rightarrow 0^{-}} f(x)=f(0)=\lim _{x \rightarrow 0^{+}} f(x)$
\therefore The given function is continuous at point $\mathrm{x}=0$.

$2^{\text {nd }}$ part:

Testing the continuity of $f(x)$ at $x=3 / 2$
Functional value, $f\left(\frac{3}{2}\right)=-3-2 x \quad[\because f(x)=-3-2 x$ for $x \geq 3 / 2]$

$$
=-3 \times-2 \times \frac{3}{2}=-6
$$

LHL at $x=\frac{3}{2}, \lim _{x \rightarrow 3 / 2^{-}} f(x)=\lim _{x \rightarrow 3 / 2^{-}}(3-2 x) \quad[\because f(x)=3-2 x$ for $0 \leq x<3 / 2]$

$$
=3-2 \times \frac{3}{2}
$$

Here, we see,
$\lim _{x \rightarrow 3 / 2^{-}} f(x) \neq x\left(\frac{3}{2}\right)$
Therefore, the given function is discontinuous at $x=\frac{3}{2}$
3. a. Show that the function $f(x)$ defined by

$$
f(x)=\left\{\begin{array}{cc}
x^{2} \sin \frac{1}{x} & \text { for } x \neq 0 \\
0 & \text { for } x=0
\end{array} \text { is continuous at } x=0 .\right.
$$

b. Examine for continuity at $x=0$ for the function $f(x)$ defined by

$$
f(x)=\left\{\begin{array}{cl}
\frac{1-\cos x}{x^{2}} & \text { for } x \neq 0 \\
1 & \text { for } x=0
\end{array}\right.
$$

Solution:

a. Show that the function $f(x)$ defined by,
$f(x)=\left\{\begin{array}{l}x^{2} \sin \frac{1}{x} \text { for } r \neq 0 \\ 0 \text { for } x \rightarrow 0\end{array}\right.$ is continuous at $x=0$
Proof: Functional values, $f(x)=0[\because f(x)=0$ for $x=0]$
Limiting value, $\lim _{x \rightarrow 0} f(x)$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x} \\
& =0 \times \text { a finite value }=0
\end{aligned} \quad\left[\because f(x)=x^{2} \sin \frac{1}{x} \text { for } x \neq 0\right]
$$

$\therefore \lim _{x \rightarrow 0} f(x)=f(0)$. Thus the function is continuous at $x=0$
Hence proved.
b. Functional values at $x=0$;
$f(0)=1$ (finite values) $\quad[\because f(x)=1$ for $x=0]$
Limiting values at $x=0$,

$$
\begin{aligned}
\lim _{x \rightarrow 0} f(x) & =\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}} \quad \quad\left[f(x)=\frac{1-\cos x}{x^{2}} \text { for } x \neq 0\right] \\
& =\lim _{x \rightarrow 0} \frac{(1-\cos x)}{x^{2}} \times \frac{1+\cos x}{(1+\cos x)} \\
& =\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{x^{2}(1+\cos x)}=\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x^{2}} \times \frac{1}{1+\cos x} \\
& =\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{2} \times \lim _{x \rightarrow 0} \frac{1}{1+\cos x} \\
& =(1)^{2} \times \frac{1}{2}=\frac{1}{2} \quad\left[\because \lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right]
\end{aligned}
$$

Here, $\lim _{x \rightarrow 0} f(x) \neq f(0)$
\therefore The given function is discontinuous at $\mathrm{x}=0$.

EXERCISE 15.2

1. Find from first principles the derivatives of $(1-5)$.
a. i. $\mathrm{e}^{\sin x}$
ii. $\mathrm{e}^{\tan x}$
iii. $e^{x^{2}}$
b. i. $a \sin x / a$
ii. $\sin x^{2}$
c. i. $\ln (\tan x)$
ii. $\ln \left(\sec x^{2}\right)$
iii. $\sqrt{\tan x}$
d. i. $\cot ^{-1} \mathrm{x}$
ii. $\ln \tan ^{-1} x$
iii. $\ln (\operatorname{cosec} x)$
e. i. $3 x^{2}$
ii. x^{x}
iii. $e^{\tan ^{-1} x}$
olution:
a. (i) $e^{\sin x}$.
$f(x)=e^{\sin x}$
We know by the definition of derivative,

$$
\begin{align*}
& \frac{d}{d x}(f(x))=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& \lim _{h \rightarrow 0} \frac{e^{\sin (x+h)}-e^{\sin x}}{h} \ldots \ldots \ldots \text { (i) } \tag{i}\\
& \text { Put, } y=\sin x \Rightarrow y+k=\sin (x+h) \\
& \Rightarrow k=\sin (x+h)-y \\
& \quad \text { where } k \rightarrow 0 \text { as } h \rightarrow 0 \\
& \Rightarrow \sin (x+h)=y+k
\end{align*}
$$

Now, from (i)
$\frac{d}{d x}(f(x))=\lim _{k \rightarrow 0} \frac{e^{y+k}-e^{y}}{h}=\lim _{k \rightarrow 0} \frac{e^{y}\left(e^{k}-1\right)}{k} \times \frac{k}{h}=e^{y} \cdot \lim _{k \rightarrow 0} \frac{e^{k}-1}{k} \times \frac{k}{h}$
$=e^{y} \cdot \lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h} \quad\left[\because \lim _{k \rightarrow 0} \frac{e^{k}-1}{k}=1\right]$
$=e^{y} . \lim _{h \rightarrow 0} \frac{2 \cos \frac{x+h+x}{2} \times \sin \frac{x+h-x}{2}}{h}=e^{y} . \lim _{h \rightarrow 0} 2 \cos \left(x+\frac{h}{2}\right) \cdot \frac{\sin \frac{h}{2}}{\left(\frac{h}{2}\right) \times 2}$
$=e^{y} \times \frac{1}{2} \lim _{h \rightarrow 0} \frac{\sin \frac{h}{2}}{\left(\frac{h}{2}\right)} \times 2 \cos \left(x+\frac{h}{2}\right)=\frac{1}{2} e^{y} \times \lim _{h \rightarrow 0} 2 \cos \left(x+\frac{h}{2}\right)$
$=e^{\sin x} \cos \left(x+\frac{O}{2}\right)=e^{\sin x} \cdot \cos x$
ii. Let, $f(x)=e^{\tan x}$
By the definition of derivative,

$$
\begin{equation*}
\frac{d}{d x}(f(x))=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{e^{\tan (x+h)}-e^{\tan x}}{h} . \tag{i}
\end{equation*}
$$

Put, $\mathrm{y}=\tan \mathrm{x} \Rightarrow \mathrm{y}+\mathrm{k}=\tan (\mathrm{x}+\mathrm{h})$, where $\mathrm{k} \rightarrow 0$ when $\mathrm{h} \rightarrow 0$

$$
\Rightarrow \mathrm{k}=\tan (\mathrm{x}+\mathrm{h})-\tan \mathrm{x}
$$

from (i)

$$
\begin{aligned}
\frac{d}{d x}(f(x)) & =\lim _{k \rightarrow 0} \frac{e^{y+k}-e^{y}}{h} \\
& =\lim _{k \rightarrow 0} \frac{e^{y}\left(e^{k}-1\right)}{h}=e^{y} \cdot \lim _{k \rightarrow 0} \frac{e^{k}-1}{k} \times \frac{k}{h}=e^{y} \cdot \frac{\tan (x+h)-\tan x}{h} \\
& =e^{y} \cdot \lim _{h \rightarrow 0} \frac{\frac{\sin (x+h)}{\cos (x+h)}-\frac{\sin x}{\cos x}}{h}=\lim _{h \rightarrow 0} \frac{\sin (x+h) \cos x-\sin x \cos (x+h)}{h \cos x \cos (x+h)} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x+h-x)}{h \cos x \cdot \cos (x+h)}[\because \sin A \cos B-\sin B \cos A=\sin (A-B)]
\end{aligned}
$$

$$
=e^{y} \cdot \lim _{h \rightarrow 0} \frac{\sinh }{h} \cdot \lim _{h \rightarrow 0} \frac{1}{\cos x \cdot \cos (x+h)}=e^{\tan x} \cdot 1 x \frac{1}{\cos x \cos x}=e^{\tan x} \cdot \sec ^{2} x
$$

iii. Let, $f(x)=e^{x^{2}}$

Since, by the definition of derivative,

$$
\begin{equation*}
\frac{d}{d x}(f(x))=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{e(x+h)^{2}-e^{x^{2}}}{h} . \tag{i}
\end{equation*}
$$

Put, $y=x^{2} \Rightarrow y+k=(x+h)^{2}$ where $k \rightarrow 0$ when $h \rightarrow 0$
$\Rightarrow \mathrm{k}=(\mathrm{x}+\mathrm{h})^{2}-\mathrm{y}=(\mathrm{x}+\mathrm{h})^{2}-\mathrm{x}^{2}$
from (i)

$$
\begin{aligned}
\frac{d}{d x}(f(x)) & =\lim _{k \rightarrow 0} \frac{e^{y+k}-e^{y}}{h}=\lim _{k \rightarrow 0} \frac{e^{y}\left(e^{k}-1\right)}{k} \times \frac{k}{h}=e^{y} \lim _{k \rightarrow 0} \frac{e^{k}-1}{k} \times \lim _{h \rightarrow 0} \frac{k}{h} \\
& =e^{y} \times 1 \times \lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=e^{y} \times \lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h} \\
& =e^{y} \times \lim _{h \rightarrow 0} \frac{2 x h}{h}+\lim _{h \rightarrow 0} \frac{h^{2}}{h}=e^{x^{2}} \times 2 x+0=2 x \cdot e^{x^{2}}
\end{aligned}
$$

b. i. Let, $f(x)=a \sin \frac{x}{a}$

Since by the definition of derivative,
$\frac{d}{d x}(f(x))=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{a \sin \left(\frac{x+h}{a}\right)-a \sin \frac{x}{a}}{h}$
Put, $y=\frac{x}{a} \Rightarrow y+k=\frac{x+h}{a}$, where $k \rightarrow 0$ when $h \rightarrow 0$
$\Rightarrow k=\frac{x+h}{a}-y \Rightarrow k=\frac{x+h}{a}-\frac{x}{a}$
from (i) we have,

$$
\begin{aligned}
\frac{d}{d x}(f(x)) & =\lim _{h \rightarrow 0} \frac{a \sin (y+k)-a \sin y}{h}=a \lim _{h \rightarrow 0} \frac{\left[2 \cos \frac{y+k+y}{2} \cdot \sin \frac{y+k-y}{2}\right]}{h} \\
& =a \lim _{k \rightarrow 0}\left[\frac{2 \cos (y+k / 2) \cdot \sin \frac{k}{2}}{h}\right]=2 a\left[\lim _{k \rightarrow 0} \cos \left(y+\frac{k}{2}\right) \cdot \lim _{k \rightarrow 0} \frac{\sin \frac{k}{2}}{\frac{k}{2}} \times \frac{k}{2}\right. \\
& =2 a\left[\cos y \cdot \lim _{h \rightarrow 0} \frac{k}{2 h}\right] \quad[\because k \rightarrow 0 \text { when } h \rightarrow 0] \\
& =2 a \cos y \cdot \lim _{h \rightarrow 0} \frac{\left(\frac{x+h}{a}-\frac{x}{a}\right)}{2 h}=a \operatorname{cosy} \times \lim _{h \rightarrow 0} \frac{\left(\frac{x+h-x}{a}\right)}{h} \\
& =a \cos y \times \frac{1}{a} \lim _{h \rightarrow 0} \frac{h}{h}=\cos y=\cos \frac{x}{a}
\end{aligned}
$$

ii. Let, $f(x)=\sin x^{2}$

Since by the definition of derivatives,
$\frac{d}{d x}(f(x))=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sin (x+h)^{2}-\sin x^{2}}{h} \ldots \ldots \ldots$ (i)
Put, $y=x^{2} \Rightarrow y+k=(x+h)^{2}$ where $k \rightarrow 0$ as $h \rightarrow 0$

$$
\Rightarrow \mathrm{k}=(\mathrm{x}+\mathrm{h})^{2}-\mathrm{x}^{2}
$$

from (i)

$$
\begin{aligned}
\frac{d}{d x}(f(x)) & =\lim _{k \rightarrow 0} \frac{\sin (y+k)-\sin y}{h}=\frac{\lim _{k \rightarrow 0} 2 \cos \frac{y+k+y}{2} \cdot \sin \frac{y+k-y}{2}}{h} \\
& =\lim _{k \rightarrow 0} \frac{2 \cos \left(y+\frac{k}{2}\right) \cdot \sin \frac{k}{2}}{h}=2 \lim _{k \rightarrow 0} \cos \left(y+\frac{k}{2}\right) \cdot \frac{\sin \frac{k}{2}}{\frac{k}{2}} x \frac{\frac{k}{2}}{h} \\
& =2 \operatorname{cosy} \lim _{h \rightarrow 0} \frac{k}{2 h}=\cos y \times \lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=\operatorname{cosy} \lim _{h \rightarrow 0} \frac{x^{2}+h^{2}+2 x h-x^{2}}{h} \\
& =\operatorname{cosy} \lim _{h \rightarrow 0} \frac{h(h+2 x)}{h}=\operatorname{cosy} \lim _{h \rightarrow 0}(h+2 x)=2 x \cos y=2 x \cos x^{2}
\end{aligned}
$$

iii. Let, $f(x)=\sqrt{\tan x}$

Since by the definition of derivatives,

$$
\begin{aligned}
\frac{d}{d x}(f(x)) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{\tan (x+h)}-\sqrt{\tan x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{\tan (x+h)}-\sqrt{\tan x}}{h} \times \frac{\sqrt{\tan (x+h)}+\sqrt{\tan x}}{\sqrt{\tan (x+h)}+\sqrt{\tan x}} \\
& =\lim _{h \rightarrow 0}(\tan (x+h)-\tan x) \times \frac{1}{h[\sqrt{\tan (x+h)}+\sqrt{\tan x}]} \\
& =\lim _{h \rightarrow 0}\left(\frac{\sin (x+h)}{\cos (x+h)}-\frac{\sin x}{\cos x}\right) \times \frac{1}{h[\sqrt{\tan (x+h)}+\sqrt{\tan x}]}
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0} \frac{\sin (x+h) \cos x-\sin x \cos (x+h)}{\cos x(\cos x(x+h))} \times \frac{1}{h[\sqrt{\tan (x+h)}+\sqrt{\tan x}]}
$$

$$
=\lim _{h \rightarrow 0} \frac{\sin (x+h-x)}{\cos x \cos (x+h)} \times \frac{1}{h[\sqrt{\tan (x+h)}+\sqrt{\tan x}]}
$$

$$
=\lim _{h \rightarrow 0} \frac{\sinh }{h} \times \frac{1}{\cos (x+h) \cos x} \times \lim _{h \rightarrow 0} \frac{1}{\sqrt{\tan (x+h)+\sqrt{\tan }}}
$$

$$
=1 \times \frac{1}{\cos ^{2} x} \times \frac{1}{\sqrt{\tan x}+\sqrt{\tan x}}=\frac{\sec ^{2} x}{2 \sqrt{\tan x}}
$$

c. Let, $\mathrm{f}(\mathrm{x})=\ln (\tan \mathrm{x})$

Since by the definition of derivative,
$\frac{d(f(x))}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\ln \tan (x+h)-\ln (\tan x)}{h}$
Put, $\mathrm{y}=\tan \mathrm{x} \Rightarrow \mathrm{y}+\mathrm{k}=\tan (\mathrm{x}+\mathrm{h})$ where $\mathrm{k} \rightarrow 0$ as $\mathrm{h} \rightarrow 0$
$k=\tan (x+n)-\tan x$
from (i), $\lim _{k \rightarrow 0} \frac{\log (y+k)-\log y}{h}$
$=\lim _{k \rightarrow 0} \frac{\ln \left(\frac{y+k}{y}\right)}{h}=\lim _{k \rightarrow 0} \frac{\ln \left(1+\frac{k}{y}\right)}{\frac{k}{y}} \times \frac{k / y}{h}=\frac{1}{y} \times \lim _{h \rightarrow 0} \frac{\tan (x+h)-\tan x}{h}$
$=\frac{1}{y} \lim _{h \rightarrow 0} \frac{\frac{\sin (x+h)}{\cos (x+h)}-\frac{\sin x}{\cos x}}{h}=\frac{1}{y} \lim _{h \rightarrow 0} \frac{\sin (x+h) \cos x-\cos (x+h) \sin x}{h \cos x \cdot \cos (x+h)}$
$=\frac{1}{y} \lim _{h \rightarrow 0} \frac{\sin (x+h-x)}{h \cos x \cdot \cos (x+h)}=\frac{1}{y} \lim _{h \rightarrow 0} \frac{\sin h}{h \cos x \cdot \cos (x+h)}=\frac{1}{y} \times 1 \times \frac{1}{\cos ^{2} x}$
$=\frac{1}{\tan x} \times \frac{1}{\cos ^{2} x}=\frac{1}{\tan x} \cdot \sec ^{2} x$
ii. $f(x)=f(x)=\ln \sec x^{2}$

Since by the definition of derivatives,

$$
\begin{equation*}
\frac{d}{d x} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\ln \sec (x+h)^{2}-\ln \sec x^{2}}{h} \tag{i}
\end{equation*}
$$

Put, $y=\sec ^{2} \Rightarrow y+k=\sec (x+h)^{2}$ where $k \rightarrow 0$, as $h \rightarrow 0$

$$
\Rightarrow \mathrm{k}=\sec (\mathrm{x}+\mathrm{h})^{2}-\sec ^{2}
$$

from (i)

$$
\begin{aligned}
& =\lim _{k \rightarrow 0} \frac{\ln (y+k)-\ln y}{h}=\lim _{k \rightarrow 0} \frac{\ln \left(\frac{y+k}{y}\right)}{h} \\
& =\lim _{k \rightarrow 0} \frac{\ln \left(\frac{y+k}{y}\right)}{h}=\lim _{k \rightarrow 0} \frac{\ln (1+k / y)}{k / y} \times \frac{k / y}{h}=1 \times \lim _{h \rightarrow 0} \frac{\sec (x+h)^{2}-\sec x^{2}}{h} \\
& =\frac{1}{y} \lim _{h \rightarrow 0} \frac{\frac{1}{\cos (x+n)^{2}-\frac{1}{\cos x^{2}}}}{h}=\frac{1}{y} \lim _{h \rightarrow 0} \frac{\frac{1}{\cos (x+h)^{2}-\frac{1}{\cos x^{2}}}}{h} \\
& =\frac{1}{y} \lim _{h \rightarrow 0} \frac{\cos x^{2}-\cos (x+h)^{2}}{h \cdot \cos (x+h)^{2} \cdot \cos x^{2}}=\frac{1}{y} \lim _{h \rightarrow 0} \frac{-2 \sin \frac{x^{2}+(x+h)^{2}}{2} \sin \frac{x^{2}-(x+1)^{2}}{2}}{h \cdot \cos (x+h)^{2} \cdot \operatorname{cosx^{2}}} \\
& =\frac{1}{y} \lim _{h \rightarrow 0} \frac{-2 \sin \frac{x^{2}+(x+h)^{2}}{2} \cdot \sin \frac{x^{2}-(x+h)^{2}}{2}}{h \cdot \cos (x+h)^{2} \cdot \cos x^{2}} \\
& =\frac{1}{y} \lim _{h \rightarrow 0} \frac{-2 \sin \left(\frac{x^{2}+2 x h+h^{2}}{2}\right) \sin \left(\frac{-2 x h-h^{2}}{2}\right)}{h \cdot \cos (x+h)^{2} \cdot \cos x^{2}} \\
& =\frac{1}{y} x(-2) \frac{\sin x^{2}}{\cos x^{2} \cos x^{2} \times \lim _{h \rightarrow 0}(-1) \times \frac{\sin \left(\frac{2 x h+h^{2}}{2}\right)}{h}} \\
& =\frac{2}{y} \tan ^{2} \cdot \sec x^{2} \times \lim _{h \rightarrow 0} \frac{\sin (2 x+h) / 2}{(2 x+h) / 2} \times \frac{(2 x+h)}{2} \\
& =\frac{2}{\sec x^{2}} \tan ^{2} \cdot \sec ^{2} \times 1 \times \frac{2 x}{2}=2 x \tan x^{2}
\end{aligned}
$$

iii. Let, $f(x)=\ln (\operatorname{cosec} x)$

Since by definition of derivatives,

$$
\begin{align*}
& \frac{d}{d x} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\ln \operatorname{cosec}(x+h)-\ln \operatorname{cosec} x}{h} \tag{i}\\
& \text { Put } y=\operatorname{cosec} x \Rightarrow y+k=\operatorname{cosec}(x+h) \text { where } k \rightarrow 0 \text { as } h \rightarrow 0 \\
& \\
& \text { from (i) } \quad \Rightarrow k=\operatorname{cosec}(x+h)-\operatorname{cosec} x
\end{align*}
$$

$$
\begin{aligned}
\frac{d}{d x}(f(x)) & =\lim _{k \rightarrow 0} \frac{\ln (y+k)-\ln y}{h} \\
& =\lim _{k \rightarrow 0} \frac{\ln \left(\frac{y+k}{y}\right)}{h}=\lim _{k \rightarrow 0} \frac{\ln (1+k / y)}{k / y} \times \frac{k / y}{k}=\lim _{h \rightarrow 0} \frac{k}{y h}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{y} \lim _{h \rightarrow 0} \frac{\frac{1}{\sin (x+h)}-\frac{1}{\sin x}}{h}=\frac{1}{y} \lim _{h \rightarrow 0} \frac{\sin x-\sin (x+h)}{\sin x \sin (x+h) \times h} \\
& =\frac{1}{y} \lim _{h \rightarrow 0} \frac{2 \cos \left(\frac{x+x+h}{2}\right) \sin \left(\frac{x-x-h}{2}\right)}{h \times \sin x \sin (x+h)} \\
& =\frac{1}{y} \lim _{h \rightarrow 0} \frac{2 \cos (x+h / 2) \sin (-h / 2)}{h \times \sin x \sin (x+h)}=\frac{2}{y} \frac{\cos x}{\sin x \cdot \sin x} \times \lim _{h \rightarrow 0}(-1) \frac{\sin h / 2}{h / 2 \times 2} \\
& =\frac{2}{\operatorname{cosec} x} \cdot \cot x \cdot \operatorname{cosec} x \times\left(\frac{-1}{x}\right)=\frac{-\operatorname{cosec} x \cdot \operatorname{col} x}{\operatorname{cosec} x}=-\cot x
\end{aligned}
$$

d. i. Let, $f(x)=\cot ^{-1} x$
$\therefore f(x+h)=\cot ^{-1}(x+h)$
We know, $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\cot ^{-1}(x+h)-\cot ^{-1} x}{h}$
Let $\cot ^{-1} x=y$ and $\cot ^{-1}(x+h)=y+k$
$\therefore \quad y+k-y=k=\cot ^{-1}(x+h)-\cot ^{-1} x$
When $\mathrm{h} \rightarrow 0$ then $\mathrm{k} \rightarrow 0$
Also, $x+h=\cot (y+k)$ and $x=$ coty
$x+h-x=h=\cot (y+k)-\cot y$
Now, $f^{\prime}(x)=\lim _{k \rightarrow 0} \frac{y+k-y}{h}=\lim _{k \rightarrow 0} \frac{k}{\cot (y+k)-\operatorname{coty}}=\lim _{k \rightarrow 0} \frac{k}{\frac{\cot (y+k)}{\sin (y+k)}-\frac{\cos y}{\sin y}}$
$=\lim _{k \rightarrow 0} \frac{k}{\frac{\sin y(\cos y+k)-\cos y \sin (y+k)}{\sin (y+k) \cdot \sin y}}$
$=\lim _{k \rightarrow 0} \frac{k \sin (y+k) \cdot \sin y}{\sin (y+k+y)}=\lim _{k \rightarrow 0} \frac{-k}{\sin k} \times \sin (y+k) \times \sin y$
$=-1 \times \sin (y+0) . \sin y=-\sin ^{2} y=\frac{-1}{\operatorname{cosec}^{2} y}=\frac{-1}{1+\cot ^{2} y}=\frac{-1}{1+x^{2}}$
ii. Let, $f(x)=\operatorname{lntan}^{-1} x$

Since by definition of derivatives,
$\frac{d}{d x}(f(x))=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\log \tan ^{-1}(r+h)-\log \tan ^{-1} x}{h} \ldots$.
Put, $y=\tan ^{-1} x \Rightarrow y+k=\tan ^{-1}(x+h)$ where $k \rightarrow 0$ as $h \rightarrow 0$
or, tany $=x$ or, $\tan (y+k)-\tan y=h$
Now, from (i)

$$
\begin{aligned}
\frac{d}{d x} & \left(f(r)=\lim _{k \rightarrow 0} \frac{\ln (y+k)-\log y}{h}=\lim _{k \rightarrow 0} \frac{\ln \left(\frac{y+k}{y}\right)}{h}\right. \\
& =\lim _{k \rightarrow 0} \frac{\ln (1+k / y)}{k / y} \times \frac{k}{y h}=\frac{1}{y} \times \lim _{k \rightarrow 0} \frac{k}{\tan (y+k)-\tan y} \\
& =\frac{1}{y} \lim _{k \rightarrow 0} \frac{k \times \cos (y+k) \cdot \cos y}{\sin (y+k) \cdot \cos y-\sin y \cdot \cos (y+k)}=\frac{1}{y} \lim _{k \rightarrow 0} \frac{k \cos (y+k) \cos y}{\sin (y+k-y)} \\
& =\frac{1}{y} \lim _{k \rightarrow 0} \frac{k \cos y \cdot \cos (y+k)}{\sin k}=\frac{1}{y}\left(\lim _{k \rightarrow 0} \frac{k}{\frac{\sin k}{k} \times k}\right) \lim _{k \rightarrow 0} \cos y \cdot \cos (y+k) \\
& =\frac{1}{\tan ^{-1} x} \times 1 \times \cos ^{2} y=\frac{\cos ^{2} y}{\tan ^{-1} x}=\frac{1}{\tan ^{-1} x \sec ^{2} y}=\frac{1}{\tan ^{-1} x\left(1+\tan ^{2} y\right)}=\frac{1}{\tan ^{-1} x\left(1+x^{2}\right)}
\end{aligned}
$$

iii. Let, $\mathrm{f}(\mathrm{x})=\mathrm{e}^{\tan -1 \mathrm{x}}$

Since by definition of derivatives

$$
\frac{d}{d x} f(x)=\lim _{k \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{k \rightarrow 0} \frac{e^{\tan -1(x+h)}-e^{\tan -1} x}{h}
$$

Put, $\mathrm{y}=\tan ^{-1} \mathrm{x} \Rightarrow \mathrm{y}+\mathrm{k}=\tan ^{-1}(\mathrm{x}+\mathrm{h})$ where $\mathrm{k} \rightarrow 0$ as $\mathrm{h} \rightarrow 0$
or, tany $=x \Rightarrow \tan (y+k)=x+h$

$$
\begin{aligned}
\frac{d}{d x}(f(x)) & =\lim _{k \rightarrow 0} \frac{e^{y+k^{2}}-e^{y}}{h}=\left(\lim _{K \rightarrow 0} \frac{e^{y}\left(e^{k}-1\right)}{k}\right) \times \lim _{k \rightarrow 0} \frac{k}{h} \\
& =e^{y} \cdot \lim _{k \rightarrow 0} \frac{k}{\tan (y+k)-\tan y} \\
& =e^{y} \cdot \lim _{k \rightarrow 0} \frac{k y \cos (y+k) \cos y}{\sin (y+k) \cos y-\sin y \cdot \cos (y+k)} \\
& =e^{y} \cdot \lim _{k \rightarrow 0} \frac{k \operatorname{cosy} \cos (y+k)}{\sin (y+k-y)}=e^{y} \cdot \lim _{k \rightarrow 0} \frac{k y \cos y \cos (y+k)}{\frac{\operatorname{sink}}{k} \times k} \\
& =e^{y} \cdot \lim _{k \rightarrow 0} \frac{\cos y \cos (y+k)}{\frac{\sin k}{k}}=e^{y} \cdot \cos ^{2} y=e^{\tan -1} x \cdot \frac{1}{\sec ^{2} y} \\
\text { e.i.Let, } f(x) & =3^{x^{2}}=e^{\ln 3 \times 2}=e^{x^{2} \ln 3} .
\end{aligned}
$$

Since by definition of derivatives,

$$
\begin{equation*}
\frac{d}{d x}(f(x))=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} e^{(x+h)^{2} \ln 3}-e^{x 2 \ln 3} \tag{i}
\end{equation*}
$$

Put, $y=x^{2} \ln 3 \Rightarrow y+k=(x+h)^{2} \ln 3$ where $k \rightarrow 0$ as $h \rightarrow 0$

$$
\Rightarrow \mathrm{k}=(\mathrm{x}+\mathrm{h})^{2} \ln 3-\mathrm{x}^{2} \ln 3
$$

from (i)

$$
\begin{aligned}
\frac{d}{d x}(f(x)) & =\lim _{k \rightarrow 0} \frac{e^{y+k}-e^{y}}{h}=\lim _{k \rightarrow 0} \frac{e^{y}\left(e^{k}-1\right)}{k} \times \frac{k}{h} \\
& =e^{y} \lim _{k \rightarrow 0}\left(\frac{e^{k}-1}{k}\right) \times \lim _{h \rightarrow 0} \frac{(x+h)^{2} \ln 3-x^{2} \ln 3}{h} \\
& =e^{y} \cdot \lim _{h \rightarrow 0} \frac{x^{2} \ln 3+h^{2} \ln 3+2 x \ln 3-x^{2} \ln { }^{3}}{h} \\
& =e^{y} \cdot \lim _{h \rightarrow 0} \frac{h(h \ln 3+2 x \ln 3)}{h}=e^{x^{x} \ln 3} \times 2 x \ln 3 \\
& =e^{x^{2} \ln 3} 2 x \ln 3-e^{\ln 3 x^{2}} 2 \times \ln 3=3^{x^{2}} 2 x \ln 3
\end{aligned}
$$

ii. Let, $f(x)=x^{x}=e^{\ln x x}=e^{x \ln x}$

Since by definition of derivatives

$$
\begin{equation*}
\frac{d}{d x}(f(x))=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{e^{(x+h) \log (x+h)}-e^{x \log x}}{h} . \tag{i}
\end{equation*}
$$

Put, $y=x \ln x \Rightarrow y+k=(x+h) \ln (x+h)$ where $x \rightarrow 0 \cos h \rightarrow 0$
From (i)

$$
\begin{aligned}
& \frac{d}{d x}(f(x))=\lim _{h \rightarrow 0} \frac{e^{y+k}-e^{y}}{h}=\lim _{h \rightarrow 0} \frac{e^{y}\left(e^{k}-1\right)}{k} \times \frac{k}{h} \\
& =e^{y}\left(\lim _{k \rightarrow 0} \frac{e^{k}-1}{k}\right) \times \lim _{h \rightarrow 0} \frac{(x+h) \ln (x+h)-x \log x}{h} \\
& =e^{y} \cdot \lim _{h \rightarrow 0} \frac{x \ln (x+h)+h \ln (x+h)-x \ln x}{h}
\end{aligned}
$$

$$
\begin{aligned}
& =e^{y} \cdot \lim _{h \rightarrow 0}\left[\frac{x[\log (x+h)-\log x]}{h}+\frac{h \log (x+h)}{h}\right] \\
& =e^{y}\left[\lim _{h \rightarrow 0}\left\{\frac{x \log (1+h / x)}{\frac{h}{x} x}\right\}+\lim _{h \rightarrow 0} \frac{h \log (x+h)}{h}\right] \\
& =e^{y}[1+\ln (x+0)]=e^{x \ln x}[1+\ln x]=x^{x}[1+\ln x]
\end{aligned}
$$

iii. Let $f(x)=a^{2 x}=e^{\ln 22 x}=e^{2 x \ln a}$

Since by definition of derivatives,

$$
\begin{aligned}
\frac{d}{d x}(f(x)) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{e^{2(x+h) \log a}-e^{2 x \log a}}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{2 x \operatorname{loga}} \cdot e^{2 h \log a}-e^{2 x \log a}}{h}=\lim _{h \rightarrow 0} e^{2 x \ln a} \frac{\left[e^{2 h \log a}-1\right]}{h} \\
& =e^{2 x \ln a} \times \lim _{h \rightarrow 0} \frac{e^{\text {hloga }}-1}{\frac{2 h \log a}{2 \log a}}=e^{\ln 2 x} \times 2 \ln a\left[\lim _{h \rightarrow 0} \frac{e^{2 h \log a}-1}{2 h \log a}\right]=2 a^{2 x} \ln a
\end{aligned}
$$

2. Find the derivative of $y=\frac{x \sqrt{x^{2}+a^{2}}}{2}+\frac{a^{2}}{2} \ln \left(x+\sqrt{x^{2}+a^{2}}\right)$

Solution:

Differentiate both sides w.r.to x we get,

$$
\begin{aligned}
& \frac{d y}{d x}=\left[\frac{1}{2} \sqrt{x^{2}+a^{2}}+x \times \frac{1}{2 \sqrt{x^{2}+a^{2}}} \times 2 x\right] \\
& +\left[\frac{a^{2}}{2} \frac{1}{x+\sqrt{x^{2}+a^{2}}}\left\{1+\frac{1}{2 \sqrt{x^{2}+a^{2}}} \times 2 x\right\}\right] \\
& =\frac{1}{2}\left[\frac{x^{2}+a^{2}+x^{2}}{\sqrt{x^{2}+a^{2}}}\right]+\frac{a^{2}}{2}\left[\frac{1}{x+\sqrt{x^{2}+a^{2}}}\left(\frac{\sqrt{x^{2}+a^{2}}+x}{\sqrt{x^{2}+a^{2}}}\right)\right] \\
& =\frac{1}{2}\left[\frac{2 x^{2}+a^{2}}{\sqrt{x^{2}+a^{2}}}\right]+\frac{a^{2}}{2} \times \frac{1}{\sqrt{x^{2}+a^{2}}} \\
& =\frac{1}{2}\left[\frac{2 x^{2}+a^{2}+a^{2}}{\sqrt{x^{2}+a^{2}}}\right] \\
& =\frac{1}{2}\left[\frac{2 x^{2}+2 a^{2}}{\sqrt{x^{2}+a^{2}}}\right] \\
& =\sqrt{x^{2}+a^{2}}
\end{aligned}
$$

3. Find the derivative of following with respect to x.
a. $\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$
b. $\cos ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
c. $\sin ^{-1}\left(3 x-4 x^{3}\right)$
d. $\sin ^{-1} \sqrt{1-x^{2}}$
e. $\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$
f. $\sec ^{-1}(\tan x)$
g. $\tan ^{-1} \frac{\sqrt{1+\mathrm{x}^{2}}-1}{\mathrm{x}}$
h. $\sin ^{-1} \frac{2 x}{1+x^{2}}+\sec ^{-1}\left(\frac{1+x^{2}}{1-x^{2}}\right)$

Solution:

a. Let $y=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$

Put $x=\tan \theta$
$d x=\sec ^{2} \theta d \theta$
Now, $y=\tan ^{-1}\left(\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right)=\tan ^{-1}(\tan 2 \theta)=2 \theta$
$y=2 \tan ^{-1} x$
Now, differentiating on both sides, we get
$\frac{d y}{d x}=2 \frac{d \tan ^{-1} x}{d x}=2 \times \frac{1}{1+x^{2}}$
$\frac{d y}{d x}=\frac{2}{1+x^{2}}$
b. Let $y=\cos ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$

Differentiating on both sides w.r.t. x, we get
$\frac{d y}{d x}=\frac{d \cos ^{-1} \frac{2 x}{1+x^{2}}}{d x}$

$$
\begin{aligned}
\frac{d y}{d x} & =-\frac{1}{\sqrt{1-\left(\frac{2 x}{1+x^{2}}\right)^{2}}} \times\left[\frac{\left(1+x^{2}\right) \times 2-2 x \times 2 x}{\left(1+x^{2}\right)^{2}}\right] \\
& =-\frac{\left(1+x^{2}\right)}{\sqrt{\left(1+x^{2}\right)^{2}-4 x^{2}}}\left[\frac{2+2 x^{2}-4 x^{2}}{\left(1+x^{2}\right)^{2}}\right]=-\frac{\left(2-2 x^{2}\right)}{\sqrt{1+2 x^{2}+x^{4}-4 x^{2}}} \times \frac{1}{\left(1+x^{2}\right)} \\
& =-\frac{\left(1-x^{2}\right)}{\left(1-x^{2}\right)} \times \frac{2}{\left(1+x^{2}\right)}
\end{aligned}
$$

$\frac{d y}{d x}=-\frac{2}{\left(1+x^{2}\right)}$
c. Let $y=\sin ^{-1}\left(3 x-4 x^{3}\right)$

Put $x=\sin \theta$
$y=\sin ^{-1}(3 \sin \theta-4 \sin 3 \theta)$
$y=\sin ^{-1}(\sin 3 \theta)$
$y=3 \theta=3 \sin ^{-1} x \therefore \frac{d y}{d x}=\frac{3}{\sqrt{1-\mathrm{x}^{2}}}$
d. Let $y=\sin ^{-1} \sqrt{1-x^{2}}$

Put $\mathrm{x}=\cos \theta$
$\therefore y=\sin ^{-1} \sqrt{1-\cos ^{2} \theta}=\sin ^{-1} \sin \theta=\theta$
$y=\cos ^{-1} x$
Now, differentiating on both sides, we get
$\frac{d y}{d x}=\frac{d\left(\cos ^{-1} x\right)}{d x} \quad \therefore \frac{d y}{d x}=-\frac{1}{\sqrt{1-x^{2}}}$
e. Let $y=\sin ^{-1} 2 x \sqrt{1-x^{2}}$

Put $x=\cos \theta$ then
$y=\sin ^{-1} 2 \cos \theta \sqrt{1-\cos ^{2} \theta}=\sin ^{-1}(2 \cos \theta \times \sin \theta)=\sin ^{-1} \sin 2 \theta$
$y=2 \theta=2 \cos ^{-1} x$
Now, differentiating on both sides, we get
$\frac{d y}{d x}=2 \times-\frac{1}{\sqrt{1-x^{2}}}$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{2}{\sqrt{1-\mathrm{x}^{2}}}$
f. Let $y=\sec ^{-1}(\tan x)$

Differentiating on both sides w.r.t. x, we get
$\frac{d y}{d x}=\frac{d \sec ^{-1}(\tan x)}{d x}=\frac{1}{\tan x \sqrt{\tan ^{2} x-1}} \cdot \sec ^{2} x \therefore \frac{d y}{d x}=\frac{\sec ^{2} x}{\tan x \sqrt{\tan ^{2} x-1}}$
g. Put, $x=\tan \theta$

Now, $y=\tan ^{-1} \frac{\sqrt{1+\tan ^{2} \theta-1}}{\tan \theta}=\tan ^{-1}\left(\frac{\sec \theta-1}{\tan \theta}\right)=\tan ^{-1}\left(\frac{1-\cos \theta}{\sin \theta}\right)$

$$
y=\tan ^{-1} \frac{2 \sin ^{2} \theta / 2}{2 \sin \theta / 2 \cos \theta / 2}=\tan ^{-1} \tan \theta / 2=\theta / 2=\frac{1}{2} \tan ^{-1} x
$$

Differentiate both sides w.r.to x ,
$\frac{d y}{d x}=\frac{1}{2} \times \frac{1}{\left(1+x^{2}\right)}=\frac{1}{2\left(1+x^{2}\right)}$
h. Put, $x=\tan \theta \Rightarrow \theta=\tan ^{-1} x$
L.H.S. $\sin ^{-1} \frac{2 \tan \theta}{1+\tan ^{2} \theta}+\sec ^{-1}\left(\frac{1+\tan ^{2} \theta}{1-\tan ^{2} \theta}\right)=\sin ^{-1} \sin 2 \theta+\sec ^{-1}\left(\frac{\sec ^{2} \theta}{1-\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}\right)$

$$
=2 \theta+\sec ^{-1}\left(\frac{1}{\cos ^{2} \theta-\sin ^{2} \theta}\right)=2 \theta+\sec ^{-1} \sec 2 \theta=4 \theta=4 \tan ^{-1} x
$$

Differentiate both sides by x , we get,
$\frac{d y}{d x}=\frac{4}{1+x^{2}}$ R.H.S. Proved.
4. a. If $\mathrm{y}=\mathrm{x} y$, then prove that $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{y}^{2}}{\mathrm{x}(1-\mathrm{y} \ln \mathrm{x})}$
b. If $x^{p} \cdot y^{q}=(x+y)^{p+q}$ then prove that $\frac{d y}{d x}=\frac{y}{x}$
c. If $\sin y=x \cos (a+y)$ show that $\frac{d y}{d x}=\frac{\cos ^{2}(a+y)}{\cos a}$
d. If $y=e^{x+e^{x}+e^{x} \ldots}$, show that $\frac{d y}{d x}=\frac{y}{1-y}$

Solution:

a. To prove $\frac{d y}{d x}=\frac{y^{2}}{x(1-y \ln x)}$

We have,
$y=x^{y}$
Taking In on both sides, we get lny = ylnx
Now, differentiating on both sides we get

$$
\begin{array}{ll}
\frac{1}{y} \frac{d y}{d x}=\ln x \frac{d y}{d x}+y \cdot \frac{1}{x} & \text { p. } \frac{1}{x}+q \frac{1}{y} \frac{d y}{d x}=(p+q) \cdot \frac{1}{(x+y)}\left(1+\frac{d y}{d x}\right) \\
\Rightarrow\left(\frac{1}{y}-\ln x\right) \frac{d y}{d x}=\frac{y}{x} & \Rightarrow \frac{p}{x}+\frac{q}{y} \frac{d y}{d x}=\frac{p+q}{x+y}+\frac{p+q}{x+y} \frac{d y}{d x}
\end{array}
$$

b. To prove $\frac{d y}{d x}=\frac{y}{x}$

We have, $x^{p} \cdot y^{q}(x+y)^{P+q}$
Taking In on both sides, we get $\ln \left(x^{p} \cdot y^{q}\right)=\ln (x+y)^{p+q}$
$\Rightarrow \quad p \ln x+q \ln y=(p+q) \ln (x+y)$
Now, differentiating on both sides, we get

$$
\begin{array}{ll}
\Rightarrow(1-y \ln x) \frac{d y}{d x}=\frac{y^{2}}{x} & \Rightarrow\left(\frac{q}{y}-\frac{p+q}{x+y}\right) \frac{d y}{d x}=\frac{p+q}{x+y}-\frac{p}{x} \\
\therefore \frac{d y}{d x}=\frac{y^{2}}{x(1-y \ln x)} & \Rightarrow \frac{(q x+q y-p y-q y)}{y(x+y)} \cdot \frac{d y}{d x}= \\
\frac{p x+q x-p x-p y}{x(x+y)} \\
& \Rightarrow \frac{(q x-p y)}{y(x+y)} \frac{d y}{d x}=\frac{(q x-p y)}{x(x+y)} \\
& \therefore \frac{d y}{d x}=\frac{y}{x}
\end{array}
$$

c. Differentiate both sides w.r. to x we ge,t
$\cos y \frac{d y}{d x}=-x \sin (a+y) \frac{d y}{d x}+1 \cdot \cos (a+y)$
or, $\left(\cos y+x \sin (a+y) \frac{d y}{d x}=\cos (a+y)\right.$
or, $\frac{d y}{d x}=\frac{\cos (a+y)}{\cos y+x \sin (a+y)}$
or, $\frac{d y}{d x}=\frac{\cos (a+y)}{\cos y+\frac{\sin (a+y)}{\cos (a+y)}}=\frac{\cos ^{2}(a+y)}{\cos (a+y-y)}=\frac{\cos ^{2}(a+y)}{\cos a}$ proved.
d. Let, $y=e^{x+e^{x+e^{x}+\ldots}}$. Then we have,

$$
y=e^{x+y}
$$

Taking In on both sides we get,
Iny $=(x+y)$ Ine
Differentiate both sides w.r. to x, we get
$\frac{1}{y} \frac{d y}{d x}=1+\frac{d y}{d x}$
or, $\left(\frac{1}{y}-1\right) \frac{d y}{d x}=1$
or, $\left(\frac{1-y}{y}\right) \frac{d y}{d x}=1$
or, $\frac{d y}{d x}=\frac{y}{1-y}$
5. Find the derivative with respect to x of following
a. $x^{\sin x}$
b. $\sin x^{\cos x}$
c. $(\sin x)^{\cos x}+(\cos x)^{\sin x}$
d. $x^{\tan x}+(\tan x)^{x}$

Solution:

a. Let $y=x^{\sin x}$
Lny $=\sin x \ln x$
Differentiating on both sides, we get

$$
\begin{aligned}
& \frac{1}{y} \cdot \frac{d y}{d x}=\ln x \cdot \cos x+\sin x \frac{1}{x} \\
& \Rightarrow \frac{d y}{d X}=y\left[\ln x \cos x+\frac{\sin x}{x}\right]
\end{aligned}
$$

b. Let $y=(\sin x)^{\cos x}$
Lny $=\cos x . \operatorname{Ln}(\sin x)$
$\frac{1}{y} \frac{d y}{d x}=-\operatorname{Ln}(\sin x) \cdot \sin x+\cos x \times \cos x$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=(\sin x)^{\cos x}[\cos x . \cos x-\sin x$,
$\operatorname{Ln}(\sin x)]$
$\therefore \frac{d y}{d x}=x^{\sin x}\left[\frac{\sin x}{x}+\cos x . \ln x\right]$
c. Let, $y=u+v$ where, $u=(\sin x)^{\cos x}$ and $v=(\cos x)^{\sin x}$

Now, $u=(\sin x)^{\cos x}$
Taking In on both sides,
or, $\ln u=\cos x \ln \sin x$
Differentiate both sides w.r. to x, we get,
$\frac{1}{u} \frac{d y}{d x}=\frac{\cos x \cdot \cos x}{\sin x}+\ln \sin x \cdot(-\sin x)=\frac{\cos ^{2} x}{\sin x}-\sin x \ln \sin x$
or, $\frac{d y}{d x}=(\sin x)^{\cos x}[\cos x . \cot x-\sin x . \ln \sin x]$
Similarly, $\frac{1}{v} \frac{d v}{d x}=\sin x \cdot \frac{-\sin x}{\cos x}+\cos x \ln (\cos x)$
$\frac{d v}{d x}=(\cos x)^{\sin x}[\cos x \ln \cos x-\sin x \cdot \tan x]$
$\therefore \frac{d y}{d x}=\frac{d y}{d x}+\frac{d v}{d x}$

$$
=(\sin x)^{\cos x}[\cos x \cdot \cos x-\sin x \cdot \ln \sin x]+(\cos x)^{\sin x}[\cos x \cdot \ln \cos x-\sin x \cdot \tan x]
$$

d. Let, $\mathrm{y}=\mathrm{u}+\mathrm{v}$, where, $\mathrm{u}=\mathrm{x}^{\tan \mathrm{x}}$ and $\mathrm{v}=(\tan \mathrm{x})^{\mathrm{x}}$.
if, $u=(x)^{\tan x}$
Taking In on both sides,
$\ln u=\tan x \ln x$
Differentiate both sides w.r. to x, we get,
$\frac{1}{u} \frac{d y}{d x}=\tan x \frac{1}{x}+\ln x \cdot \sec ^{2} x$
$\frac{d y}{d x}=(x)^{\tan x}\left[\frac{\tan x}{x}+\log x \cdot \sec ^{2} x\right]$
Again similarly,
$\frac{1}{v} \frac{d v}{d x}=x \cdot \frac{\sec ^{2} x}{\tan x}+\ln \tan x .1$
$\frac{d v}{d x}=(\tan x)^{x}\left[\ln \tan x+\frac{x \sec ^{2} x}{\tan x}\right]$
$\therefore \frac{d y}{d x}=\frac{d y}{d x}+\frac{d v}{d x}=(x)^{\tan x}\left[\frac{\tan x}{x}+\ln x \sec ^{2} x\right]+(\tan x)^{x}\left(\ln \tan x+\frac{x \sec ^{2} x}{\tan x}\right)$

EXERCISE 15.3

Find the derivative with respect to x of the following.

1. $e^{\cosh x / a}$
2. $\ln \tan h x$
3. $\tanh (\arcsin x)$
4. $\operatorname{sech}^{-1} x-\operatorname{cosech}^{-1} x$
5. $x^{\cosh x}$
6. $x^{\sinh h} x^{2} / a$
7. $x^{\cos } h^{-1} x / a$
8. $(\ln x)^{\sin h x}$
9. $(\sin h x)^{\cosh ^{-1} x}$
10. $(\cosh x)^{\cosh x}$
11. $\left(\tanh \frac{x}{a}\right)^{\ln x}$
12. $\left(\sinh ^{-1} \mathrm{x}+\cosh ^{-1} \mathrm{x}\right)^{\mathrm{x}}$
13. $\left(\sin h_{a}^{\frac{x}{a}}+\cosh \frac{x}{a}\right)^{n x}$

Solution:

1. Let, $y=e^{\cosh x / a}$

Differentiate both sides w.r. to x, we get,
$\frac{d y}{d x}=\frac{d}{d x}\left(e^{\cosh x / a}\right)=e^{\cos 3 h x / a} \cdot \frac{1}{a} \sinh x / a \frac{d(x / a)}{d x}$
$=\frac{1}{\mathrm{a}} \sinh \frac{\mathrm{x}}{\mathrm{a}} \mathrm{e}^{\cosh x / a}$
2. Let, $y=\ln \tanh x$

Differentiate both sides w.r.to x , we get,
$\frac{d y}{d x}=\frac{d}{d x}(\ln \tanh x)=\frac{1}{\tanh x} \frac{d}{d x}(\tanh x)$

$$
=\frac{1}{\tanh x} \cdot \operatorname{sech}^{2} x=\frac{\cosh x}{\sinh x \cdot \cosh ^{2} x}=\frac{1}{\sinh x \cosh x}=\frac{2}{\sinh 2 x}=2 \operatorname{cosech} 2 x
$$

3. Let, $y=\tanh \left(\sin ^{-1} x\right)$

Differentiate both sides w.r.to x, we get,
$\frac{d y}{d x}=\frac{d}{d x}\left(\tanh \sin ^{-1} x\right)=\operatorname{sech}^{2} \sin ^{-1} x \frac{d}{d x}\left(\sin ^{-1} x\right)=\operatorname{sech}^{2}\left(\sin ^{-1} x \frac{x}{\sqrt{1-x^{2}}}\right)$
4. Let, $y=\operatorname{sech}^{-1} x=-\operatorname{cosch}^{-1} x$

Differentiate both sides w.r. to x, we get,

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left[\operatorname{sech}^{-1} x-\operatorname{cosech}^{-1} x\right] \\
& =\frac{-1}{x \sqrt{1-x^{2}}}+\frac{1}{x \sqrt{x^{2}+1}} \\
& =\frac{1}{x}\left[\frac{1}{\sqrt{x^{2}+1}}-\frac{1}{\sqrt{1-x^{2}}}\right]
\end{aligned}
$$

6. Let, $y=x^{\sinh x^{2} / a}$

Taking In on both sides we get, $\ln y=\sinh \frac{x^{2}}{a} \ln x$
Differentiate both sides w.r. to x, we get,
$\frac{1}{y} \frac{d y}{d x}=\sinh x^{2} / a \frac{1}{x}+\ln x \cdot \cos x \frac{x^{2}}{a}=\frac{2 x}{a}$
$\frac{d y}{d x}=x^{\sinh x / 2}$
$\left[\frac{\sinh x^{2} / a}{x}+\frac{2 x \ln x}{a} \cosh x^{2} / a\right]$
8. Let, $y=(\ln x)^{\sinh x}$

Taking In on both sides we get, $\ln y=\sinh x \ln (\ln x)$
Differentiate both sides w.r. to x, we get,
$\frac{1}{y} \frac{d y}{d x}=\sinh x \frac{1}{\log x} \cdot \frac{1}{x}+\ln (\ln x) \cdot \cosh x$
or, $\frac{d y}{d x}=(\ln x)^{\sinh x}$
$\left[\frac{\sinh x}{x \log x}+\cosh x \log (\log x)\right]$
5. Let, $y=x^{\cosh x}$

Taking In on both sides we have, $\ln y=\cosh x \ln x$
Differentiate both sides w.r. to x , we get,
$\frac{1}{y} \frac{d y}{d x}=\cosh x \frac{1}{x}+\ln x \cdot \sinh x$
$\frac{d y}{d x}=x^{\cosh x}\left[\frac{\cosh x+x \sinh x \log x}{x}\right]$
7. Let, $y=x^{\cosh -1 x / a}$

Taking In on both sides we get, $\ln y=x^{\text {cosh }^{-1} x / a} \ln x$
Differentiate both sides w.r. to x , we get,
$\frac{1}{y} \frac{d y}{d x}=\cosh ^{-1} x / a \frac{1}{x}+\ln x \frac{1}{\sqrt{\frac{x^{2}}{a^{2}}-1}} \times \frac{1}{a}$
$\frac{d y}{d x}=x^{\cosh ^{-1} x / a}\left[\frac{1}{x} \cosh ^{-1} x / a+\frac{\log x}{\sqrt{x^{2}-a^{2}}}\right]$
9. Let, $y=(\sinh x)^{\cosh -1 x}$

Taking In on both sides w.r. to x, we get,
$\ln y=\cosh ^{-1} x \ln (\sinh x)$
Differentiate both sides w.r. to x , we get,
or, $\frac{1}{y} \frac{d y}{d x}=\cosh ^{-1} x \cdot \frac{1}{\sinh x} \cdot \cosh x+\ln$ $(\sinh x) \frac{1}{\sqrt{x^{2}-1}}$

$$
\begin{aligned}
\text { or, } & \frac{d y}{d x}=(\sinh x)^{\cosh -1 x} \\
& {\left[\cosh ^{-1} x \operatorname{coth} x+\frac{\log \sinh x}{\sqrt{x^{2}-1}}\right] }
\end{aligned}
$$

10. Let, $y=(\cosh x)^{\cosh x}$

Taking In on both sides we get,
Iny = coshx $\ln (\cosh x)$
Differentiate both sides w.r. to x, we get,
or, $\frac{1}{y} \frac{d y}{d x}=\cosh x \frac{\sinh x}{\cosh x}+\ln (\cosh x) \cdot \sinh x$
or, $\frac{d y}{d x}=(\cosh x)^{\cosh x}[\cosh x \tanh x+\sinh x \ln (\cosh x)]$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=(\cosh \mathrm{x})^{\cosh \mathrm{x}}[\operatorname{Sinh} \mathrm{x}+\sinh \mathrm{x} \ln (\cosh \mathrm{x})]$
11. Let, $\mathrm{y}=\left(\tanh \frac{\mathrm{x}}{\mathrm{a}}\right)^{\ln \mathrm{x}}$

Taking In on both sides w.r. to x, we get,
$\ln y=\ln x \ln \left(\tanh \frac{x}{\mathrm{a}}\right)$
Differentiate both sides w.r. to x, we get,
$\frac{1}{y} \frac{d y}{d x}=\ln x \frac{\operatorname{sech}^{2} x / a}{\tanh x / a} \times \frac{1}{a}+\ln \tanh \frac{x}{a} \cdot \frac{1}{x}$
or, $\frac{d y}{d x}=\left(\tanh \frac{x}{a}\right)^{\ln x}\left[\frac{\cos x \cdot \cosh x / a}{\cosh { }^{2} x / a \cdot \sinh x / a} \frac{1}{a}+\ln \tanh -\frac{1}{a} \cdot \frac{x}{x}\right]$
or, $\frac{d y}{d x}=\left(\tanh \frac{x}{a}\right)^{\ln x}\left[\frac{2 \log x}{2 \sinh x / a \cosh x / a} \times \frac{1}{a}+\ln \tanh x / a \cdot \frac{1}{x}\right]$
or, $\frac{d y}{d x}=\left(\tanh \frac{x}{a}\right)^{\ln x}\left[\frac{2}{a} \operatorname{cosech} 2 x / a \cdot \log x+\ln \tanh x / a \cdot \frac{1}{x}\right]$
or, $\frac{d y}{d x}=\left(\tanh \frac{x}{a}\right)^{\ln x}\left[\frac{2}{a} \ln x \operatorname{cosech} 2 x / a+\frac{1}{x} \ln \tanh x / a\right]$
12. Let, $y=\left(\sinh ^{-1} x+\cosh ^{-1} x\right)^{x}$

Taking In on both sides w.r. to x, we get,
Iny $=x \ln \left(\sinh ^{-1} x+\cosh ^{-1} x\right)$
Differentiate both sides w.r. to x, we get,
or, $\frac{1}{y} \frac{d y}{d x}=\frac{x}{\left(\sinh ^{-1} x+\cosh ^{-1} x\right)}\left[\frac{d}{d x}\left(\sinh ^{-1} x+\cosh ^{-1} x\right)\right]+\ln \left(\sinh ^{-1} x+\cosh ^{-1} x\right)$
or, $\frac{1}{y} \frac{d y}{d x}=\frac{x}{\left(\sinh ^{-1} x+\cosh ^{-1} x\right)}\left(\frac{1}{\sqrt{1+x^{2}}}+\frac{1}{\sqrt{x^{2}-1}}\right)+\ln \left(\sinh ^{-1} x+\cosh ^{-1} x\right)$
or, $\frac{d y}{d x}=\left(\sinh ^{-1} x+\cosh ^{-1} x\right)^{x}\left[\frac{x}{\left(\sinh ^{-1} x+\cosh ^{-1} x\right)}\left(\frac{1}{\sqrt{1+x^{2}}}+\frac{1}{\sqrt{x^{2}-1}}\right)\right]$

$$
+\ln \left(\sinh ^{-1} x+\cosh ^{-1} x\right)
$$

13. Let, $y=\left(\sinh \frac{x}{a}+\cosh \frac{x}{a}\right)^{n x}$

Taking In on both sides we get,
$\ln y=n x \ln \left(\sinh \frac{x}{a}+\cosh \frac{x}{a}\right)$

Differentiate both sides w.r. to x, we get,

$$
\begin{aligned}
& \Rightarrow \frac{1}{y} \cdot \frac{d y}{d x} h x \times \frac{\left(\cosh \frac{x}{a}+\sinh \frac{x}{a}\right)}{\left(\sinh \frac{x}{a}+\cosh \frac{x}{a}\right)} \times \frac{1}{a}+n \ln \left(\sinh \frac{x}{a}+\cosh \frac{x}{a}\right) \\
& \Rightarrow \frac{d y}{d x}=y\left[\frac{n x}{a}+n \ln \left(\sinh \frac{x}{a}+\cosh \frac{x}{a}\right)\right] \\
& =\left(\sinh \frac{x}{a}+\cosh \left(\frac{x}{a}\right)\right)^{n x}\left[\frac{n x+n a \ln \left(\sinh x \frac{x}{a}+\cosh \frac{x}{a}\right)}{a}\right] \\
& =n\left(\sinh \frac{x}{a}+\cosh \frac{x}{a}\right)^{n x}\left[\frac{x}{a}+\ln \left(\sinh \frac{x}{a}+\cosh \frac{x}{a}\right)\right]
\end{aligned}
$$

EXERCISE 15.4

1. Find the slope and inclination with the x-axis of the tangent of following curves.
a. $y=x^{3}+2 x+7$ at $x=1$
b. $x^{2}-y^{2}=9$ at $(3,0)$
c. $y=-3 x-x^{4}$ at $x=-1$

Solution:

a. Given, $y=x^{3}+2 x+7$

Differentiate both sides w.r. to x, we get,
$\frac{d y}{d x}=3 x^{2}+2$
Slope at $x=1$ is, $\left.\frac{d y}{d x}\right|_{x=1}$
$\therefore \quad \frac{d y}{d x}=3 \times 1^{2}+2=5$
Since slope $m=\tan \theta, \theta$ is angle from x-axis.
\therefore Tan $\theta=5$
$\Rightarrow \theta=\tan ^{-1} 5$
b. Given, $x^{2}-y^{2}=9$

Differentiate both sides w.r. to x, we get,
$2 x-2 y \frac{d y}{d x}=0$
or, $\frac{d y}{d x}=\frac{x}{y}$
Slope at $(3,0)$ is, $\left.\frac{d y}{d x}\right|_{(3,0)}=\frac{3}{0}=\infty$
Again, $\tan \theta=\infty$
$\theta=\tan ^{-1} \infty=\tan ^{-1}(1) \tan \frac{\pi}{2}=\frac{\pi}{2}$
c. Given, $y=-3 x-x^{4}$

Differentiate both sides w.r. to x,
$\frac{d y}{d x}=-3-4 x^{3}$
Slope at $x=-1$ is, $\frac{d y}{d x} x=-1=-3-4(-1)^{3}=-3+4=1$
Again, $\tan \theta=1$
$\theta=\tan ^{-1} 1=\tan -1 \tan \frac{\pi}{4}=\frac{\pi}{4}$
2. Obtain the equation to the tangent to the parabola $y^{2}=8 x$ at $(2,-4)$.

Solution:

Since we know the equation of tangent be the parabola $y^{2}=4 a x$ at $\left(x_{1}, y_{1}\right)$ is, $\mathrm{yy}_{1}=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_{1}\right)$
Now, $y^{2}=8 x=4 \times 2 x$ and $\left(x_{1}, y_{1}\right)=(2,-4)$

214 Kriti's Principles of Mathematics-XII

\therefore Required equation of tangent is

$$
y(-4)=4(x+2)
$$

or, $-4 y=4 x+8$
or, $-\mathrm{y}=\mathrm{x}+2$
or, $x+y+2=0$
Given, $\mathrm{y}^{2}=8 \mathrm{x}$
$2 \mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}=8$
$\frac{d y}{d x}=\frac{4}{y}$
$\left.\frac{d y}{d x}\right|_{(2,-4)}=\frac{4}{-4}=-1$
Now, required equation of tangent,
$y-y_{1}=m\left(x-x_{1}\right)$
or, $y+4=-1(x-2)$
or, $y+4=-x+2$
or, $x+y+2=0$
3. Find the equation of tangent and normal to the curve
a. $y=2 x^{2}-3 x-1$ at $(1,-2)$
b. $y=x^{3}$ at $(2,8)$
c. $x^{2}-y^{2}=16$ at $(6,3)$
d. $x^{2}+3 x y+y^{2}=11$ at $(2,1)$
e. $x^{2 / 3}+y^{2 / 3}=2$ at $(1,1)$
f. $y^{2}=8 x$ at $(2,-4)$

Solution:

a. Given $y=2 x^{2}-3 x-1$

Differentiate both sides w.r. to x, we get
$\frac{d y}{d x}=4 x-3$
Slope of tangent say $\left(m_{1}\right)$ at $(1,-2)$ is $m_{1}=\frac{d y}{d x}=4-3=1$
Then slope of normal is say m_{2} is given by
$m_{1} \times m_{2}=-1$
$m_{2}=-\frac{1}{1}=-1$
Now, equation of tangent is,
$y-(-2)=1(x-1)$
$\Rightarrow y+2=x-1$
$\Rightarrow x-y-3=0$
Again equation of normal at $(1,-2)$ is,
$y-(-2)=-1(x-1) \Rightarrow y+2=-x+1$ $\Rightarrow x+y+1=0$
b. Given, $y=x^{3}$

Differentiate both sides w.r. to x , we get,
$\frac{d y}{d x}=3 x^{2}$
c. Given, $x^{2}-y^{2}=16$

Differentiate both sides w.r. to x, we get

$$
\begin{aligned}
& 2 x-2 y \frac{d y}{d x}=0 \\
& \text { or, } 2 y \frac{d y}{d x}=2 x \\
& \text { or, } \frac{d y}{d x}=\frac{x}{y} \\
& \qquad\left.\frac{d y}{d x}\right|_{(6,3)}=\frac{6}{3}=2
\end{aligned}
$$

Again, Slope of normal is $=-\frac{1}{12}$
Now, equation of normal is,

$$
\begin{aligned}
& y-8=-\frac{1}{12}(x-2) \\
& \Rightarrow 12 y-96=-x+2 \\
& \Rightarrow x+12 y-98=0
\end{aligned}
$$

d. Given, $x^{2}+3 x y+y^{2}=11$

Differentiate both sides w.r. to x, we get,
$2 x+3\left[x \frac{d y}{d x}+y\right]+2 y \frac{d y}{d x}=0$
$\Rightarrow 2 x+3 x \frac{d y}{d x}+3 y+2 y \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}(3 x+2 y)=-(2 x+3 y)$
$\therefore \frac{d y}{d x}=\frac{-(2 x+3 y)}{3 x+2 y}$
At $(2,1), \frac{d y}{d X}=\frac{-(4+3)}{6+2}=-\frac{7}{8}$
Equation of the tangent at $(2,1)$ is
$y-1=-\frac{7}{8}(x-2)$
$\Rightarrow 8 y-8=-7 x+14$
$\therefore 7 x+8 y=22$
And, the equation of the normal at $(2,1)$ is,
$y-1=\frac{8}{7}(x-2)$
$\Rightarrow 8 x-16=7 y-7$
$\therefore 8 x-7 y=9$
f. $y^{2}=8 x$ at $(2,-4)$

Solution:

We have, $\mathrm{y}^{2}=8 \mathrm{x}$
$\Rightarrow 2 y \frac{d y}{d x}=8$
$\therefore \frac{d y}{d x}=\frac{4}{y}$
At $(2,-4), \frac{d y}{d x}=1$
Equation of the tangent at $(2,-4)$
$y+4=-1(x-2)$
$\Rightarrow y+4=-x+2$
$\therefore \quad \mathrm{x}+\mathrm{y}+2=0$
And, the equation of the normal at
$(2,-4)$ is
$y+4=1(x-2)$

Now, equation of tangent at $(6,3)$ is,
$y-3=2(x-6)$
or, $y-3=2 x-12$
or, $2 x-y-9=0$
Again, equation of normal is,
$y-3=-\frac{1}{2}(x-6)$
or, $2 y-6=-x+6$
or, $x+2 y-12=0$
e. Differentiate w.r. to x, we get,
$\frac{2}{3} x^{(2 / 3-1)}+\frac{2}{3} y^{(2 / 3-1)} \frac{d y}{d x}=0$
or, $\frac{2}{3} x^{-1 / 2}+\frac{2}{3} y^{-1 / 2} \frac{d y}{d x}=0$
or, $y^{-1 / 2} \frac{d y}{d x}=x^{-1 / 2}$
or, $\frac{d y}{d x}=\frac{x^{1 / 2}}{y^{-1 / 2}}=\frac{y^{1 / 2}}{x^{1 / 2}}=\frac{\sqrt{y}}{\sqrt{x}}$

$$
\left.\frac{d y}{d x}\right|_{(1,1)} \text { is } 1
$$

Now, equation of tangent at $(1,1)$ is, $y-1=1(x-1)$
$\Rightarrow y-1=x-1 \Rightarrow x-y=0$
Again, equation of normal is,
$y-1=-1(x-1)$
$\Rightarrow y-1=-x+1$
$\Rightarrow x+y-2=0$

216 Kriti's Principles of Mathematics-XII

$\therefore \quad x-y-6=0$
4. Find the points on the curve where the tangents are parallel to the x-axis.
a. $y=2 x-x^{2}$
b. $y=2 x^{2}-6 x+9$
c. $x^{2}+y^{2}=16$

Solution:

a. Differentiate both sides w.r. to x, we get, $\frac{d y}{d x}=2-2 x$

If the tangent are parallel to x-axis, then the slope must be zero
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=2-2 \mathrm{x}=0$
$\Rightarrow 2=2 x \Rightarrow x=1$
If $x=1$, then $y=2-1^{2}=1$
\therefore The required point is $(1,1)$
b. Differentiate both sides w.r. to x, we c. Differentiate both sides w.r. to x, we get, get,
$\left.\frac{d y}{d x}=4 x-6\right]$

$$
2 x+2 y \frac{d y}{d x}=0
$$

Now, $\frac{\mathrm{dy}}{\mathrm{dx}}=0 \Rightarrow 4 \mathrm{x}=6$
or, $2 y \frac{d y}{d x}=-2 x$
$\Rightarrow x=\frac{3}{2}$
or, $\frac{d y}{d x}=-\frac{x}{y}$
If $x=\frac{3}{2}$, then $y=2 \times \frac{9}{4}-6 \times \frac{3}{2}+9$
Now, $\frac{d y}{d x}=0 \Rightarrow-\frac{x}{y}=0 \Rightarrow-x=0 \Rightarrow x$
$=\frac{9}{2}$
$=0$
If $x=0$ then $y= \pm 4$
\therefore Required point is $\left(\frac{3}{2}, \frac{9}{2}\right)$
Therefore the required point $(0, \pm 4)$
5. Find points on the curve $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ at which the tangent are
a. parallel to x-axis
b. parallel to y-axis.

Solution:

Given, $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$
Differentiate both sides w.r. to x, we get,
$\frac{2 x}{9}+\frac{2 y}{16} \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=-\frac{2 x}{9} \times \frac{16}{2 y}=\frac{-16 x}{9 y}$
a. For, parallel to x-axis
$\frac{d y}{d x}=0$
$\Rightarrow \frac{-16 x}{9 y}=0$
$\Rightarrow x=0$
If $x=0$ then, $y^{2}=16$

$$
y= \pm 4
$$

Therefore required points $(0, \pm 4)$
b. For parallel to γ-axis,
$\frac{d y}{d x}=\infty$
$\Rightarrow \frac{-16 x}{9 y}=\infty$ which is possible only when y
$=0$
Then we have,
$\frac{x^{2}}{9}=1$
$\therefore \quad \mathrm{x}= \pm 3$
Therefore required points $(\pm 3,0)$
6. Show that the tangents to the curve $y=2 x^{3}-3$ at the points where $x=2$ and $x=-2$ are parallel.

Solution:

Given, $y=2 x^{3}-3$
Differentiate both sides w.r. to x, we get,
$\frac{d y}{d x}=6 x^{2}$
Slope at $x=2$ i.e, $\frac{d y}{d x} x=2$ is $\frac{d y}{d x}=6 \times 2^{2}=24$.
Again slope at $x=-2$ is, $\frac{d y}{d x} x=-2=6 \times(-2)^{2}=24$
Hence, if $x=2$ and $x=-2$ slope are equal it means the tangent are parallel.
7. a. Find the equation of tangent line to the curves $y=x^{2}-2 x+7$ which is parallel to the line $2 x-y+9=0$
b. Find the point on the curve $y^{2}=4 x+1$ at which the tangent is perpendiculars to the line $7 x+2 y=1$.

Solution:

a. Given, curve, $y=x^{2}-2 x+7$

Differentiate both sides w.r. to x, we get,
$\frac{d y}{d x}=2 x-2$ (slop of tangent)
Again slop of the line $2 x-y+9=0$, obtained by comparing to $y=m x+c$ i.e. $y=2 x+9$. Therefore the slope of given line is 2 .
If the required tangent is parallel to the given line then slope must be equal
$\therefore 2 x-2=0$
or, $x=2$
Put, $x=2$ in $y=x^{2}-2 x+7$ we get,

$$
y=2^{2}-2 \times 2+7=7
$$

\therefore Required point is, $(2,7)$
Now, the equation of tangent is,

$$
y-7=2(x-2)
$$

or, $y-7=2 x-4$
or, $2 x-y+3=0$
b. Given, curve, $\mathrm{y}^{2}=4 \mathrm{x}+1$,
$2 y \frac{d y}{d x}=4 \Rightarrow \frac{d y}{d x}=\frac{2}{y}$
Again slope of $7 x+2 y=1$
or, $2 y=-7 x+1$
$y=\frac{-7}{2} x+\frac{1}{2}$
\therefore Slope of this box ix $\frac{-7}{2}$.
If the tangent to the curve $y^{2}=4 x+1$ is perpendicular to the line $7 x+2 y=1$, product of slope must be -1 .
$\therefore \frac{2}{y} \times-\frac{7}{2}=-1 \Rightarrow 14=2 y \Rightarrow y=7$
Putting $y=7$ in $y^{2}=4 x+1$ we get,

$$
\begin{aligned}
& 49=4 x+1 \\
& 48=4 x \Rightarrow x=12
\end{aligned}
$$

\therefore The required point is $(12,7)$

218 Kriti's Principles of Mathematics-XII

8. Show that equation of tangent to the curve $\left(\frac{x}{a}\right)^{3}+\left(\frac{y}{b}\right)^{3}=2$ at (a, b) is $\frac{x}{a}+\frac{y}{b}=2$

Solution:

Given, curve is, $\left(\frac{x}{a}\right)^{3}+\left(\frac{y}{b}\right)^{3}=2$
Differentiate both sides w.r. to x, we get,
$\frac{3 x^{2}}{a^{3}}+\frac{3 y^{2}}{b^{3}} \frac{d y}{d x}=0$
or, $\frac{d y}{d x}=\frac{-x^{2}}{a^{3}} \times \frac{b^{3}}{y^{2}}$
Now, $\frac{d y}{d x} \left\lvert\,(a, b)=-\frac{a^{2} b^{3}}{a^{3} b^{2}}=-\frac{b}{a}\right.$
Now, equation of tangent at (a, b) is,
$y-b=-\frac{b}{a}(x-a)$
$\Rightarrow a y-a b=-b x+a b$
$\Rightarrow a y+b x=2 a b$. Dividing both sides by $a b$
We get, $\frac{x}{a}+\frac{y}{b}=1$ proved.
9. Find the angle of intersection of the following curves.
a. $y=x^{3}$ and $6 y=7-x^{2}$ at $(1,1)$
b. $y=x^{3}$ and $y=2 x$
c. $y=6-x^{2}$ and $x^{3}=4 y$ at $(2,4)$
d. $x^{2}+y^{2}=5$ and $y^{2}=4 x$

Solution:

a. Solving we get,

$$
6 x^{3}+x^{2}-7=0
$$

or, $6 x^{3}-6 x^{2}+7 x^{2}-7 x+7 x-7=0$
or, $6 x^{2}(x-1)+7 x(x-1)+7=(x-1)=0$
or, $(x-1)\left(6 x^{2}+7 x+7\right)=0$
$\therefore \quad x=1$ as $6 x^{2}+7 x+7=0$ does not have any real values.
If $x=1$ then $y=1$
Now, from $y=x^{3}$

$$
\Rightarrow \frac{d y}{d x}=3 x^{2}
$$

$$
\therefore 6 \frac{\mathrm{dy}}{\mathrm{dx}}=-2 x
$$

Again, from, $6 y-7+x^{2}=0$

$$
\Rightarrow \frac{d y}{d x}=-\frac{x}{3}
$$

$$
\begin{aligned}
& 6 \frac{d y}{d x}+2 x=0 \Rightarrow \frac{d y}{d x}=\frac{-2 x}{6}=-\frac{x}{3} \\
\therefore & \frac{d y}{d x} \text { at }(1,1)\left(\text { say } m_{2}\right)=\frac{-1}{3}
\end{aligned}
$$

If θ be the angle between two curves, then,

$$
\begin{aligned}
& \tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|=\left|\frac{3+\frac{1}{3}}{1+3 \times\left(-\frac{1}{3}\right)}\right|=\left|\frac{\frac{10}{3}}{0}\right|=\infty \\
& \therefore \quad \theta=\tan ^{-1} \infty \\
& \therefore \quad \theta=\frac{\pi}{2}
\end{aligned}
$$

b. Solving we get,
$x^{3}=2 x \quad[\because x \neq 0$ otherwise it doesn't remains curves $]$
$\Rightarrow \mathrm{x}^{2}=2 \quad \therefore \mathrm{x}= \pm \sqrt{2}$
Now, if $x=\sqrt{2}$. Then $y= \pm 2 \sqrt{2}$
From $y=x^{3}$
$\frac{d y}{d x}=3 x^{2}$
$\left.\frac{d y}{d x} \right\rvert\,(\sqrt{2}, 2 \sqrt{2}) \quad\left(m_{1}\right.$ say $)=3(\sqrt{2})^{2}=6$
From, $y=2 x$
$\left.\frac{d y}{d x}=2 \quad \therefore \frac{d y}{d x} \right\rvert\,(\sqrt{2}, 2 \sqrt{2})\left(m_{2}\right.$ say $)=2$
Now, by using the formula,
$\tan \theta\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|=\left|\frac{6-2}{1+6 \times 2}\right|=\left|\frac{4}{1+12}\right|=\left|\frac{4}{13}\right|$
$\therefore \quad \theta=\tan ^{-1} \frac{4}{13}$
c. Here, $y=6-x^{2}$
$\frac{d y}{d x}=-2 x$
Say $m_{1}=\frac{d y}{d x}(2,4)=-2 \times 2=-4$
and, $x^{3}=4 y$
$3 x^{2}=\frac{4 d y}{d x} \quad \therefore \frac{d y}{d x}=\frac{3}{4} x^{2}$
say $m_{2}=\frac{d y}{d x}(2,4)=\frac{3}{4} \times 4=3$
If θ be the angle then,
$\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|=\left|\frac{-4-3}{1+(-4)(3)}\right|=\left|\frac{-7}{11}\right|$
$\therefore \quad \theta=\tan ^{-1} \frac{7}{11}$
d. Solving we ge,t
$x^{2}+4 x-5=0$
or, $x^{2}+5 x-x-5=0$
or, $x(x+5)-1(x+5)=0$
$\therefore \quad x=1,-5$
If $x=1$ then $y^{2}=4 \Rightarrow y=2$
If $x=-5$ then $y^{2}=-20$ (does not give real values)
Now from $x^{2}+y^{2}=5$
$2 x+2 y \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=-\frac{x}{y}$
$m_{1}($ say $)=\frac{d y}{d x}(1,2)=-\frac{1}{2}$
Again, $y^{2}=4 x$
$d y \frac{d y}{d x}=4 \Rightarrow \frac{d y}{d x}=\frac{2}{y}$
or, $m_{2}($ say $)=\frac{d y}{d x}{ }^{(1,2)}=\frac{2}{2}=1$
$\therefore \tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|=\left|\frac{\frac{-1}{2}-1}{1+\left(-1 \frac{1}{2}\right)(1)}\right|=\left|\frac{\frac{-3}{2}}{\frac{1}{2}}\right|=|3|$
$\therefore \quad \theta=\tan ^{-1}(3)$

EXERCISE 15.5

1. Verify the Rolle's theorem for each of the following functions.
a. $f(x)=x^{2}+2$ in $[-2,2]$
b. $f(x)=x^{3}-4 x$ in $[0,2]$
c. $f(x)=\sin 2 x$ in $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
d. $f(x)=\cos 2 x$, in $[-\pi, \pi]$
e. $f(x)=\sqrt{25-x^{2}}$ in $[-5,5]$
f. $f(x)=(x-1)(x-2)(x-3)$ in $[1,3]$
g. $f(x)=\sin x+\cos x$ in $[0,2 \pi]$

Solution:

a. Here, $f(x)=x^{2}+2$
i. Since the polynomial function is continuous. Hence given function is continuous in [-2, 2].
ii. Again, $f(x)=x^{2}+2$
$f^{\prime}(x)=2 x$ which gives real values for all values of x in $(2,2)$
Hence $f(x)$ is differentiable in $(-2,2)$
iii. Since $f(a)=f(-2)=(-2)^{2}+2=6$ and $f(b)=f(2)=2^{2}+2=6$
$\therefore f(a)=f(b)$.
Here $f(x)$ satisfies all the condition of Rolle's theorem so these exists $C \in(a$,
b) such that $\mathrm{f}^{\prime}(\mathrm{c})=0 \Rightarrow 2 \mathrm{c}=0$

Now, $\mathrm{f}(\mathrm{c})=2=0$
$\Rightarrow c=0 \in(-2,2)$
b. Here $f(x)=x^{3}-4 x$

Here, $f^{\prime}(x)=3 x^{2}-4$. Which is defined for all values in (0,2). Hence the given function is differentiable in (0,2). Again since differentiable function is continuous. So the given function is continuous on [0, 2].
Now, $f(a)=f(0)=03-4 \times 0=0$
and $f(b)=f(2)=2^{3}-4 \times 2=8-8=0$
$\therefore f(a)=f(b)$
So by Rolle's theorem there exits $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ s.t. $\mathrm{f}^{\prime}(\mathrm{c})=0$
Now, $f^{\prime}(x)=3 x^{2}-4$
$f^{\prime}(c)=3 x^{2}-4$
$f^{\prime}(c)=0 \Rightarrow 3 c^{2}-4=0 \Rightarrow c^{2}=\frac{4}{3} \Rightarrow c= \pm \sqrt{\frac{4}{3}}$
$\therefore c=\sqrt{\frac{4}{3}} \in(0,2)$.
c. Since we know sine function is continuous in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and differentiable in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Now, $f(a)=f\left(\frac{\pi}{2}\right)=\sin 2 \times \frac{\pi}{2}=\sin (-\pi)=-\sin \pi=0$
and $f(b)=f\left(\frac{\pi}{2}\right)=\sin 2 \frac{\pi}{2}=\sin \pi=0$
Thus, by Rolle's theorem there exists $c \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ in which $\mathrm{f}^{\prime}(\mathrm{c})=0$
$\Rightarrow 2 \cos 2 \mathrm{c}=0$
$\Rightarrow \cos 2 \mathrm{c}=0=\cos \frac{\pi}{2}$
$\Rightarrow 2 c=\frac{\pi}{2} \Rightarrow c=\frac{\pi}{4} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
d. Since cosine function is continuous in $[-\pi, \pi]$ and is also differentiable $(-\pi, \pi)$

Now, $\mathrm{f}(\mathrm{a})=\mathrm{f}(-\pi)=\cos 2(-\pi)=\cos 2 \pi=1$
$f(b)=f(\pi)=\cos 2 \pi=1$
Hence by Rolle's Theorem $\mathrm{c} \in(-\pi, \pi)$ such that $\mathrm{f}^{\prime}(\mathrm{c})=1$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{c})=-\sin 2 \mathrm{c}=0$
$\Rightarrow \sin 2 \mathrm{c}=\sin 0$
$\Rightarrow 2 \mathrm{c}=0$
$\Rightarrow \mathrm{C}=0 \in(-\pi, \pi)$
e. Since given function is continuous in $[-5,5]$ and also gives real values for all values in $(-5,5)$ and hence differentiable.
Now, $f(-5)=\sqrt{25-25}=0, f(b)=f(5)=\sqrt{25-25}=0$
$\therefore f(a)=f(b)$
Now, by Rolle's theorem, $\exists \mathrm{c} \in(-5,5)$ s.t. $\mathrm{f}^{\prime}(\mathrm{c})=0$
$\Rightarrow f^{\prime}(\mathrm{c})=\frac{-2 \mathrm{x}}{2 \sqrt{25-\mathrm{x}^{2}}}=0$
$\Rightarrow-2 x=0 \Rightarrow x=0 \in(-5,5)$
f. $f(x)=(x-1)(x-2)(x-3)$

$$
=(x-1)\left(x^{2}-5 x+6\right)=x^{3}-x^{2}-5 x^{2}+5 x+6 x-6=x^{3}-6 x^{2}+11 x-6
$$

Since polynomial function is continuous. So given function is continuous in [1, 3] and is also defined for all values in $(1,3)$ so is differentiable.
Now, $f(1)=f(3)=0$
Now by Rolle's theorem,
$f^{\prime}(c)=3 c^{2}-12 c+11=0$
$\Rightarrow c=\frac{6 \pm \sqrt{3}}{3}$
$\therefore \quad c=\frac{6+\sqrt{3}}{3} \in(1,3)$
g. Since the sum of two continuous function is continuous. So given function is continuous in $[0,2 \pi]$.
The given function defined all values in $[0,2 \pi]$. Hence differentiable in $(0,2 \pi)$
Again, $f(0)=\sin 0+\cos 0=0+1=1$
and $f(2 \pi)=\sin 2 \pi+\cos 2 \pi=0+1=1$
Now by Rolle's theorem $\ni \mathrm{c} \in(0,2 \pi)$ s.t. $\mathrm{f}^{\prime}(\mathrm{c})=0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{c})=\cos \mathrm{c}-\mathrm{sinc}=0$
$\Rightarrow \mathrm{Cosc}=\operatorname{sinc}$

$$
\begin{aligned}
& \Rightarrow \operatorname{tanc}=1=\tan \frac{\pi}{4} \\
& \therefore \quad c=\frac{\pi}{4}
\end{aligned}
$$

Which is positive for $\mathrm{c}=\frac{\pi}{4} \in(0,2 \pi)$
2. By using Rolle's theorem find a point on each of the curves given by the following where the tangent is parallel to x-axis.
a. $f(x)=6 x-x^{2}$ in $[0,6]$
b. $f(x)=2 x^{2}-4 x$ in $[0,2]$

Solution:

a. Being a polynomial function continuous in $[0,6]$. So it gives real values in $(0,6)$.

Therefore the given function is differentiable in $(0,6)$
$f(a)=6 \times 0-0^{2}=0$
and $f(b)=6 \times 6-6^{2}=0$
$\therefore f(a)=f(b)$
So by Rolle's theorem, $\exists \mathrm{c} \in(0,6)$ s.t. $\mathrm{f}^{\prime}(\mathrm{c})=6-2 \mathrm{c}$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{c})=6-2 \mathrm{c}=0$
$\Rightarrow 2 c=6 \Rightarrow c=3$
Thus the tngent to the given curve is parallel to x-axis at $x=3$.
\therefore If $\mathrm{x}=3$. Then $\mathrm{y}=6 \times 3-3^{2}=18-9=9$
Therefore the required points is $(3,9)$
b. Given $f(x)=2 x^{2}-4 x$

Since the polynomial function is continuous in $[0,2]$
Also the given function gives definite values for all values in (0,2). Hence the function is also differentiable in $(0,2)$
Now, $f(0)=2 \times 0^{2}-4 \times 0=0$
$f(2)=2 \times 2^{2}-4 \times 2=8-8=0$
$\therefore f(0)=f(2)$
Here, all the conditioned of Rolle's theorem is satisfied os $\ni c \in(0,2)$ s.t. $f^{\prime}(c)=0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{c})=4 \mathrm{c}-4=0$
$\Rightarrow 4 \mathrm{c}=4 \Rightarrow \mathrm{C}=1 \in(0,2)$
Thus, the tangent to the curve $2 x^{2}-4 x$ is parallel to x-axis at the point $x=1$.
\therefore When $\mathrm{x}=1, \mathrm{y}=2 \mathrm{x}^{2}-4 \mathrm{x}=2 \times 1-4 \times 1=-2$
So the required point is $(1,-2)$
3. Verify the mean value theorem for each of the following function in the given interval.
a. $f(x)=3 x^{2}-2$ in $[2,3]$
b. $f(x)=x^{2}$ in $[1,2]$
c. $f(x)=x(x-1)(x-2)$ in $\left[0, \frac{1}{2}\right]$
d. $f(x)=e^{x}$ in $[0,1]$
e. $f(x)=\sqrt{x^{2}-4}$ in $[2,4]$

Solution:

a. Since, being the polynomial function $f(x)=3 x^{2}-2$ is continuous in [2, 3]

Also $f(x)=3 x^{2}-2$ is defined for all values in (2,3). Hence is differentiable in (2, 3).
Again, $f(2)=3 \times 2^{2}-2=12-2=10$
and $f(3)=3 \times 3^{2}-2=27-2=25$
$\therefore \mathrm{f}(2) \neq \mathrm{f}(3)$
Hence all the condition of mean value theorem satisfied. So by the theorem \exists
$\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ s.t.
$f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}=\frac{f(3)-f(2)}{3-2}=\frac{25-10}{1}=15$
We have, $f(x)=3 x^{2}-2$ \qquad (**)
$\mathrm{f}^{\prime}(\mathrm{c})=6 \mathrm{c}$
\therefore from (*) and (**)

$$
6 c=15 \Rightarrow c=\frac{15}{6} \in(2,3)
$$

b. Since quadratic function is continuous for all values of x so the given function is continuous in [1, 2]
$f(x)=x^{2}$ have a definite values in $[1,2]$ so is differentiable in $(1,2)$
Now, $f(1)=1$ and $f(2)=4$
$\therefore \mathrm{f}(1) \neq \mathrm{f}(2)$
All condition of M.V.T satisfied so $\exists \mathrm{c} \in(\mathrm{a}, \mathrm{b})$
Such that, $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}=\frac{f(2)-f(1)}{2-1}=\frac{4-1}{1}=3$
Again, $\mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}$
$\therefore \mathrm{f}^{\prime}(\mathrm{c})=2 \mathrm{c}$ \qquad
from (*) and (**)
$2 c=3 \Rightarrow c=\frac{3}{2}=1.5 \in(1,2)$
c. $f(x)=x\left(x^{2}-3 x+2\right)=x^{3}-3 x^{2}+2 x$

Since being polynomial function is continuous so the given function is continuous in $[0,1 / 2]$. All gives definite values in ($0,1 / 2$). So is differentiable in (0 , $1 / 2$)
Now, $f(0)=0$ and $f\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{3}-3\left(\frac{1}{2}\right)^{2}+2 \times \frac{1}{2}=\frac{1}{8}-\frac{3}{4}+1=\frac{1-6+8}{8}=\frac{3}{8}$
$\therefore \mathrm{f}(0) \neq \mathrm{f}\left(\frac{1}{2}\right)$
Therefore M.V. theorem applicable, so $\exists \mathrm{c} \in(\mathrm{a}, \mathrm{b})$ such that $\mathrm{f}^{\prime}(\mathrm{c})$
$=\frac{f(b)-f(a)}{b-a}=\frac{f\left(\frac{1}{2}\right)-f(0)}{\frac{1}{2}-0}=\frac{\frac{3}{8}-0}{\frac{1}{2}}=\frac{3}{8} \times 2=\frac{3}{4}$
Also, $f^{\prime}(x)=3 x^{2}-6 x+2$
$f^{\prime}(c)=3 c^{2}-6 c+2$
from (*) and (**) we have,
$3 c^{2}-6 c+2=\frac{3}{4}$
$\Rightarrow 12 c^{2}-24 c+8=3$
$\Rightarrow 12 c^{2}-24 c+5=0$
$\Rightarrow \mathrm{c}=\frac{24 \pm \sqrt{576-240}}{24}=\frac{24 \pm \sqrt{16 \times 21}}{24}=\frac{4(6 \pm \sqrt{21})}{24}=\frac{6 \pm 4.58}{6}$ (Appro.)
Taking positive sing,
$c=\frac{1.42}{6}=0.23 \in(0,1 / 2)$
d. Since exponential function is continuous
\therefore The given function is continuous in [0, 1]
Also differential in $(0,1)$
Now, $f(0)=e^{0}=1$
$f(1)=e^{1}=2.718$ (Approx)

224 Kriti's Principles of Mathematics-XII

$\therefore \mathrm{f}(0) \neq \mathrm{f}(1)$
Now by M.V. theorem $\ni \mathrm{c} \in(0, \mathrm{~b})$ s.t.
$f^{\prime}(c)=\frac{f(b)-f(a)}{b-}=\frac{f(1)-f(0)}{1-0}=\frac{2.718-1}{1}=1.718$
and $f^{\prime}(x)=e^{x}$
$f^{\prime}(c)=e^{c}$ \qquad
\therefore from (*) and (**)

$$
\begin{equation*}
e^{c}=1.718 \tag{**}
\end{equation*}
$$

Taking In on both sides,

$$
\text { c Ine }=\ln (1.718)
$$

$\therefore \quad c=0.236 \in(0,1)$
e. Given function is continuous in [2, 4]

Also differentiable in $(2,4)$
Now, $f(2)=0$
And $f(4)=2 \sqrt{3}$
$\therefore \mathrm{f}(2) \neq \mathrm{f}(4)$
So by MVT. These exists $c \in[2,4]$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
$\Rightarrow \frac{c}{\sqrt{c^{2}-4}}=\frac{f(4)-f(2)}{4-2}$
$\Rightarrow \frac{c}{\sqrt{c^{2}-4}}=\frac{2 \sqrt{3}-0}{2}=\sqrt{3}$
$\Rightarrow c=\sqrt{c^{2}-4} \times \sqrt{3}$
$\Rightarrow c^{2}=\left(c^{2}-4\right) 3$
$\Rightarrow c^{2}=3 c^{2}-12$
$\Rightarrow 2 c^{2}=12$
$\Rightarrow c^{2}=6$
$\Rightarrow \mathrm{c}=\sqrt{6}$
$=2.44 \in[2,4]$
Hence, MVT is verified.
4. Show that the mean value theorem is not applicable to the function $f(x)=\frac{1}{x}$ in $(-1,1)$.

Solution:

Given function $f(x)=\frac{1}{x}$ in $(-1,1)$ since the given function is not defined at $x=0 \in$ $(-1,1)$. Hence the function is not differentiable at $x=0 \in(-1,1)$. To satisfy the M.V.T, $f(x)$ should be differentiable for all $x \in(-1,1)$

Moreover the graph of $f(x)=\frac{1}{x}$ is,
Here, we cannot draw a tangent at $x=0$. So, the function is not differentiable. Hence M.V. theorem for the underlying function in the defined interval is not applicable.
5. Find the points on the curve $f(x)=(x-3)^{2}$ where the tangent is parallel to the chord joining the points $(3,1)$ and $(4,4)$.

Solution:

Let, the chord joining the ending points be, $(a, f(a))=(3,0)$ and $(b, f(b))=(4,1)$ Since $f(x)=(x-2)^{2}$ is continuous in $[3,4]$

Also exist for all values in $(3,4)$ and hence differentiable.
Also, $f(a) \neq f(b)$
By M.V. theorem $\ni \mathrm{c} \in(3,4)$ s.I.
$f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
Now the slope of the chord joining $(3,1),(4,4)$ is, $\frac{f(b)-f(a)}{b-a}=\frac{1-0}{4-3}=1$
Since, $f(x)=(x-3)^{2}$
$f^{\prime}(x)=\frac{d y}{d x}=2(x-3)$
$f^{\prime}(c)=2(c-3)$
from (*) and (**)
$2 c-6=1 \Rightarrow 2 c=7 \Rightarrow c=\frac{7}{2} \in(3,4)$
If $x=\frac{7}{2}$ then $y=\left(\frac{7}{2}-3\right)^{2}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$
\therefore The tangent at $\left(\frac{7}{2}, \frac{1}{4}\right)$ is parallel to be chord joining $(3,0)$ and $(4,1)$.
6. Find the point on the curve $f(x)=x^{3}-x^{2}+2$ where the tangent is parallel to the line joining the points $(1,2)$ and $(3,20)$.

Solution:

Since the given function is continuous on $[1,3]$ being polynomial and $f^{\prime}(x)=3 x^{2}$
$-2 x$ exist for all $(1,3)$ and $f(a)=2$ and $f(b)=20$
$\therefore \mathrm{f}(\mathrm{a}) \neq \mathrm{f}(\mathrm{b})$
So by M.V. theorem $\ni \mathrm{c} \in(1,3)$ s.t.
$f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
Now the slope of chord joining $(1,2)$ and $(3,20)$
i.e, $\frac{f(b)-f(a)}{b-a}$ is, $\frac{20-2}{3-1}=\frac{18}{2}=9$ \qquad
And, $f^{\prime}(c)=3 c^{2}-2 c$ \qquad
From (*) and (**)
$3 c^{2}-2 c=9 \Rightarrow 3 c^{2}-2 c-9=0$
Solving $c=\frac{1 \pm 2 \sqrt{7}}{3}=\frac{1+2 \times 2.64}{3}$ (Appro.)

$$
=\frac{1+5.29}{3}\left(\text { Appro.) (Taking positive sign) }=\frac{6.29}{3} \in(1,3)\right.
$$

If $x=2.1$ then, $y=(2.1)^{3}-(2.1)^{2}+2=9.26-4.41+2=6.85$
\therefore The required point is $(2.1,6.85)$

EXERCISE 15.6

By using L Hospital's rule, evaluate:

1. a. $\lim _{x \rightarrow 3} \frac{x^{3}-27}{x^{2}-9}$ b. $\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}$ c. $\lim _{x \rightarrow 0} \frac{3 x-\sin x}{x}$ d. $\lim _{x \rightarrow \infty} \frac{5 x^{2}+4 x-3}{2 x^{2}-3 x+5}$
e. $\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}-2 \cos x}{\sin ^{2} x}$
f. $\lim _{x \rightarrow 0} \frac{x-\sin x}{\tan ^{3} x}$
g. $\lim _{x \rightarrow 0} \frac{x-\tan x}{x^{3}}$
h. $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan 5 x}{\tan x}$
i. $\lim _{x \rightarrow 0} \frac{\left(e^{x}-1\right) \tan x}{x^{2}}$

$$
\text { j. } \lim _{x \rightarrow 0^{+}} \frac{\ln \tan x}{\ln x}
$$

226 Kriti's Principles of Mathematics-XII

Solution:

a. Here, $\lim _{x \rightarrow 3} \frac{x^{3}-27}{x^{2}-9}=\lim _{x \rightarrow 3} \frac{3 x^{2}}{2 x}$ (Differentiate w.r.to x) $=\frac{3 \times 3^{2}}{2 \times 3}=\frac{9}{2}$
b. $\lim _{x \rightarrow a} \frac{x^{2}-a^{n}}{x-a}=\lim _{x \rightarrow a} \frac{n x^{n-1}}{1}[$ Differentiate w.r.to $x]=n a^{n-1}$
c. $\lim _{x \rightarrow 0} \frac{3 x-\sin x}{x}=\frac{3-\cos x}{1}[$ Differentiate w.r. to $x]=\frac{3-\cos 0}{1}=\frac{3-1}{1}=2$
d. $\lim _{x \rightarrow \infty} \frac{5 x^{2}+4 x-3}{2 x^{2}-3 x+5}=\left(\frac{\infty}{\infty}\right.$ form $)$

$$
\left.=\lim _{x \rightarrow \infty} \frac{10 x+4}{4 x-3} \text { (Differentiate w.r.to } x\right]\left(\frac{\infty}{\infty} \text { form }\right)=\frac{10}{4}=\frac{5}{2}
$$

e. $\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}-2 \cos x}{\sin ^{2} c}=\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}+2 \sin x}{2 \sin x \cos x}$

$$
=\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}+2 \cos x}{2 \cos 2 x}=\frac{1+1+2}{2}=\frac{4}{2}=2
$$

f. Since, $\lim _{x \rightarrow 0} \frac{x-\sin x}{\tan ^{3} x}$
$=\lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3} \times\left(\frac{\tan x}{x}\right)^{3}}=\lim _{x \rightarrow 0}\left(\frac{x}{\tan x}\right)^{3} \times \lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3}}$
$=1 \times \lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3}}=\lim _{x \rightarrow 0} \frac{1-\cos x}{3 x^{2}}\left(\frac{0}{0}\right.$ form) [Differentiate w.r. to $\left.x\right]$
$=\lim _{x \rightarrow 0} \frac{0+\sin x}{6 x}[$ Differentiate w.r.to $x]=\lim _{x \rightarrow 0}\left[\frac{\sin x}{x}\right] \times \frac{1}{6}=1 \times \frac{1}{6}=\frac{1}{6}$
g. Here, $\lim _{x \rightarrow 0} \frac{x-\tan x}{x^{3}}=\left(\frac{0}{0}\right.$ form $)$

By L-Hospital rule, differentiate numerator and denominator w.r.to x, we get, $\lim _{x \rightarrow 0} \frac{1-\sec ^{2} x}{3 x^{2}}\left(\frac{0}{0}\right.$ form) [Differentiate w.r. to x]
$=\lim _{x \rightarrow 0} \frac{-\tan ^{2} x}{3 x^{2}}=-\frac{1}{3} \lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{2}=-\frac{1}{3} \times 1=-\frac{1}{3}$
h. Here, $\lim _{x \rightarrow \pi / 2} \frac{\tan 5 x}{\tan x}\left(\frac{\infty}{\infty}\right.$ form $)$

Using L-Hospital rule,
$\lim _{x \rightarrow \pi / 2} \frac{5 \sec ^{2} 5 x}{\sec ^{2} x}$ [Differentiate w.r. to x]
$=\lim _{x \rightarrow \pi / 2} \frac{5 \cos ^{2} x}{\cos ^{2} 5 x}=\lim _{x \rightarrow \pi / 2} \frac{-5 \times 2 \cos x \sin x}{-52 \cos 5 x \sin 5 x}[$ Differentiate w.r. to $x]$

$$
=\lim _{x \rightarrow \pi / 2} \frac{\sin 2 x}{\sin 10 x}=\lim _{x \rightarrow \pi / 2} \frac{2 \cos 2 x}{10 \cos 10 x}=\frac{1}{5}\left(\frac{\cos 2 \pi}{\cos 5 \pi}\right)=\frac{1}{5}\left(\frac{-1}{-1}\right)=\frac{1}{5}
$$

i. Here, $\lim _{x \rightarrow 0} \frac{\left(e^{x}-1\right) \tan x}{x^{2}}=\lim _{x \rightarrow 0} \frac{\left(e^{x}-1\right)}{x} \times \lim _{x \rightarrow 0} \frac{\tan x}{x}$
$=\lim _{x \rightarrow 0} \frac{e^{x}-1}{x} \times 1[\%$ form $]=\frac{e^{x}}{1}[$ Differentiate w.r. to $x]=e^{0}=1$
j. Since, $\lim _{x \rightarrow 0} \frac{\log \tan x}{\log x}\left(\frac{-\infty}{\infty}\right.$ form $)$

By using L-Hospital rule

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\frac{1}{\tan x} \times \sec ^{2} x}{(1 / x)}=\lim _{x \rightarrow 0} \frac{\operatorname{Sec}^{2} x}{\tan x} \\
& =\lim _{x \rightarrow 0} \frac{\sec ^{2} x+x \times 2 \sec x \cdot \sec x \cdot \tan x}{\sec ^{2} x} \\
& =\frac{1+0}{1}=\frac{1}{1} \\
& =1
\end{aligned}
$$

2.

a. $\lim _{\mathrm{x} \rightarrow \infty} \frac{\mathrm{x}^{4}}{\mathrm{e}^{\mathrm{x}}}$
b. $\lim _{x \rightarrow+\infty} \frac{\ln \left(x^{2}+1\right)}{\ln \left(x^{3}+1\right)}$
c. $\lim _{x \rightarrow 0^{+}} x^{x}$
d. $\lim _{x \rightarrow 0^{+}} \sin x \ln x^{2}$
e. $\lim _{x \rightarrow 0}\left[\frac{1}{x^{2}}-\frac{1}{\sin ^{2} x}\right]$

Solution

a. Since, $\lim _{x \rightarrow \infty} \frac{\mathrm{x}^{4}}{\mathrm{e}^{\infty}}$ ($\frac{\infty}{\infty}$ form)

Using L-Hospital rule,
$=\lim _{x \rightarrow \infty} \frac{4 x^{3}}{e^{x}}$ [Differentiate num and dere. w.r.to $\left.x\right]$
Again $\frac{\infty}{\infty}$ form, using L-Hospital rule,
$=\lim _{x \rightarrow \infty} \frac{12 x^{2}}{e^{x}}$ [Differentiate w.r. to $\left.x\right]$
Again $\frac{\infty}{\infty}$ form, using L-Hospital rule,
$=\lim _{x \rightarrow \infty} \frac{24 x}{e^{x}}$
Again $\frac{\infty}{\infty}$ form, using L-Hospital rule,
$=\lim _{x \rightarrow \infty} \frac{24}{\mathrm{e}^{\mathrm{x}}}=\frac{24}{\mathrm{e}^{\infty}}=\frac{24}{\infty}=0$
b. Since, $\lim _{x \rightarrow \infty} \frac{\log \left(x^{2}+1\right)}{\log \left(x^{3}+1\right)}\left(\frac{\infty}{\infty}\right.$ form $)$

Using L-Hospital rule,
$=\lim _{x \rightarrow \infty} \frac{2 x\left(x^{3}+1\right)}{3 x^{2}\left(x^{2}+1\right)}[$ Differentiate w.r. to $x]=\frac{2}{3} \lim _{x \rightarrow \infty} \frac{x^{3}+1}{x\left(x^{2}+1\right)}$
Again $\frac{\infty}{\infty}$ form, using L-Hospital rule,

$$
\begin{aligned}
& =\frac{2}{3} \frac{3 x^{2}}{3 x^{2}+1}=\frac{2}{3} \lim _{x \rightarrow \infty}\left(\frac{3 x^{2}+1}{3 x^{2}+1}-\frac{1}{3 x^{2}+1}\right) \\
& =\frac{2}{3} \lim _{x \rightarrow \infty}\left(1-\frac{1}{3 x^{2}+1}\right)=\frac{2}{3}(1-0)=\frac{2}{3}
\end{aligned}
$$

c. Since, $\lim _{x \rightarrow 0} x^{x}$ (0^{0} forms)

Using L-Hospital rule, for this let,
$y=x^{x} \Rightarrow \ln y=x \ln x$
Taking limit as x tends to 0
$\lim _{x \rightarrow 0} \ln y=\lim _{x \rightarrow 0} x \ln x$
or, $\lim _{x \rightarrow 0} \ln y=\lim _{x \rightarrow 0} \frac{\log x}{\frac{1}{x}}=\lim _{x \rightarrow 0} \frac{1 / x}{-1 / x^{2}}[$ Differentiate w.r. to $x]=\lim _{x \rightarrow 0}-x$
$\therefore \lim _{x \rightarrow 0} \ln y=0$
$\therefore \lim _{x \rightarrow 0} y=e^{0}$
$\therefore \lim _{x \rightarrow 0} x^{x}=1$
d. Since, $\lim _{x \rightarrow 0} \sin x \ln x^{2}(0 . \infty$ forms $)$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\log x^{2}}{\operatorname{cosec} x}=\lim _{x \rightarrow 0} \frac{2 x / x^{2}}{-\operatorname{cosec} x \cdot \cot x}[\text { Differentiate w.r. to } x] \\
& =\lim _{x \rightarrow 0} \frac{-2}{x \operatorname{cosec} x \cdot \cot x} \\
& =\lim _{x \rightarrow 0} \frac{-2}{x \times \frac{1}{\sin x} \times \frac{\cos x}{\sin x}} \\
& =\lim _{x \rightarrow 0} \frac{-2 \sin ^{2} x}{x \cos x}\left[\frac{0}{0}\right] \\
& =\lim _{x \rightarrow 0} \frac{-4 \sin x \cdot \cos x}{\cos x-x \sin x}=\frac{-4 \times 0}{1}=\frac{0}{1}=0
\end{aligned}
$$

e. We have,

$$
\begin{aligned}
& \lim _{x \rightarrow 0}\left[\frac{1}{x^{2}}-\frac{1}{\sin ^{2} x}\right](\infty-\infty \text { forms }) \\
& =\lim _{x \rightarrow 0} \frac{\sin ^{2} x-x^{2}}{x^{2} \sin ^{2} x} \quad\left(\frac{0}{0} \text { form }\right) \\
& =\lim _{x \rightarrow 0} \frac{2 \sin x \cos x-2 x}{2 x \sin ^{2} x+2 x^{2} \sin 2 x} \quad\left(\frac{0}{0} \text { form }\right) \\
& =\lim _{x \rightarrow 0} \frac{\sin 2 x-2 x}{2 x \sin ^{2} x+2 x^{2} \sin 2 x} \quad\left(\frac{0}{0} \text { form }\right) \\
& =\lim _{x \rightarrow 0} \frac{2 \cos 2 x-2}{2 \sin ^{2} x+4 x \sin x \cos x+4 x \sin 2 x+4 x^{2} \cos 2 x} \\
& =\lim _{x \rightarrow 0} \frac{2 \cos 2 x-2}{2 \sin ^{2} x+6 x \sin 2 x+4 x^{2} \cos 2 x} \quad\left(\frac{0}{0} \text { form }\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{-4 \sin 2 x}{2 \sin 2 x+6 \sin 2 x+12 \cos 2 x+8 x \cos 2 x-8 x^{2} \sin 2 x} \\
& =\lim _{x \rightarrow 0} \frac{-4 \sin 2 x}{8 \sin 2 x+12 \cos 2 x+8 x \cos 2 x-8 x^{2} \sin 2 x}\left(\frac{0}{0} \text { form }\right) \\
& =\lim _{x \rightarrow 0} \frac{-8 \cos 2 x}{16 \cos 2 x-24 \sin 2 x+8 \cos 2 x-16 x \sin 2 x-16 x \sin 2 x-16 x^{2} \sin 2 x} \\
& =-\frac{8}{24}=-\frac{1}{3}
\end{aligned}
$$

EXERCISE 15.7

1. Find Δy and $d y$ of the following
a. $y=x^{3}+3$ for $x=2$ and $\Delta x=0.1$
b. $y=\sqrt{x}$, for $x=4$ and $\Delta x=0.41$
c. $y=x^{2}+3 x$ when $x=2$ and $\Delta x=0.2$

Solution:

a. Since we know, $\Delta y=f(x+\Delta x)-f(x)$ and $d y=f^{\prime}(x) d x$.
$\therefore \quad d y=3 x^{2} d x=3 \times 2^{2} \times 0.1=12 \times 0.1=1.2$
Again, $\Delta y=f(x+\Delta x)-f(x)=f(2+0.1)-f(2)=f(2.1)-f(2)=(2.1)^{3}+3-\left(2^{3}+3\right)$

$$
=9.261+3-11=12.261-11=1.261
$$

b. Now, $d y=f^{\prime}(x) d x$
$=\frac{1}{2 \sqrt{x}} \mathrm{dx}=\frac{1}{2 \sqrt{4}} \times 0.41=\frac{1}{4} \times 0.41=0.1025$
and, $\Delta y=f(x+\Delta x)-f(x)=f(4+0.41)-f(4)=\sqrt{4.41}-\sqrt{4}=2.1-2=0.1$
c. Since, $d y=f^{\prime}(x) d x=(2 x+3) d x=(2 \times 2+3) \times 0.2=-7 \times 0.2=1.4$ and, $\Delta y=f(x+\Delta x)-f(x)=f(2+0.2)-f(2)=f(2.2)-f(2)=(2.2)^{2}+3 \times 2.2-\left(2^{2}+3 \times 2\right)$

$$
=4.84+6.6-10=11.44-10=1.44
$$

2. Find the approximate change in the volume of a cube of side xm caused by increasing the side by 2%.

Solution:

Here, side of cube $=x m$
$\therefore \mathrm{dx}=2 \%$ of $\mathrm{x}=\frac{2}{100} \mathrm{x}=0.02 \mathrm{x}$
Now, the volume of cube having side x,
$\mathrm{v}=\mathrm{x}^{3}$
Now the change in volume,
$d v=3 x^{2} d x=3 x^{2}(0.02 x)=0.06 x^{3}$
3. If $y=x^{4}-10$ and if x changes form 2 to 1.99 . What is the exact and approximates change in y ?

Solution:

Since, $x=2$ and $x+\Delta x=1.99 \Rightarrow \Delta x=1.99-2=-0.01$

$$
\begin{aligned}
& \text { Now, } \frac{d y}{d x}=4 x^{3} \\
& \Rightarrow d y=4 x^{3} d x \\
& \text { At, } x=2, d y=4 \times(2)^{3} \times(-0.01)=-0.32 \\
& \text { Again, if } x=2 \text {, then } y=x^{4}-10=2^{4}-10=6 \\
& y+\Delta y=(x+\Delta x)^{4}-10 \\
& \text { or, } \Delta y=(x+\Delta x)^{4}-10-x^{4}+10=(2-0.01)^{4}-2^{4}(\text { For } x=2) \\
& =-0.317
\end{aligned}
$$

230 Kriti's Principles of Mathematics-XII

4. If the radius of a sphere changes from 3 cm to 3.01 cm . Find the approximate increase in its volume.

Solution:

Let, $x=3 \mathrm{~cm}$ then $r+\Delta r=3.01$
$\Rightarrow \Delta r=3.01-3$
$\Rightarrow \Delta r=0.01$
Since volume of sphere,
$r=\frac{4}{3} \pi r^{3}$
$\Rightarrow \mathrm{dv}=\frac{4}{3} \pi .3 \mathrm{r}^{2} \mathrm{dr}$
$\Rightarrow \mathrm{dv}=\frac{4}{3} \pi \times 3 \times 3^{2} \times 0.01$
$=0.36 \pi$
5. Find the approximate increase in the surface area of a cube of the edge from 10 to 10.01. Calculate percent error in the surface area.

Solution:

Let, $a=10$ then $a+\Delta a=10.01$
$\Delta a=10.01-10=0.01$
Since surface area of cube is
$A=6 a^{2}=12 a d a=12 \times 10 \times 0.01=120 \times 0.01=1.2$
Again for percent error
Since we know that percentage error $=\frac{\text { Change }}{\text { Orginal }} \times 100=\frac{6(10.01-10)^{2}}{6 \times 10^{2}} \times 100$

$$
=(0.01)^{2}=0.0001 \%
$$

6. A circular cupper plate is heated so that its radious increases from 5 cm to 5.06 cm . Find the approximate increase in area and also the actual increase in area.

Solution:

Let, $r=5$. Then $r+\Delta r=5.06$
$\Delta r=5.06-5=0.06$
Now, $A=\pi r^{2}$
$d A=2 \pi r d r=2 \pi \times 5 \times 0.06=0.6 \pi$
Again, actual increase in area,
$=\pi(5.06)^{2}-\pi(5)^{2}=\pi(25.603-25)=\pi \times 0.603=0.603 \pi$
7. The radious of sphere is found by measurement to be 209 cm with possible error of 0.02 of a centimeter. Find the consequent error in the surface.

Solution:

Here, $r=20 \mathrm{~cm}$ and $\Delta r=0.02$
Then, $A=4 \pi r^{2}=4 \times \frac{22}{7} \times(20)^{2}=\frac{3500}{7}=5028.58$
Now since, $\frac{\Delta A}{A}=2 \frac{\Delta r}{r}$

$$
\Delta \mathrm{A}=2 \times \frac{0.02}{20} \times 5028.58=10.05 \mathrm{sqcm}
$$

CHAPTER 16

ANTI-DERIVATIVES

EXERCISE 16.1

1. Evaluate
a. $\int \frac{d x}{4 x^{2}+9}$
b. $\int \frac{x d x}{x^{4}+3}$
c. $\int \frac{(2 x+3)}{4 x^{2}+1} d x$
d. $\int \frac{x^{2} d x}{x^{6}-9}$
e. $\int \frac{d x}{x^{2}+6 x+8}$
f. $\int \frac{\cos x d x}{\sin ^{2} x+4 \sin x+5}$
g. $\int \frac{x d x}{x^{4}-x^{2}-1}$
h. $\int \frac{e^{x} d x}{e^{2 x}+2 e^{x}+5}$ i. $\int \frac{d x}{9 x^{2}+12 x+13}$
j. $\int \frac{d x}{1-6 x-9 x^{2}}$
k. $\int \frac{3 x+5}{x^{2}+4 x+20} d x \quad$ 1. $\int \frac{2 x+2}{3+2 x-x^{2}} d x$
m. $\int \frac{6 x+2}{9 x^{2}+6 x+26} d x$

Solution

a. $\int \frac{d x}{4 x^{2}+9}$

$$
\begin{aligned}
& \int \frac{d x}{(2 x)^{2}+3^{2}} \\
& \text { Put } y=2 x \\
& \frac{d y}{2}=d x \\
& \text { Now, }=\frac{1}{2} \int \frac{d y}{y^{2}+3^{2}}=\frac{1}{2} \frac{1}{3} \tan ^{-1} \frac{y}{3}+c=\frac{1}{6} \tan ^{-1} \frac{2 x}{3}+c
\end{aligned}
$$

b. $\int \frac{x d x}{x^{4}+3}=\int \frac{x d x}{\left(x^{2}\right)^{2}(\sqrt{3})^{2}}$

Put $y=x^{2}$
$\frac{d y}{2}=x d x$,
Now, given integral reduces into

$$
=\frac{1}{2} \int \frac{d y}{y^{2}+(\sqrt{3})^{2}}=\frac{1}{2} \cdot \frac{1}{\sqrt{3}} \tan ^{-1} \frac{y}{\sqrt{3}}+c=\frac{1}{2 \sqrt{3}} \tan ^{-1} \frac{x^{2}}{\sqrt{3}}+c
$$

c. $\int \frac{2 x+3}{4 x^{2}+1} d x$

$$
=\int \frac{2 x}{4 x^{2}+1}+\frac{3}{4 x^{2}+1} d x
$$

$$
\begin{aligned}
& =\frac{1}{4} \int \frac{8 x}{4 x^{2}+1} d x+3 \int \frac{1}{4\left(x^{2}+\frac{1}{4}\right)} d x \\
& =\frac{1}{4} \ln \left(4 x^{2}+1\right)+\frac{3}{4} \times \frac{1}{\frac{1}{2}} \tan ^{-1} \frac{x}{\frac{1}{2}}+C \\
& =\frac{1}{4} \ln \left(4 x^{2}+1\right)+\frac{3}{4} \tan ^{-1} 2 x+C
\end{aligned}
$$

d. $\int \frac{x^{2} d x}{x^{6}-9}=\int \frac{x^{2} d x}{\left(x^{3}\right)^{2}-3^{2}}$

Put $y=x^{3}$
$\frac{d y}{3}=x^{2} d x$
Now, $\frac{1}{3} \int \frac{d y}{y^{2}-3^{2}}=\frac{1}{3} \frac{1}{2.3} \ln \frac{y-3}{y+3}+c=\frac{1}{18} \ln \frac{x^{3}-3}{x^{3}+3}+c$
e. $\int \frac{d x}{x^{2}+6 x+8}=\int \frac{d x}{x^{2}+2.3 x+9-9+8}=\int \frac{d x}{(x+3)^{2}-1^{2}}$

Put $y=x+3$

$$
d y=d x
$$

Now, $\int \frac{d y}{y^{2}-1^{2}}=\frac{1}{2.1} \ln \frac{y-1}{y+1}+c=\frac{1}{2} \ln \frac{x+3-1}{x+3+1}+c=\frac{1}{2} \ln \frac{x+2}{x+4}+c$
f. $\int \frac{\cos x d x}{\sin ^{2} x+4 \sin x+5}$

Put $y=\sin x \Rightarrow d y=\cos x . d x$

$$
\begin{aligned}
& =\int \frac{d y}{y^{2}+4 y+5}=\int \frac{d y}{y^{2}+2.2 y+4-4+5}=\int \frac{d y}{(y+2)^{2}+1^{2}}=\tan ^{-1} \frac{y+2}{1}+c \\
& =\tan ^{-1}(\sin x+2)+c
\end{aligned}
$$

g. $\int \frac{x d x}{x^{4}-x^{2}-1}$

$$
\int \frac{x d x}{\left(x^{2}\right)^{2}-x^{2}-1}
$$

Put $y=x^{2}$
$d y=2 x . d x$
$\frac{d y}{2}=x d x$

$$
\begin{aligned}
\text { Now, } & =\frac{1}{2} \int \frac{d y}{y^{2}-y-1} \\
& =\frac{1}{2} \int \frac{d y}{y^{2}-2 \cdot y \cdot \frac{1}{2}+\frac{1}{4}-\frac{1}{4}-1}=\frac{1}{2} \int \frac{d y}{\left(y-\frac{1}{2}\right)^{2}-\frac{5}{4}}
\end{aligned}
$$

$=\frac{1}{2} \int \frac{d y}{\left(y-\frac{1}{2}\right)^{2}-\left(\frac{\sqrt{5}}{2}\right)^{2}}=\frac{1}{2} \frac{1}{2 \cdot \frac{\sqrt{5}}{2}} \ln \frac{y-\frac{1}{2}-\frac{\sqrt{5}}{2}}{y-\frac{1}{2}+\frac{\sqrt{5}}{2}}+c=\frac{1}{2 \sqrt{5}} \ln \frac{2 x^{2}-1-\sqrt{5}}{2 x^{2}-1+\sqrt{5}}+c$
$=\frac{1}{2 \sqrt{5}} \ln \frac{2 x^{2}-1-\sqrt{5}}{2 x^{2}-1+\sqrt{5}}+c$
h. $\int \frac{e^{x} d x}{e^{2 x}+2 e^{x}+5}$

Put $e^{x}=y$
$d y=e^{x} . d x$
Now, $=\int \frac{d y}{y^{2}+2 y+5}=\int \frac{d y}{y^{2}+2 \cdot y \cdot 1+1-1+5}=\int \frac{d y}{(y+1)^{2}+(2)^{2}}$

$$
=\int \frac{d y}{(y+1)^{2}+(2)^{2}}=\frac{1}{2} \tan ^{-1} \frac{y+1}{2}+c=\frac{1}{2} \tan ^{-1} \frac{e^{x}+1}{2}+c
$$

i. $\int \frac{d x}{9 x^{2}+12 x+13}=\int \frac{d x}{(3 x)^{2}+2.3 x .2+4-4+13}=\int \frac{d x}{(3 x+2)^{2}+3^{2}}$

Put $y=3 x+2 \Rightarrow \frac{d y}{3}=d x$
Now, $\int \frac{d x}{(3 x+2)^{2}+3^{2}}$
$=\frac{1}{3} \int \frac{d y}{y^{2}+3^{2}}=\frac{1}{3} \cdot \frac{1}{3} \tan ^{-1} \frac{y}{3}+c=\frac{1}{9} \tan ^{-1} \frac{3 x+2}{3}+c$
j. $\int \frac{d x}{1-6 x-9 x^{2}}=-\int \frac{d x}{(3 x)^{2}+6 x-1}$

$$
=-\int \frac{d x}{(3 x)^{2}+2 \cdot 3 x \cdot 1+1-1-1}=-\int \frac{d x}{(3 x+1)^{2}-(\sqrt{2})^{2}}
$$

Put $y=3 x+1$
$\frac{d y}{3}=d x$
Now, $-\frac{1}{3} \int \frac{d y}{y^{2}-(\sqrt{2})^{2}}=-\frac{1}{3} \cdot \frac{1}{2 \cdot \sqrt{2}} \ln \frac{y-\sqrt{2}}{y+\sqrt{2}}+c=-\frac{1}{6 \sqrt{2}} \ln \frac{3 x+1-\sqrt{2}}{3 x+1+\sqrt{2}}+C$
k. $\int \frac{3 x+5}{x^{2}+4 x+20} d x$
$=3 \int \frac{x+\frac{5}{3}}{x^{2}+4 x+20} d x$
$=\frac{3}{2} \int \frac{2 x+\frac{10}{3}}{x^{2}+4 x+20} d x$
$=\frac{3}{2} \int \frac{(2 x+4)-\frac{2}{3}}{x^{2}+4 x+20} d x$
$=\frac{3}{2} \int \frac{2 x+4}{x^{2}+4 x+20}-\int \frac{d x}{x^{2}+4 x+20}$
$=\frac{3}{2} \int \frac{(2 x+4)}{x^{2}+4 x+20}-\int \frac{d x}{(x+2)^{2}+4^{2}}$
$=\frac{3}{2} \ln \left(x^{2}+4 x+20\right)-\frac{1}{4} \tan ^{-1}\left(\frac{x+2}{4}\right)+C$
I. $\int \frac{(2 x+2)}{\left(3+2 x-x^{2}\right)} d x$
$I=\int \frac{(2 x+2)}{\left(3+2 x-x^{2}\right)} d x=-\int \frac{-2 x+2-4}{3+2 x-x^{2}} d x$
$=-\int \frac{2-2 x}{3+2 x-x^{2}} d x+4 \int \frac{1}{3+2 x-x^{2}} d x$
$=-\ln \left(3+2 x-x^{2}\right)+4 \int \frac{1}{(2)^{2}-(x-1)} d x \backslash$
$=-\ln \left(3+2 x-x^{2}\right)+\frac{4}{2.2} \ln \frac{2+x-1}{2-x+1}+c$
$=-\ln \left(3+2 x-x^{2}\right)+\ln \frac{x+1}{3-x}+c=\ln \left(\frac{x+1}{3-x}\right)-\ln \left(3+2 x-x^{2}\right)+c$
m. $\int \frac{6 x+2}{9 x^{2}+6 x+26} d x=\frac{1}{3} \int \frac{18 x+6}{9 x^{2}+6 x+26} d x=\frac{1}{3} \ln \left(9 x^{2}+6 x+26\right)+c$
2. a. $\int \frac{\mathrm{dx}}{\sqrt{\mathrm{x}^{2}-4}}$
b. $\int \frac{d x}{\sqrt{x^{2}+x-2}}$
c. $\int \frac{d x}{\sqrt{2 x^{2}+3 x+4}}$
d. $\int \frac{d x}{\sqrt{2 a x+x^{2}}}$
e. $\int \frac{d x}{\sqrt{5-x+x^{2}}}$
f. $\int \frac{d x}{\sqrt{6+x-x^{2}}}$
g. $\int \frac{d x}{\sqrt{2-2 x-x^{2}}}$
h. $\int \frac{d x}{\sqrt{9 x^{2}+6 x+10}}$
i. $\int \frac{x d x}{\sqrt{a^{4}+x^{4}}}$
j. $\int \frac{x d x}{\sqrt{x^{4}+2 x^{2}+10}}$
k. $\int \frac{2 x+3}{\sqrt{x^{2}+4 x}+20} d x$ l. $\int \frac{x-2}{\sqrt{2 x^{2}-3 x+5}} d x$
m. $\int \frac{x}{\sqrt{7+6 x-x^{2}}} d x$
n. $\int \frac{d x}{\sqrt{(x+a)(x+b)}}$ o. $\int \frac{d x}{(11+x) \sqrt{2+x}}$
p. $\int \frac{d x}{(4 x+3) \sqrt{x+3}}$
q. $\int \sqrt{\frac{1+x}{1-x}} d x$

Solution:

a. $\int \frac{d x}{\sqrt{x^{2}-4}}=\int \frac{d x}{\sqrt{x^{2}-2^{2}}}=\ln \left(x+\sqrt{x^{2}-4}\right)+c$
b. $\int \frac{d x}{\sqrt{x^{2}+x-2}}=\int \frac{d x}{\sqrt{x^{2}+2 x \cdot \frac{1}{2}+\frac{1}{4}-\frac{1}{4}-2}}$

$$
=\int \frac{d x}{\sqrt{\left(x+\frac{1}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}}}=\ln \left[\left(\frac{2 x+1}{2}\right)+\sqrt{x^{2}+x-2}\right]+c
$$

c. $\int \frac{d x}{\sqrt{2 x^{2}+3 x+4}}=\frac{1}{\sqrt{2}} \int \frac{d x}{\sqrt{x^{2}+\frac{3}{2} x+2}}=\frac{1}{\sqrt{2}} \int \frac{d x}{\sqrt{x^{2}+2 \cdot \frac{3}{4} \cdot x+\frac{9}{16}-\frac{9}{16}+2}}$
$=\frac{1}{\sqrt{2}} \int \frac{d x}{{\sqrt{\left(x+\frac{3}{4}\right)^{2}-\left(\frac{\sqrt{23}}{4}\right)}}^{2}=\frac{1}{\sqrt{2}} \ln \left(x+\frac{3}{4}+\sqrt{x^{2}+\frac{3}{2} x+2}\right)+c . c|c c c|}$
d. $\int \frac{d x}{\sqrt{2 a x+x^{2}}}=\int \frac{d x}{\sqrt{a^{2}+2 a x+x^{2}-a^{2}}}=\int \frac{d x}{\sqrt{(a+x)^{2}-a^{2}}}=\ln \left(a+x+\sqrt{2 a x+x^{2}}\right)+c$
e. $\int \frac{d x}{\sqrt{5-x+x^{2}}}=\int \frac{d x}{\sqrt{x^{2}-x+5}}=\int \frac{d x}{\sqrt{x^{2}-2 \cdot x \cdot \frac{1}{2}+\frac{1}{4}-\frac{1}{4}+5}}$
$=\int \frac{d x}{\sqrt{x^{2}-2 \cdot x \cdot \frac{1}{2}+\frac{1}{4}-\frac{1}{4}+5}}=\int \frac{d x}{\sqrt{x-\frac{1}{2}+\left(\frac{\sqrt{19}}{2}\right)^{2}}}$
$=\int \frac{d x}{\sqrt{\left(x-\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{19}}{2}\right)^{2}}}=\ln \left(\frac{2 x-1}{2}+\sqrt{x^{2}-x+5}\right)+c$
f. $\int \frac{d x}{\sqrt{-\left(x^{2}-x-6\right)}}=\int \frac{d x}{\sqrt{-\left(x^{2}-2 \cdot x \cdot \frac{1}{2}+\frac{1}{4}+\frac{1}{4}-6\right)}}$

$$
\begin{aligned}
& =\int \frac{d x}{\sqrt{-\left[x-\frac{1}{2}\right]^{2}-\frac{25}{4}}} \\
& =\int \frac{d x}{\sqrt{(5 / 2)^{2}-\left(x-\frac{1}{2}\right)^{2}}} \\
& =\sin ^{-1} \frac{\left(x-\frac{1}{2}\right)}{\left(\frac{5}{2}\right)}+c
\end{aligned}
$$

$$
=\sin ^{-1}\left(\frac{2 x-1}{5}\right)+c
$$

g. $\int \frac{d x}{\sqrt{2-2 x-x^{2}}}=\int \frac{d x}{\sqrt{-\left(x^{2}+2 x-2\right)}}=\int \frac{d x}{\sqrt{-\left(x^{2}+2 x-2\right)}}=\int \frac{d x}{\sqrt{-\left(x^{2}+2 x+1-1-2\right)}}$

$$
=\int \frac{d x}{\sqrt{-\left\{(x+1)^{2}-(\sqrt{3})^{2}\right\}}}=\int \frac{d x}{\sqrt{(\sqrt{3})^{2}-(x+1)^{2}}}=\sin ^{-1} \frac{x+1}{\sqrt{3}}+c
$$

h. $\int \frac{d x}{\sqrt{9 x^{2}+6 x+10}}=\int \frac{d x}{\sqrt{(3 x)^{2}+6 x+10}}=\int \frac{d x}{\sqrt{(3 x)^{2}+2.3 x .1+1-1+10}}$

$$
=\int \frac{d x}{\sqrt{(3 x+1)^{2}+3^{2}}}
$$

Put $y=3 x+1$
$\frac{d y}{3}=d x$
Now, $\frac{1}{3} \int \frac{\mathrm{dx}}{\sqrt{\mathrm{y}^{2}+3^{2}}}$
$=\frac{1}{3} \ln \left[y+\sqrt{y^{2}+3^{2}}\right]+C$
$=\frac{1}{3} \ln \left[(3 x+1)+\sqrt{(3 x+1)^{2}+9}\right]+C$
$=\frac{1}{3} \ln \left[(3 x+1)+\sqrt{9 x^{2}+6 x+10}\right]+C$
i. $\int \frac{x d x}{\sqrt{a^{4}+x^{4}}}$
$\int \frac{x d x}{\sqrt{\left(a^{2}\right)^{2}+\left(x^{2}\right)^{2}}}$
Put $x^{2}=y$
$x d x=\frac{d y}{2}$
Now, $\frac{1}{2} \int \frac{d y}{\sqrt{a^{4}+y^{2}}}=\frac{1}{2} \ln \left(y+\sqrt{a^{4}+y^{2}}\right)+c=\frac{1}{2} \ln \left(x^{2}+\sqrt{a^{4}+x^{4}}\right)+c$
j. $\int \frac{x d x}{\sqrt{x^{4}+2 x^{2}+10}}=\int \frac{d x}{\sqrt{\left(x^{2}\right)^{2}+2 x^{2}+10}}$

Put $x^{2}=y$
$x \cdot d x=\frac{d y}{2}$
Now, $\frac{1}{2} \int \frac{d y}{\sqrt{y^{2}+2 y+10}}=\frac{1}{2} \int \frac{d y}{\sqrt{y^{2}+2 \cdot y \cdot 1+1-1+10}}=\frac{1}{2} \int \frac{d y}{\sqrt{(y+1)^{2}+3^{2}}}$
$=\frac{1}{2} \ln \left(y+1+\sqrt{x^{4}+2 x^{2}+10}\right)+c=\frac{1}{2} \ln \left(x^{2}+1+\sqrt{x^{4}+2 x^{2}+10}\right)+c$
k. $\int \frac{2 x+3}{\sqrt{x^{2}+4 x+20}} d x=\int \frac{2 x+3+1-1}{\sqrt{x^{2}+4 x+20}} d x=\int \frac{2 x+4}{\sqrt{x^{2}+4 x+20}} d x-\int \frac{d x}{\sqrt{x^{2}+4 x+20}}$

$$
\begin{aligned}
& =2 \sqrt{x^{2}+4 x+20}-\int \frac{d x}{\sqrt{x^{2}+2.2 x+4-4+20}}=2 \sqrt{x^{2}+4 x+20}-\int \frac{d x}{\sqrt{(x+2)^{2}+4^{2}}} \\
& =2 \sqrt{x^{2}+4 x+20}-\ln \left(x+2+\sqrt{x^{2}+4 x+20}\right)+c
\end{aligned}
$$

I. $\int \frac{x-2}{\sqrt{2 x^{2}-8 x+5}} d x=\frac{1}{4} \int \frac{4 x-8}{\sqrt{2 x^{2}-8 x+5}} d x$

$$
=\frac{1}{4} 2 \sqrt{2 x^{2}-8 x+5}+c=\frac{1}{2} \sqrt{2 x^{2}-8 x+5}+c
$$

m. $\int \frac{x d x}{\sqrt{7+6 x-x^{2}}}$

This equation can be written as

$$
\begin{equation*}
p \int \frac{6-2 x}{\sqrt{7+6 x-x^{2}}} d x+q \int \frac{1}{\sqrt{7+6 x-x^{2}}} d x \tag{i}
\end{equation*}
$$

By comparing

$$
-2 p=1 \quad 6 p+q=0
$$

$\therefore p=\frac{-1}{2} \quad 6 \times\left(\frac{-1}{2}\right)+q=0$
$\therefore q=3$
Put the value of p and q in equation (i)
$=\frac{-1}{2} \int \frac{6-2 x}{\sqrt{7+6 x-x^{2}}} d x+3 \int \frac{1}{\sqrt{7+6 x-x^{2}}} d x$
$=\frac{-1}{2} \int(6-2 x)\left(7+6 x-x^{2}\right)^{-1 / 2} d x+3 \int \frac{1}{\sqrt{-\left(x^{2}-6 x-7\right)}} d x$
$=\frac{-1}{2} \times \frac{2}{1}\left(7+6 x-x^{2}\right)^{1 / 2}+3 \int \frac{1}{\sqrt{\left\{x^{2}-2.3 x+9-9-7\right.}} d x$
$=-\sqrt{7+6 x-x^{2}}+3 \int \frac{d x}{\left.\sqrt{-\left\{(x-3)^{2}-(4)^{2}\right.}\right\}}$
$=-\sqrt{7+6 x-x^{2}}+3 \times \sin ^{-1}\left(\frac{x-3}{4}\right)+c$
n. $\quad I=\int \frac{d x}{\sqrt{(x+a)(x+b)}}=\int \frac{1}{\sqrt{x^{2}+b x+a x+a b}} d x=\int \frac{1}{\sqrt{x^{2}+(a+b) \cdot x+a b}} d x$
$=\int \frac{1}{\sqrt{(x)^{2}+2 \cdot x\left(\frac{a+b}{2}\right)+\left(\frac{a+b}{2}\right)^{2}-\left(\frac{a+b}{2}\right)^{2}+a b}} d x$

$$
\begin{aligned}
& =\int \frac{1}{\sqrt{\left(x+\frac{a+b}{2}\right)^{2}-\left(\frac{a^{2}+2 a b+b^{2}-4 a b}{4}\right)}} d x \\
& =\int \frac{1}{\sqrt{\left(x+\frac{a+b}{2}\right)^{2}-\left(\frac{a^{2}-2 a b+b^{2}}{4}\right)}}=\int \frac{1}{\sqrt{\left(x+\frac{a+b}{2}\right)^{2}-\left(\frac{a-b}{2}\right)^{2}}} d x \\
& =\ln \left(x+\frac{a+b}{2}+\sqrt{(x+a)(x+b)}\right)+c
\end{aligned}
$$

0. $\int \frac{d x}{(11+x) \sqrt{2+x}}$

Put $z^{2}=2+x$
$2 z . d z=d x$
Then $I=\int \frac{2 z \cdot d z}{\left(9+z^{2}\right) z}=2 \int \frac{d z}{z^{2}+3^{2}}=\frac{2}{3} \tan ^{-1} \frac{z}{3}+c=\frac{2}{3} \tan ^{-1} \frac{\sqrt{2+x}}{3}+c$
p. $J=\int \frac{d x}{(4 x+3) \sqrt{x+3}}$

Put $x+3=y^{2}$
$\therefore \mathrm{dx}=2 \mathrm{y} . \mathrm{dy} \quad \therefore \mathrm{x}=\mathrm{y}^{2}-3$
$J=\int \frac{2 y d y}{\left[4\left(y^{2}-3\right)+3\right] y}=2 \int \frac{d y}{4 y^{2}-9}=2 \int \frac{1}{4\left(y^{2}-\frac{9}{4}\right)} d y$
$=\frac{1}{2} \int \frac{1}{y^{2}-\frac{3}{2}_{2}^{2}} d y$
$=\frac{1}{2} \cdot \frac{1}{2 \cdot \frac{3}{2}} \ln \frac{y-\frac{3}{2}}{y+\frac{3}{2}}+C$
$=\frac{1}{6} \ln \frac{2 \sqrt{2 y+3}-3}{2 \sqrt{2 y-3}+3}+C$
q. $\quad I=\int \sqrt{\frac{1+x}{1-x}} d x=\int \sqrt{\frac{1+x}{1-x} \times \frac{1+x}{1+x}} d x=\int \sqrt{\frac{(1+x)^{2}}{1-x^{2}}} d x$

$$
=\int \frac{1+x}{\sqrt{1-x^{2}}} d x=\int \frac{1}{\sqrt{1-x^{2}}} d x+\int \frac{x}{\sqrt{1-x^{2}}} d x
$$

$$
=\int \frac{1}{\sqrt{1-x^{2}}} d x-\frac{1}{2} \int \frac{-2 x d x}{\sqrt{1-x^{2}}}=\sin ^{-1} x-\frac{1}{2} 2 \sqrt{1-x^{2}}+c
$$

$$
=\sin ^{-1} x-\sqrt{1-x^{2}}+c
$$

EXERCISE 16.2

1. $\int \sqrt{x^{2}-36} d x$

Solution:

$$
\begin{aligned}
I & =\int \sqrt{x^{2}-36} d x=\sqrt{(x)-(6)^{2}} d x=\frac{x \sqrt{x^{2}-36}}{2}-\frac{(6)^{2}}{2} \ln \left(x+\sqrt{x^{2}-36}\right)+c \\
& =\frac{1}{2} x \sqrt{x^{2}-36}-18 \ln \left(x+\sqrt{x^{2}-36}\right)+c
\end{aligned}
$$

2. $\int \sqrt{1-4 x^{2}} d x$

Solution:

$I=\int \sqrt{1-4 x^{2} d x}=\int \sqrt{(1)^{2}-(2 x)^{2} d x}$
Put $y=2 x$
$\frac{d y}{2}=d x$
Now, $I=\frac{1}{2} \int \sqrt{1^{2}-y^{2}} d y=\frac{1}{2} \int \sqrt{1^{2}-y^{2}} d y=\frac{1}{2} \times\left[\frac{y}{2} \sqrt{1-y^{2}}+\frac{1}{2} \sin ^{-1} \frac{y}{1}\right]+C$
$=\frac{1}{4} y \sqrt{1^{2}-y^{2}}+\frac{1}{4} \sin ^{-1} \frac{y}{1}+c$
$=\frac{2 x}{4} \sqrt{1^{2}-4 x^{2}}+\frac{1}{4} \sin ^{-1} 2 x+c=\frac{x \sqrt{1-4 x^{2}}}{2}+\frac{1}{4} \sin ^{-1} 2 x+c$
3. $I=\int \sqrt{3 x^{2}+5} d x=\int \sqrt{(\sqrt{3} x)^{2}+(\sqrt{5})^{2}} d x$

Put $y=\sqrt{3} x$
$\therefore \frac{\mathrm{dy}}{\sqrt{3}}=\mathrm{dx}$
Now, $I=\frac{1}{\sqrt{3}} \int \sqrt{y^{2}+(\sqrt{5})^{2}} d x$
$I=\frac{1}{\sqrt{3}} \int \sqrt{y^{2}+(\sqrt{5})^{2} d x}=\frac{1}{\sqrt{3}}\left[\frac{y \sqrt{y^{2}+(\sqrt{5})^{2}}}{2}+\frac{\sqrt{(5)^{2}}}{2} \ln \left(y+\sqrt{y^{2}+(\sqrt{5})^{2}}\right)\right]$
$=\frac{\sqrt{3} x}{2 \sqrt{3}} \sqrt{(\sqrt{3} x)^{2}+\left(\sqrt{5}^{2}\right)}+\frac{5}{2 \sqrt{3}} \ln \left(\sqrt{3} x+\sqrt{\left(\sqrt{3} x^{2}\right)+\sqrt{(5)^{2}}}\right)+c$
$=\frac{x \sqrt{3 x^{2}+5}}{2}+\frac{5}{2 \sqrt{3}} \ln \left(\sqrt{3} x+\sqrt{3 x^{2}+5}\right)+c$
4. $\mathrm{I}=\int \sqrt{3-2 \mathrm{x}-\mathrm{x}^{2}} \mathrm{dx}=\int \sqrt{-\left(\mathrm{x}^{2}+2 \mathrm{x}-3\right)} \mathrm{dx}$

$$
\begin{aligned}
& =\int \sqrt{-\left(x^{2}+2 \cdot x \cdot 1+1-1-3\right)} d x=\int \sqrt{-\left(\{x+1)^{2}-(2)^{2}\right\}} d x \\
& =\int \sqrt{2^{2}-(x+1)^{2}} d x \\
& \left.=\frac{x+1}{2} \sqrt{2^{2}-(x+1)^{2}}\right)+\frac{2^{2}}{2} \sin ^{-1} \frac{(x+1)}{2}+c
\end{aligned}
$$

$$
=\frac{x+1}{2} \sqrt{3-2 x-x^{2}}+2 \sin ^{-1}\left(\frac{x+1}{2}\right)+c
$$

5. $I=\int \sqrt{5-2 x+x^{2}} d x=\int \sqrt{4+1-2 x+x^{2}} d x$

$$
\begin{aligned}
& =\int \sqrt{(2)^{2}+(x-1)^{2}} d x \\
& =\frac{(x-1) \sqrt{(2)^{2}+(x-1)^{2}}}{2}+\frac{(2)^{2}}{2} \ln \left(x-1+\sqrt{(2)^{2}+(x-1)^{2}}\right)+c \\
& =\frac{1}{2}(x-1) \sqrt{5-2 x+x^{2}}+2 \ln \left(x-1+\sqrt{5-2 x+x^{2}}\right)+c
\end{aligned}
$$

6. $\int \sqrt{18 x-x^{2}-65} d x=\int \sqrt{81-81+2.9 x-x^{2}-65} d x$

$$
\begin{aligned}
& \left.=\int \sqrt{81-65-\left(x^{2}-18 x+9^{2}\right)} d x=\int \sqrt{(4)^{2}-(x-9)^{2}}\right) d x \\
& =\frac{1}{2}(x-9) \sqrt{16-(x-9)^{2}}+\frac{1}{2} 16 \sin ^{-1} \frac{x-9}{4}+c \\
& =\frac{1}{2}(x-9) \sqrt{18 x-x^{2}-65}+8 \sin ^{-1} \frac{x-9}{4}+c
\end{aligned}
$$

7. $\int \sqrt{5 x^{2}+8 x+4} d x=\int \sqrt{5\left(x^{2}+\frac{8 x}{5}+\frac{4}{5}\right)} d x$

$$
\begin{aligned}
& =\sqrt{5} \int \sqrt{\left(x^{2}+2 \cdot x \cdot \frac{4}{5}+\frac{16}{25}-\frac{16}{25}+\frac{4}{5}\right)} d x=\sqrt{5} \int \sqrt{\left(x^{2}+4 / 5\right)^{2}+(2 / 5)^{2}} d x \\
& =\sqrt{5}\left[\frac{\left(x+\frac{4}{5}\right)}{2} \sqrt{(x+4 / 5)^{2}+(2 / 5)^{2}}+\frac{\left(\frac{2}{5}\right)^{2}}{2} \ln \left\{\left(x+\frac{4}{5}\right)+\sqrt{(x+4 / 5)^{2}+(2 / 5)^{2}}\right\}\right] \\
& =\frac{(5 x+4) \sqrt{5 x^{2}+8 x+4}}{10}+\frac{2}{5 \sqrt{5}} \ln \left[\frac{5 x+4}{5}+\sqrt{x^{2}+\frac{8 x}{5}+\frac{4}{5}}\right]
\end{aligned}
$$

8. $I=\int \sqrt{(x-\alpha)(\beta-x)} d x$

$$
\text { Put } x-\alpha=y
$$

$$
\therefore d x=d y \quad \therefore x=y+\alpha
$$

$$
I=\int \sqrt{y(\beta-y-\alpha)} d y=\int \sqrt{(\beta-\alpha) y-y^{2}} d y=\int \sqrt{\left(\frac{\beta-\alpha}{2}\right)^{2}-\left(y-\frac{\beta-\alpha}{2}\right)^{2}} d y
$$

$$
=\left(y-\frac{\beta-\alpha}{2}\right) \sqrt{\left(\frac{\beta-\alpha}{2}\right)^{2}-\left(y-\frac{\beta-\alpha}{2}\right)^{2}}+\frac{1}{2} \frac{(\beta-\alpha)^{2}}{4} \sin ^{-1} \frac{y-\left(\frac{\beta-\alpha}{2}\right)}{\left(\frac{\beta-\alpha}{2}\right)}+c
$$

$$
=\left(x-\alpha-\frac{\beta-\alpha}{2}\right) \sqrt{\left(\frac{\beta-\alpha}{2}\right)^{2}-\left(x-\alpha-\frac{\beta-\alpha}{2}\right)^{2}}+\frac{1}{8}(\beta-\alpha)^{2} \sin ^{-1} \frac{x-\alpha-\frac{\beta-\alpha}{2}}{\frac{\beta-\alpha}{2}}+c
$$

$$
\begin{aligned}
& =\frac{1}{2}(2 x-2 \alpha-\beta+\alpha) \sqrt{\left(\frac{\beta-\alpha}{2}\right)^{2}-\left(x-\frac{\alpha+\beta}{2}\right)^{2}}+\frac{1}{8}(\beta-\alpha)^{2} \sin ^{-1} \frac{2 x-\alpha-\beta}{\beta-\alpha}+c \\
& =\frac{1}{2}(2 x-\alpha-\beta) \sqrt{(x-\alpha)(\beta-x)}+\frac{1}{8}(\beta-\alpha)^{2} \sin ^{-1} \frac{2 x-\alpha-\beta}{\beta-\alpha}+c
\end{aligned}
$$

9. $I=\int \sqrt{2 a x-x^{2}} d x=\int \sqrt{a^{2}-\left(a^{2}-2 a x+x^{2}\right)} d x$

$$
\begin{aligned}
& =\int \sqrt{a^{2}-(x-a)^{2}} d x=\frac{1}{2}(x-a) \sqrt{(a)^{2}-(x-a)^{2}}+\frac{(a)^{2}}{2} \sin ^{-1}\left(\frac{x-a}{a}\right)+c \\
& =\frac{1}{2}(x-a) \sqrt{2 a x-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x-a}{a}\right)+c
\end{aligned}
$$

10. $I=\int(2 x-5) \sqrt{x^{2}-4 x+5} d x=\int(2 x-4-1) \sqrt{x^{2}-4 x+5} d x$

$$
\begin{aligned}
& =\int(2 x-4) \sqrt{x^{2}-4 x+15} d x-\int \sqrt{(x-2)^{2}+1} d x \\
& =\frac{2}{3}\left(x^{2}-4 x+5\right)^{3 / 2}-\frac{(x-2) \sqrt{x^{2}-4 x+5}}{2}-\frac{1}{2} \ln \left[(x-2)+\sqrt{x^{2}-4 x+5}\right)+c
\end{aligned}
$$

11. $\int(2-x) \sqrt{16-6 x-x^{2}} d x$

$$
\begin{aligned}
& I=\int(2-x) \sqrt{16-6 x-x^{2}} d x=\frac{1}{2} \int(4-2 x) \sqrt{16-6 x-x^{2}} d x \\
& =\frac{1}{2} \int\{10+(-6-2 x)\} \sqrt{16-6 x-x^{2}} d x \\
& 5 \int \sqrt{16-6 x-x^{2}} d x+\frac{1}{2} \int(-6-2 x) \sqrt{16-6 x-x^{2}}
\end{aligned}
$$

$$
\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}
$$

$$
I_{1}=5 \int \sqrt{16-6 x-x^{2}} d x=5 \int \sqrt{25-\left(9+6 x+x^{2}\right)} d x
$$

$$
=5 \int \sqrt{(5)^{2}-(x+3)^{2}} d x=5\left\{\frac{1}{2}(x+3) \sqrt{(5)^{2}-(x+3)^{2}}+\frac{52}{2} \sin ^{-1}\left(\frac{x+3}{5}\right)\right\}+c_{1}
$$

$$
=\frac{5}{2}(X+3) \sqrt{16-6 X-X^{2}}+\frac{125}{2} \sin ^{-1}\left(\frac{X+3}{5}\right) C_{1}
$$

$$
I_{2}=\frac{1}{2} \int(-6-2 x) \sqrt{16-6 x-x^{2}} d x
$$

Put $16-6 x-x^{2}=y$
$\therefore \mathrm{dy}=(-6-2 \mathrm{x}) \mathrm{dx}$
$I_{2}=\frac{1}{2} \int y^{1 / 2} d y=\frac{1}{3} y^{3 / 2}+C_{2} z \frac{1}{3}\left(16-6 x-x^{2}\right)^{3 / 2}+C_{2}$
$I=I_{1}+I_{2}=\frac{5}{2}(x+3) \sqrt{16-6 x-x^{2}}+\frac{125}{2} \sin ^{-1}\left(\frac{x+3}{2}\right)+\frac{1}{3}\left(16-6 x-x^{2}\right)^{3 / 2}+C$
12. $\int(2 x+1) \sqrt{4 x^{2}+20 x+21} d x$

$$
\begin{aligned}
& I=\int(2 x+1) \sqrt{4 x^{2}+20 x+21} d x=\frac{1}{4} \int(8 x+4) \sqrt{4 x^{2}+20 x+21} d x \\
& =\frac{1}{4} \int\{(8 x+20)-16\} \sqrt{4 x^{2}+20 x+21} d x \\
& =\frac{1}{4} \int(8 x+20) \sqrt{4 x^{2}+20 x+21} d x-4 \int \sqrt{4 x^{2}+20 x+21} d x=I_{1}-I_{2} \\
& I_{1}=\frac{1}{4} \int(8 x+20) \sqrt{4 x^{2}+20 x+21} d x
\end{aligned}
$$

Put $4 x^{2}+20 x+21=y$
$(8 x+20) d x=d y$
$I_{1}=\frac{1}{4} \int y^{1 / 2} d y=\frac{1}{4} \frac{y^{3 / 2}}{3 / 2}+C_{1}=\frac{1}{6}\left(4 x^{2}+20 x+21\right)^{3 / 2}+C_{1}$
$I_{2}=4 \int \sqrt{4 x^{2}+20 x+21} d x=4 \int \sqrt{\left(4 x^{2}+20 x+25\right)-4} d x=4 \int \sqrt{(2 x+5)^{2}-(2)^{2}} d x$ Put $2 x+5=y$
$\therefore \quad \mathrm{dx}=\frac{\mathrm{dy}}{2}$
$I_{2}=2 \int \sqrt{(y)^{2}-(2)^{2}} d y=2\left\{\frac{1}{2} y \sqrt{(y)^{2}-(2)^{2}}-\frac{(2)^{2}}{2} \log \left(y+\sqrt{y^{2}-4}\right)\right\}+C_{2}$
$=y \sqrt{y^{2}-4}-4 \ln \left(y+\sqrt{y^{2}-4}\right)+C_{2}$
$=(2 x+5) \sqrt{(2 x+5)^{2}-4}-4 \ln \left(2 x+5+\sqrt{(2 x+5)^{2}-4}\right)$
$=(2 x+5) \sqrt{2 x^{2}+20 x+21}-4 \ln \left(2 x+5+\sqrt{4 x^{2}+20 x+2}\right)$
$I=I_{1}-I_{2}$
$=\frac{1}{6}\left(4 x^{2}+20 x+21\right)^{3 / 2}-(2 x+5) \sqrt{4 x^{2}+20 x+21}+4 \ln \left(2 x+5+\sqrt{4 x^{2}+20 x+21}+C\right.$
13. $I=\int(2 x+3) \sqrt{x^{2}-2 x-3} d x=\int(2 x+3-5+5) \sqrt{x^{2}-2 x-3} d x$
$=\int(2 x-2) \sqrt{x^{2}-2 x-3} d x+5 \int \sqrt{x^{2}-2 x-3} d x$
$I=I_{1}+I_{2}$
$I_{1}=\int(2 x-2) \sqrt{x^{2}-2 x-3} d x$
Put $y=x^{2}-2 x-3$
$\therefore \quad d y=(2 x-2) d x=\int \sqrt{y} d y=\frac{y^{3 / 2}}{3 / 2}+C=\frac{2}{3} \sqrt{x^{2}-2 x-3}+C$
$I_{2}=5 \int \sqrt{x^{2}-2 x-3} d x=5 \int \sqrt{x^{2}-2 x+1-1-3} d x=5 \int \sqrt{(x-1)^{2}-(2)^{2}} d x$
$=5\left[\frac{1}{2}(x-1) \sqrt{x^{2}-2 x-3}-\frac{4}{2} \log \left(x-1+\sqrt{x^{2}-2 x-3}\right)\right]+C$
$=\frac{5}{2}(x-1) \sqrt{x^{2}-2 x-3}-\frac{20}{2} \ln \left(x-1+\sqrt{x^{2}-2 x-3}\right)+C$
$=\frac{5}{2}(x-1) \sqrt{x^{2}-2 x-3}-10 \ln \left(x-1+\sqrt{x^{2}-2 x-3}\right)+C$
$\therefore \mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}$
$=\frac{2}{3}\left(x^{2}-2 x-3\right)^{3 / 2}+\frac{5}{2}(x-1) \sqrt{x^{2}-2 x-3}-10 \ln \left(x-1+\sqrt{\left(x^{2}-2 x-3\right)}+C\right.$
14. $I=\int e^{3 x} \cdot \sin ^{5} x d x$

We suppose $u=\sin 5 x v=e^{3 x}$
By using formula $\int e^{a x} \sin b x d x=\int \frac{e^{a x}(a \sin b x-b \cos b x)}{a^{2}+b^{2}}$
We have,
$I=\frac{1}{3^{2}+5^{2}} \cdot e^{3 x}(3 \sin 5 x-5 \cos 5 x)+C$
$\therefore \quad I=\frac{1}{34} e^{3 x}(3 \sin 5 x-5 \cos 5 x)+C$
15. $I=\int e^{x} \cos 3 x d x$

By using formula $\int e^{a x} \cdot \cos b x d x=\frac{e^{a x}(a \cos b x+b \sin b x)}{a^{2}+b^{2}}$
We have,
$I=\frac{1}{1^{2}+3^{2}} e^{x}(1 \cdot \cos 3 x+3 \sin 3 x)+C=\frac{1}{10} e^{x}(\cos 3 x+3 \sin 3 x)+C$
16. $I=\int e^{2 x} \sin (x+1) d x$

By using formula $\int e^{a x} \cdot \sin b x=e^{a x} \frac{(a \sin b x-b \cos b x)}{a^{2}+b^{2}}$
We have,
$I=\frac{1}{(2)^{2}+1^{2}} e^{2 x}[2 \sin (x+1)-\cos (x+1)]+C=\frac{1}{5} e^{2 x}[2 \sin (x+1)-\cos (x+1)]$ $+\mathrm{C}$

EXERCISE 16.3

Evaluate:

1. $\int \frac{d x}{1+2 \sin ^{2} x}$
2. $\int \frac{d x}{5+4 \cos x}$
3. $\int \frac{d x}{1-3 \sin x}$
4. $\int \frac{d x}{a^{2} \sin ^{2} x-b^{2} \cos ^{2} x}$
5. $\int \frac{d x}{4 \cos x-1}$
6. $\int \frac{d x}{2+3 \cos x}$
7. $\int \frac{\sin x \cos x}{(\sin x+\cos x)^{2}} d x$
8. $\int \frac{d x}{\sin x+\cos x}$
9. $\int \frac{d x}{1+\sin x+\cos x}$
10. $\int \frac{d x}{3+2 \sin x+\cos x}$
11. $\int \frac{d x}{1-\sin x+\cos x}$
12. $\int \frac{d x}{2+\cos x-\sin x}$
13. $\int \frac{d x}{\cos x-\sqrt{3} \sin x}$
14. $\int \frac{1}{1+2 \sin \mathrm{x}}$
15. $\int \frac{d x}{2+\sin x}$
16. $\int \frac{\mathrm{dx}}{4+3 \sinh \mathrm{x}}$
17. $\int \frac{d x}{4+3 \cosh x}$
18. $\int \frac{\tanh \mathrm{x}}{36 \sec \mathrm{~h} x+\cosh \mathrm{x}} \mathrm{dx}$
19. $\int \frac{\tanh x d x}{\cosh x+64 \sec h x}$
20. $\int \frac{\sinh x d x}{4 \tanh x-\operatorname{cosech} x \sec h x}$

Solution:

1. $I=\int \frac{d x}{1+2 \sin ^{2} x}$

Dividing numerator and denominator by $\cos ^{2} x$

$$
\begin{aligned}
& \int \frac{\frac{1}{\cos ^{2} x}}{\frac{1}{\cos ^{2} x}+\frac{2 \sin ^{2} x}{\cos ^{2} x}} d x=\int \frac{\sec ^{2} x}{\sec ^{2} x+2 \tan ^{2} x} d x \\
& =\int \frac{\sec ^{2} x}{1+\tan ^{2} x+2 \tan ^{2} x} d x=\int \frac{\sec ^{2} x}{1+(\sqrt{3} \tan x)^{2}} d x \\
& \text { Put } y=\sqrt{3} \tan x \\
& \Rightarrow d y=\sqrt{3} \sec ^{2} x d x \\
& \Rightarrow \frac{d y}{\sqrt{3}}=\sec ^{2} x d x \\
& \therefore \quad I=\frac{1}{\sqrt{3}} \int \frac{d y}{1^{2}+y^{2}}=\frac{1}{\sqrt{3}} \frac{1}{1} \tan ^{-1} \frac{y}{1}+C=\frac{1}{\sqrt{3}} \tan ^{-1}(\sqrt{3} \tan x)+C
\end{aligned}
$$

2. $I=\int \frac{d x}{5+4 \cos x}$

$$
\begin{aligned}
& \int \frac{d x}{5\left(\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}\right)+4\left(\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}\right)} d x \\
& =\int \frac{1}{5 \sin ^{2} \frac{x}{2}+5 \cos ^{2} \frac{x}{2}+4 \cos ^{2} \frac{x}{2}-4 \sin ^{2} \frac{x}{2}} d x \\
& \int \frac{1}{9 \cos ^{2} \frac{x}{2}+\sin ^{2} \frac{x}{2}} d x
\end{aligned}
$$

Dividing numerator and denominator by $\cos ^{2} \frac{x}{2}$
$=\int \frac{\sec ^{2} \frac{x}{2}}{9+\tan ^{2} \frac{x}{2}} d x$
Put $\tan \frac{x}{2}=y$
or, $\sec ^{2} \frac{x}{2} \frac{1}{2}=d y$
$\therefore \quad 2 d y=\sec ^{2} x d x$
Now, $I=2 \int \frac{d y}{(3)^{2}+y^{2}}=\frac{2}{3} \tan ^{-1} \frac{\left(\tan \frac{x}{2}\right)}{3}+C=\frac{2}{3} \tan ^{-1} \frac{1}{3}\left(\tan \frac{x}{2}\right)+C$
3. $I=\int \frac{d x}{1-3 \sin x}=\int \frac{d x}{\left(\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}\right)-2.3 \sin \frac{x}{2} \cos \frac{x}{2}}$

Dividing by $\cos ^{2} \frac{x}{2}$ in deno-and num.
$\int \frac{\sec ^{2} \frac{x}{2}}{\tan ^{2} \frac{x}{2}-6 \tan \frac{x}{2}+1} d x$
Put $y=\tan \frac{x}{2}$
$2 d y=\sec ^{2} \frac{x}{2} d x$
Now,

$$
\begin{aligned}
\therefore \quad I & =2 \int \frac{d y}{y^{2}-6 y+1}=2 \int \frac{d y}{y^{2}-2.3 y+9-9+1} \\
& =2 \int \frac{d y}{(y-3)^{2}-(2 \sqrt{2})^{2}}=2 \frac{1}{2 \cdot 2 \sqrt{2}} \ln \frac{y-3-2 \sqrt{2}}{y-3+2 \sqrt{2}}+C \\
& =\frac{1}{2 \sqrt{2}} \ln \frac{\tan \frac{x}{2}-3-2 \sqrt{2}}{\tan \frac{x}{2}-3+2 \sqrt{2}}+C
\end{aligned}
$$

4. $\mathrm{I}=\int \frac{\mathrm{dx}}{\mathrm{a}^{2} \sin ^{2} \mathrm{x}-\mathrm{b}^{2} \cos ^{2} \mathrm{x}}$

Dividing number and deno. by $\cos ^{2} x$ then
$I=\int \frac{\sec ^{2} x}{a^{2} \tan ^{2} x-b^{2}} d x$
Put $y=a \tan x$
$\frac{d y}{a}=\sec ^{2} x . d x$
Now,

$$
\therefore \quad I=\frac{1}{a} \int \frac{d y}{y^{2}-b^{2}}=\frac{1}{2 \cdot b a} \ln \frac{y-b}{y+b}+C=\frac{1}{2 a b} \ln \left(\frac{a \tan x-b}{a \tan x+b}\right)+C
$$

5. $I=\int \frac{d x}{4 \cos x-1}=\int \frac{d x}{4\left(\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}\right)-\left(\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}\right)}$

$$
=\int \frac{d x}{4 \cos ^{2} \frac{x}{2}-4 \sin ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2}}=\int \frac{d x}{3 \cos ^{2} \frac{x}{2}-5 \sin ^{2} \frac{x}{2}}
$$

Dividing numerator and denominator by $\cos ^{2} \frac{x}{2}$
$I=\int \frac{\sec ^{2} \frac{x}{2}}{3-(\sqrt{5})^{2} \tan ^{2} \frac{x}{2}}$
Put $y=\sqrt{5} \tan \frac{x}{2}$
$\therefore \frac{2 d y}{\sqrt{5}}=\sec ^{2} \frac{x}{2} d x$
Now, $I=\frac{2}{\sqrt{5}} \int \frac{d y}{(\sqrt{3})^{2}-\left(\sqrt{5} \operatorname{Tan} \frac{x}{2}\right)^{2}}=\frac{2}{\sqrt{5}} \int \frac{d y}{(\sqrt{3})^{2}-y^{2}}$
$=\frac{2}{\sqrt{5}} \frac{1}{2 \sqrt{3}} \ln \frac{\sqrt{3}+y}{\sqrt{3}-y}+C=\frac{1}{\sqrt{15}} \ln \left(\frac{\sqrt{3}+\sqrt{5} \operatorname{Tan} \frac{x}{2}}{\sqrt{3}-\sqrt{5} \operatorname{Tan} \frac{x}{2}}\right)+C$
6. $\mathrm{I}=\int \frac{\mathrm{dx}}{2+3 \cos x}=$

$$
\int \frac{d x}{2\left(\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}\right)+3\left(\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}\right)}=
$$

$\int \frac{d x}{5 \cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}}$
Dividing numerator and denominator by $\cos ^{2} \frac{x}{2}$
$=\int \frac{\sec ^{2} \frac{x}{2}}{(\sqrt{5})^{2}-\tan ^{2} \frac{x}{2}} d x$
Put $y=\tan \frac{x}{2}$
$2 d y=\sec ^{2} \frac{x}{2} d x$
Now, $I=2 \int \frac{d y}{(\sqrt{5})^{2}-y^{2}}=2 \frac{1}{2 \sqrt{5}} \ln \frac{\sqrt{5}+y}{\sqrt{5}-y}+C=\frac{1}{\sqrt{5}} \ln \left(\frac{\sqrt{5}+\tan \frac{x}{2}}{\sqrt{5}-\tan \frac{x}{2}}\right)+C$
7. $I=\int \frac{\sin x \cos x}{(\sin x+\cos x)^{2}} d x=\frac{1}{2} \int \frac{2 \sin x \cdot \cos x}{(\sin x+\cos x)^{2}} d x=\frac{1}{2} \int \frac{\sin 2 x}{(\sin x+\cos x)^{2}}$
$=\frac{1}{2} \int \frac{(1+\sin 2 x)-1}{(\sin x+\cos x)^{2}} d x=\frac{1}{2} \int \frac{(\sin x+\cos x)^{2}-1}{(\sin x+\cos x)^{2}} d x$
$=\frac{1}{2} \int \frac{(\sin x+\cos x)^{2}}{(\sin x+\cos x)^{2}} d x-\frac{1}{2} \int \frac{d x}{(\sin x+\cos x)^{2}}$
$I_{1}=\frac{1}{2} x-\frac{1}{2} I_{2}=\int \frac{d x}{(\sin x+\cos x)^{2}}$
Dividing numerator and denominator by $\cos ^{2} x$
$I=I_{1}+I_{2}=\frac{x}{2}-\frac{1}{2} \int \frac{\sec ^{2} d x}{(1+\tan x)^{2}}$
Put $\tan x+1=y, d y=\sec ^{2} x . d x$

$$
=\frac{x}{2}-\frac{1}{2} \int \frac{d y}{y^{2}}=\frac{x}{2}+\frac{1}{2} \frac{1}{y}+C=\frac{x}{2}+\frac{1}{2} \frac{1}{\tan x+1}+C
$$

8. $I=\int \frac{d x}{\sin x+\cos x}$

Put $1=r \cos \theta \quad 1=r \sin \theta$
So that $\mathrm{r}^{2}=2$

$$
\begin{array}{ll}
\therefore \quad & r=\sqrt{2} \\
& \tan \theta=1
\end{array}
$$

$\therefore \quad \theta=\frac{\pi}{4}$
$I=\int \frac{d x}{r \cos \theta \cdot \sin x+r \sin \theta \cdot \cos x}=\frac{1}{r} \int \frac{d x}{\sin (x+\theta)}=\frac{1}{r} \int \operatorname{cosec}(x+\theta) d x$
$=\frac{1}{r} \ln \tan \frac{1}{2}(x+\theta)+C=\frac{1}{\sqrt{2}} \ln \tan \frac{1}{2}\left(x+\frac{\pi}{4}\right)+C=\frac{1}{\sqrt{2}} \ln \left[\tan \left(\frac{x}{2}+\frac{\pi}{8}\right)\right]+C$
9. $I=\int \frac{d x}{1+\sin x+\cos x}=\int \frac{d x}{(1+\cos x)+\sin x}=\int \frac{d x}{2 \cos ^{2} \frac{x}{2}+2 \sin x \frac{x}{2} \cos \frac{x}{2}}$

Dividing by $\cos ^{2} \frac{x}{2}$ in deno. and num.
$=\frac{1}{2} \int \frac{\sec ^{2} \frac{x}{2}}{1+\tan \frac{x}{2}} d x$
Put $1+\tan \frac{x}{2}=y$
$\sec ^{2} \frac{x}{2} \frac{1}{2} d x=d y$
$\therefore \sec ^{2} \frac{\mathrm{x}}{2} \mathrm{dx}=2 \mathrm{dy}$

$$
I=\int \frac{d y}{y}=\ln y+C=\ln \left(1+\tan \frac{x}{2}\right)+C
$$

10. $1=\int \frac{d x}{3+2 \sin x+\cos x}=\int \frac{1}{3 \cos ^{2} \frac{x}{2}+3 \sin ^{2} \frac{x}{2}+4 \sin \frac{x}{2} \cdot \cos \frac{x}{2}+\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}}$ dx

$$
=\int \frac{1}{4 \cos ^{2} \frac{x}{2}+2 \sin ^{2} \frac{x}{2}+4 \sin \frac{x}{2} \cos \frac{x}{2}} d x
$$

Dividing denominator and numerator by $\cos ^{2} \frac{x}{2}$

$$
=\int \frac{\sec ^{2} \frac{x}{2}}{4+2 \tan ^{2} \frac{x}{2}+4 \tan \frac{x}{2}} d x=\frac{1}{4} \int \frac{\sec ^{2} \frac{x}{2}}{1+\frac{1}{2} \tan 2 \frac{x}{2}+\tan \frac{x}{2}}
$$

Put $\tan \frac{x}{2}=y$
$\Rightarrow \sec ^{2} \frac{x}{2} d x=2 d y$
from (i)

$$
\begin{aligned}
I & =\frac{1}{4} \int \frac{2 d y}{1+\frac{1}{2} y^{2}+y}=\int \frac{d y}{y^{2}+2 y+2}=\int \frac{d y}{(y+1)^{2}+1^{2}} \\
& =\frac{1}{1} \tan ^{-1}(y+1)+C=\tan ^{-1}\left(\tan \frac{x}{2}+1\right)+C
\end{aligned}
$$

11. $I=\int \frac{1}{1-\sin x+\cos x}=\int \frac{1}{(1+\cos x)-\sin x}=\int \frac{1}{2 \cos ^{2} \frac{x}{2}-2 \sin \frac{x}{2} \cos \frac{x}{2}} d x$

$$
=\frac{1}{2} \int \frac{d x}{\cos ^{2} \frac{x}{2}-\sin \frac{x}{2} \cos \frac{x}{2}}
$$

Dividing numerator and denominator by $\cos ^{2} \frac{x}{2}$

$$
I=\frac{1}{2} \int \frac{\sec ^{2} \frac{x}{2}}{1-\tan \frac{x}{2}} d x
$$

Put $1-\tan \frac{x}{2}=y$
$-\frac{1}{2} \sec ^{2} \frac{x}{2} d x=d y$
$\sec ^{2} \frac{x}{2} d x=-2 d y=-\frac{2}{2} \int \frac{d y}{y}=-\ln y+C=-\ln \left(1-\tan \frac{x}{2}\right)+C$

$$
\text { 12. } \begin{aligned}
\int \frac{d x}{2+\cos x-\sin x} & =\int \frac{d x}{2 \sin ^{2} \frac{x}{2}+2 \cos ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}-2 \sin \frac{x}{2} \cos \frac{x}{2}} \\
& =\int \frac{1}{\sin ^{2} \frac{x}{2}-2 \sin \frac{x}{2} \cos \frac{x}{2}+\cos ^{2} \frac{x}{2}} d x \\
& =\int \frac{\sec ^{2} \frac{x}{2}}{\tan ^{2} \frac{x}{2}-2 \tan \frac{x}{2}+1} d x
\end{aligned}
$$

Put $\tan \frac{x}{2}=y$
$\Rightarrow \frac{1}{2} \sec ^{2} x \frac{x}{2} d x=d y$
$\therefore \sec ^{2} \frac{x}{2} d x=2 d y$
$=\int \frac{2 d y}{y^{2}-2 y+1}=2 \int \frac{1}{(y-1)^{2}} d y=-\frac{2}{(y-1)}+c=-\frac{2}{\left(\tan \frac{x}{2}-1\right)}$
13. $\int \frac{d x}{\cos x-\sqrt{3} \sin x}$

Put $1=r \sin \theta, \sqrt{3}=r \cos \theta$
So that $r^{2}=3+1=4$
$\therefore r=2$
Also, $\tan \theta=\frac{1}{\sqrt{3}}=\tan \frac{\pi}{6}$
$\therefore \quad \theta=\frac{\pi}{6}$
Now, $\int \frac{d x}{r \sin \theta \cdot \cos x-r \cos \theta \sin x}=\int \frac{d x}{r[\sin (\theta-x)]}=\frac{1}{2} \int \operatorname{cosec}(\theta-x) d x$

$$
\begin{aligned}
& =\frac{1}{2}\left|\ln \tan \left(\frac{\theta-x}{2}\right)\right|+c \\
& =\frac{1}{2} \ln \tan \left(\frac{\pi}{12}-\frac{x}{2}\right)+c
\end{aligned}
$$

14. $I=\int \frac{1}{1+2 \sin x} d x=\int \frac{d x}{\cos ^{2} \frac{x}{2}+\sin ^{2} \frac{x}{2}+2.2 \sin \frac{x}{2} \cos \frac{x}{2}}$

Dividing by $\cos ^{2} \frac{x}{2}$ in deno and num
$=\int \frac{\sec ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}+4 \tan \frac{x}{2}}=\int \frac{\sec ^{2} \frac{x}{2}}{\left(\tan \frac{x}{2}+2\right)^{2}-3}$
Put $\tan \frac{x}{2}+2=y$

$$
\operatorname{Sec}^{2} \frac{x}{2} d x=2 d y
$$

$$
\therefore \quad I=2 \int \frac{d y}{(y)^{2}-(\sqrt{3})^{2}}=2 \frac{1}{2 \sqrt{3}} \ln \frac{y-\sqrt{3}}{y+\sqrt{3}}+C=\frac{1}{\sqrt{3}} \ln \frac{\tan \frac{x}{2}+2-\sqrt{3}}{\tan \frac{x}{2}+2+\sqrt{3}}+C
$$

15. $I=\int \frac{d x}{2+\sin x}=\int \frac{d x}{2 \cos ^{2} \frac{x}{2}+2 \sin ^{2} \frac{x}{2}+2 \sin \frac{x}{2} \cos \frac{x}{2}}$

Dividing numerator and denominator by $\cos ^{2} \frac{x}{2}$
$=\frac{1}{2} \int \frac{\sec ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}+\tan \frac{x}{2}} d x$
Put $\tan \frac{x}{2}=y$
$\operatorname{Sec}^{2} \frac{x}{2} d x=2 d y$

$$
\begin{aligned}
& =\frac{2}{2} \int \frac{d y}{1+y^{2}+y}=\int \frac{d y}{\left(y+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}=\frac{1}{\frac{\sqrt{3}}{2}} \tan ^{-1} \frac{y+\frac{1}{2}}{\frac{\sqrt{3}}{2}}+C \\
& =\frac{2}{\sqrt{3}} \tan ^{-1} \frac{2 y+1}{\sqrt{3}}+C=\frac{2}{\sqrt{3}} \tan ^{-1} \frac{2 \tan \frac{x}{2}+1}{\sqrt{3}}+C
\end{aligned}
$$

16. $I=\int \frac{d x}{4+3 \sinh x}$

$$
\begin{aligned}
\text { or, } I & =\int \frac{d x}{4\left(\cosh ^{2} \frac{x}{2}-\sinh ^{2} \frac{x}{2}\right)+3.2 \sin x \frac{x}{2} \cosh \frac{x}{2}}= \\
& \int \frac{\operatorname{sech}^{2} \frac{x}{2}}{4\left(1-\tanh ^{2} \frac{x}{2}\right)+6 \tanh \frac{x}{2}} d x
\end{aligned}
$$

Let $\tanh x \frac{x}{2}=y$
$\operatorname{Sec}^{2} \frac{x}{2}=2 \mathrm{dy}$
$=\frac{2}{4} \int \frac{d y}{1-y^{2}+\frac{3}{2} y}$
$=\frac{1}{2} \int \frac{1}{-\left(y^{2}-\frac{3 y}{2}-1\right)} d y$

$$
\begin{aligned}
& =\frac{1}{2} \int \frac{1}{-\left[y^{2}-2 \cdot y \cdot \frac{3}{4}+\frac{9}{16}-\frac{9}{16}-1\right]} d y \\
& =\frac{1}{2} \int \frac{1}{-\left[(y-3 / 4)^{2}-25 / 16\right]} d y \\
& =\frac{1}{2} \int \frac{1}{(5 / 4)^{2}-(y-3 / 4)^{2}} d y \\
& =\frac{1}{2} \times \frac{1}{2 \times 5 / 4} \ln \frac{5 / 4+y-3 / 4}{5 / 4-y+3 / 4} \\
& =\frac{1}{5} \ln \left(\frac{5+4 y-3}{5-4 y+3}\right)+c \\
& =\frac{1}{5} \ln \left(\frac{4 y+2}{8-4 y}\right)+c \\
& =\frac{1}{5} \ln \left(\frac{2 y+1}{4-2 y}\right)+c \\
& =\frac{1}{5} \ln \left(\frac{2 \tanh \frac{x}{2}+1}{4-2 \tanh \frac{x}{2}}\right)+c
\end{aligned}
$$

17. $I=\int \frac{d x}{4+3 \cosh x}$

$$
I=\int \frac{d x}{4\left(\cosh ^{2} \frac{x}{2}-\sinh ^{2} \frac{x}{2}\right)+3\left(\cosh ^{2} \frac{x}{2}+\sin h^{2} \frac{x}{2}\right)}=\int \frac{d x}{7 \cosh ^{2} \frac{x}{2}-\sinh ^{2} \frac{x}{2}}
$$

Dividing numerator and denominator by $\cos ^{2} \frac{x}{2}$
$=\int \frac{\operatorname{sech}^{2} \frac{x}{2}}{7-\tanh ^{2} \frac{x}{2}}$
Let $\tanh \frac{x}{2}=y$
$\operatorname{sech}^{2} \frac{x}{2}=2 d y$
$\therefore I=2 \int \frac{d y}{7-y^{2}}=2 \int \frac{d y}{\left((\sqrt{7})^{2}-(y)^{2}\right)}=2 \cdot \frac{1}{2 \cdot \sqrt{7}} \ln \left(\frac{\sqrt{7}+y}{\sqrt{7}-y}\right)+C$
$=\frac{1}{\sqrt{7}} \ln \left[\frac{\sqrt{7}+\tan \mathrm{h} \frac{x}{2}}{\sqrt{7}-\tan \mathrm{h} \frac{x}{2}}\right]+C$
18. $I=\int \frac{\tan h x}{36 \sec h x+\cos h x} d x$

Multiplying by cosx deno. and num.
$=\int \frac{\cos h x \cdot \frac{\sin h x}{\cos h x}}{36 \frac{\cos h x}{\cos h x}+\cos h x \cdot \cos h x}=\int \frac{\sin h x}{(6)^{2}+\cos h^{2} x} d x$
Put $\cos h x=y$
$\therefore \quad \sin h x . d x=\mathrm{dy}$
$\therefore \int \frac{d y}{(6)^{2}+(y)^{2}}=\frac{1}{6} \tan ^{-1} \frac{y}{6}+C=\frac{1}{6} \tan ^{-1}\left(\frac{\cosh x}{6}\right)+C$
19. $I=\int \frac{\tanh x d x}{\cosh x+\operatorname{sech} x 64}$

Multiplying cosxh in demoninator and numerator

$$
=\int \frac{\cos h x \frac{\sinh h}{\cos h x}}{\cos h x \cdot \cos h x+64 \cdot \cos h x \frac{1}{\cos h x}}=\int \frac{\sin h x}{\cos h^{2} x+64} d x
$$

Let $\cos h x=y$
$\sin h x=\frac{d y}{d x}$
$\sin h x . d x=d y$
$\therefore \quad I=\int \frac{d y}{y^{2}+64}=\int \frac{d y}{y^{2}+(8)^{2}}=\frac{1}{8} \tan ^{-1} \frac{y}{8}+C=\frac{1}{8} \tan ^{-1}\left(\frac{\cosh x}{8}\right)+C$
20. I $=\int \frac{\sin h x}{4 \tan h x-\operatorname{cosec} h x . \operatorname{sech}} d x$
$=\int \frac{\sin x x}{4 \frac{\sin h x}{\cos h x}-\frac{1}{\sinh x \cdot \cosh x}} d x=\int \frac{\sin h^{2} x \cos h x}{4 \sin h^{2} x-1}$
Let $\sin h x=y$
$\cos h x . d x=d y$
$\therefore \quad I=\int \frac{y^{2} d y}{4 y^{2}-1}=\frac{1}{4} \int \frac{4 y^{2} d y}{4 y^{2}-1}=\frac{1}{4} \int \frac{\left(4 y^{2}-1\right)+1}{\left(4 y^{2}-1\right)} d y$
$=\frac{1}{4} \int\left(1+\frac{1}{4 y^{2}-1}\right) d y$
$=\frac{1}{4}\left[y+\int \frac{1}{4\left(y^{2}-\frac{1}{4}\right)}\right] d y$
$=\frac{1}{4}\left[y+\frac{1}{4} \times \int \frac{1}{y^{2}-\left(\frac{1}{2}\right)^{2}}\right] d y$
$=\frac{1}{4}\left[y+\frac{1}{4} \times \frac{1}{2 \times \frac{1}{2}} \ln \frac{y-\frac{1}{2}}{y+\frac{1}{2}}\right]+c$

$$
\begin{aligned}
& =\frac{1}{4}\left[\sinh x+\frac{1}{4} \ln \frac{2 \sinh x-1}{2 \sinh x+1}\right]+c \\
& =\frac{1}{4} \sinh x+\frac{1}{16} \ln \frac{2 \sinh x-1}{2 \sinh x+1}+c
\end{aligned}
$$

EXERCISE 16.4

Evaluate

1. $\int \frac{2 x}{(2 x+3)(3 x+5)} d x$
2. $\int \frac{3 x}{(x-a)(x-b)} d x$
3. $\int \frac{1}{(x+2)(x+3)^{2}} d x$
4. $\int \frac{x^{2} d x}{(x-a)(x-b)(x-c)}$
5. $\int \frac{x^{2}+1}{x-1} d x$
6. $\int \frac{d x}{1+x+x^{2}+x^{3}}$
7. $\int \frac{7 x^{2}-18 x+13}{(x-3)\left(x^{2}+2\right)} d x$
8. $\int \frac{x^{2}-1}{x^{4}+x^{2}+1} d x$
9. $\int \frac{1}{x^{4}-1} d x$
10. $\int \frac{x^{3} d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}$
11. $\int \frac{x^{2}+4}{x^{4}+16} d x$
12. $\int \frac{x^{3} d x}{(x-a)(x-b)(x-c)}$
13. $\int \frac{x^{3} d x}{2 x^{4}-x^{2}-10}$
14. $\int \frac{d x}{(x-1)^{2}(x-3)^{2}}$
15. $\int \frac{d x}{(x-1)^{2}(x-4)^{3}}$

Solution:

1. $\int \frac{2 x}{(2 x+3)(3 x+5)} d x$

Let $\frac{2 x}{(2 x+3)(3 x+5)}=\frac{A}{2 x+3}+\frac{B}{3 x+5}$
$2 x=A(3 x+5)+B(2 x+3)$
Equating the coefficient of x and constant terms we to get

$$
\begin{aligned}
& 3 A+2 B=2 \\
& 5 A+3 B=0 \\
& A=-6 \text { and } B=10 \\
& \therefore \frac{2 x}{(2 x+3)(3 x+5)}=\frac{-6}{2 x+3}+\frac{10}{3 x+5}
\end{aligned}
$$

So, we have by integration

$$
\int \frac{d x}{(2 x+3)(3 x+5)}=-3 \ln (2 x+3)+\frac{10}{3} \ln (3 x+5)+C
$$

254 Kriti's Principles of Mathematics-XII

2. $\int \frac{3 x}{(x-a)(x-b)} d x$

Let $\frac{3 x}{(x-a)(x-b)}=\frac{A}{x-a}+\frac{B}{x-b}$
$\Rightarrow \frac{3 x}{(x-a)(x-b)}=\frac{A(x-b)+B(x-a)}{(x-a)(x-b)}$
$\Rightarrow 3 x=A(x-b)+B(x-a)$
Put $x=a$
$3 a=A(a-b)$
$\therefore \quad A=\frac{3 a}{a-b}$
$x=b, 3 b=B(b-a)$
$B=\frac{-3 b}{a-b}$
$\therefore \frac{3 x}{(x-a)(x-b)}=\frac{3 a}{(x-a)(a-b)}-\frac{3 b}{(a-b)(x-b)}$
or, $\int \frac{3 x}{(x-a)(x-b)} d x=\frac{3}{a-b} \int\left\{\frac{a}{x-a}-\frac{b}{x-b}\right\} d x$

$$
=\frac{3}{a-b}[a \ln (x-a)-b \ln (x-b)]+c
$$

3. $\int \frac{1}{(x+2)(x+3)^{2}} d x$

Let $\frac{1}{(x+x 2)(x+3)^{2}}=\frac{A}{x+2}+\frac{B}{x+3}+\frac{C}{(x+3)^{2}}$
$1=A(x+3)^{2}+B(x+2)(x+3)+C(x+2)$
Put $x=-2$
1 = A. 1
$\therefore A=1$
Put $x=-3$

$$
I=C(-1)
$$

$\therefore \quad C=-1$
Putx $=0,1-9 A+B .2 \cdot 3+C .2$

$$
6 B=-6
$$

$\therefore \quad B=-1$
$\therefore \frac{1}{(x+2)(x+3)^{2}}=\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{(x+3)^{2}}$

$$
\int \frac{1}{(x+2)(x+3)^{2}} d x=\int\left\{\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{(x+3)^{2}}\right\} d x
$$

$$
\operatorname{Ln}(x+2)-\ln (x+3)+\frac{1}{x+3}+C=\ln \frac{x+2}{x+3}+\frac{1}{x+3}+C
$$

4. $\int \frac{x^{2} d x}{(x-a)(x-b)(x-c)}$

Let $\frac{x^{2}}{(x-a)(x-b)(x-c)}=\frac{A}{(x-a)}+\frac{B}{(x-b)}+\frac{C}{(x-c)}$
$x^{2}=A(x-b)(x-c)+B(x-a)(x-c)+C(x-a)(x-b)$
$\therefore \quad$ Put $x=b$
$b^{2}=B(b-a)(b-c)+c(b-c)(b-b)$
$\Rightarrow B=\frac{b^{2}}{(b-a)(b-c)}$
Similarly, Again put $x=a$
$\frac{a^{2}}{(a-b)(a-c)}=A$
$\frac{c^{2}}{(c-b)(c-a)}=C$
Then,
$=\frac{a^{2}}{(a-b)(a-c)} \cdot \int \frac{1}{x-a} d x+\frac{b^{2}}{(b-a)(b-c)} \int \frac{1}{x-b} d x+\frac{c^{2}}{(c-b)(c-a)} \int \frac{1}{x-c} d x$ $=\frac{a^{2}}{(a-b)(a-c)} \ln (x-a)+\frac{b^{2}}{(b-a)(b-c)} \ln (x-c)+\frac{c^{2}}{(c-b)(c-a)} \ln (x-c)+c$
5. $\int \frac{x^{2}+1}{x-1} d x$
$\int \frac{x^{2}}{x-1} d x+\int \frac{1}{x-1} d x=\int \frac{x^{2}-1+1}{x-1} d x+\int \frac{1}{x-1} d x$
$=\int(x+1) d x+\int \frac{1}{x-1}+\int \frac{1}{x-1} d x=\frac{x^{2}}{2}+x+2 \ln (x-1)+C$
6. $\int \frac{d x}{1+x+x^{2}+x^{3}}=\int \frac{d x}{x^{3}+x^{2}+x+1}=\int \frac{1}{x^{2}(x+1)+(x+1)} d x=$
$\int \frac{1}{\left(x^{2}+1\right)(x+1)} d x$
Let, $\frac{1}{(x+1)\left(x^{2}+1\right)}=\frac{A}{(x+1)}+\frac{B x+C}{x^{2}+1}$
$1=A\left(x^{2}+1\right)+(B x+C)(x+1)$
Put $x=0$
$1=A+C$
Put the value of $x=-1$

$$
\begin{align*}
& x=-1 \tag{i}\\
& 1=2 A
\end{align*}
$$

$\therefore \frac{1}{2}=\mathrm{A}$ and from (i), $\mathrm{C}=\frac{1}{2}$
Putting $x=1$

$$
\begin{aligned}
& 1=2 A+(B+C) 2 \\
& 1=2 \times \frac{1}{2}+\left(B+\frac{1}{2}\right) 2 \\
& \Rightarrow 1=1+2 B+1 \\
& \Rightarrow B=\frac{-1}{2} \\
& \therefore I=\frac{1}{2} \int \frac{1}{(x+1)}+\int \frac{\frac{-1}{2} x+\frac{1}{2}}{x^{2}+1} d x=\frac{1}{2} \ln (x+1)-\frac{1}{2} \times \frac{1}{2} \int \frac{2 x+2}{x^{2}+1} d x \\
& =\frac{1}{2} \ln (x+1)-\frac{1}{4} \ln \left(x^{2}+1\right)+2 \int \frac{1}{x^{2}+1} d x=\frac{1}{2} \ln (x+1)-\frac{1}{4} \ln \left(x^{2}+1\right)+2 \tan ^{-1} x+
\end{aligned}
$$

c
7. $\int \frac{7 x^{2}-18 x+13}{(x-3)\left(x^{2}+2\right)} d x$

$$
\text { Let, } \frac{7 x^{2}-18 x+13}{(x-3)\left(x^{2}+2\right)}=\frac{A}{(x-3)}+\frac{B x+C}{\left(x^{2}+2\right)}
$$

$7 x^{2}-18 x+13=\left(x^{2}+2\right) A+(B x+C)(x-3)$
Put $x=0$
$13=2 A-3 C$
Again put $x=3$
$7 \times 3^{2}-18 \times 3+13=11 \mathrm{~A}$
or, $63-54+13=11 \mathrm{~A}$
or, $22=11 \mathrm{~A}$
$\therefore \mathrm{A}=2$
Put the value of $\mathrm{A}=2$ in equation (i)

$$
13=2 \times 2-3 C
$$

or, $\frac{13-4}{3}=-C$
$\therefore C=-3$
Put $\mathrm{x}=1$
$2=3 \mathrm{~A}-2(\mathrm{~B}+\mathrm{C})$
$2=6-2(B-3)$
$-4=-2(B-3)$
or, $2=B-3$
$\therefore B=5$
$=\int \frac{7 x^{2}-18 x+13}{(x-3)\left(x^{2}+2\right)} d x=2 \int \frac{1}{x-3} d x+\int \frac{5 x-3}{x^{2}+2} d x$
$=2 \ln (x-3)+\frac{5}{2} \int \frac{2 x-\frac{3}{5} \times 2}{x^{2}+2} d x=2 \ln (x-3)+\frac{5}{2} \int \frac{2 x}{x^{2}+2} d x-\frac{6}{5} \times \frac{5}{2} \int \frac{1}{x^{2}+2} d x$
$=2 \ln (x-3)+\frac{5}{2} \ln \left(x^{2}+2\right)-\frac{3}{\sqrt{2}} \tan ^{-1} \frac{x}{\sqrt{2}}+C$
8. $\int \frac{x^{2}-1}{x^{4}+x^{2}+1} d x$

$$
\text { Let } \mathrm{I}=\int \frac{\mathrm{x}^{2}-1}{\mathrm{x}^{4}+\mathrm{x}^{2}+1} d \mathrm{x}=\int \frac{1-\frac{1}{x^{2}}}{x^{2}+1+\frac{1}{x^{2}}} d x=\int \frac{1-\frac{1}{x^{2}}}{\left(x+\frac{1}{x}\right)^{2}-1} d x
$$

Put $x+\frac{1}{x}=y$

$$
\begin{aligned}
& \therefore\left(1-\frac{1}{x^{2}}\right) d x=d y \\
& I=\int \frac{d y}{y^{2}-1}=\frac{1}{2 \cdot 1} \ln \frac{y-1}{y+1}+C=\frac{1}{2} \ln \frac{x+\frac{1}{x}-1}{x+\frac{1}{x}+1}+C=\frac{1}{2} \ln \frac{x^{2}-x+1}{x^{2}+x+1}+C
\end{aligned}
$$

9. $\int \frac{1}{x^{4}-1} d x$

Let $\frac{1}{x^{4}-1} d x=\frac{1}{(x-1)(x+1)\left(x^{2}+1\right)}=\frac{A}{x-1}+\frac{B}{x+1}+\frac{C x+D}{x^{2}+1}$
Put $1=A(x+1)\left(x^{2}+1\right)+B(x-1)\left(x^{2}+1\right)+(c x+1)\left(x^{2}-1\right)$
$x=1 \quad 1=A .2 .2 \quad \therefore A=\frac{1}{4}$
$x=-1 \quad 1=B \cdot(-2) \cdot 2$
$\therefore B=\frac{-1}{4}$
$\mathrm{x}=0 \quad 1=\mathrm{A}+\mathrm{B}(-1)+(-1) \mathrm{D}$
$1=\frac{1}{4}+\frac{1}{4}-D$
$\therefore \quad D=-\frac{1}{2}$
Equating the coefficients of x^{3}

$$
0=A+B+C
$$

or, $\frac{1}{4}-\frac{1}{4}+C$
$\therefore \quad C=0$
$\therefore \frac{1}{x^{4}-1}=\frac{1}{4} \frac{1}{\mathrm{x}-1}-\frac{1}{4} \frac{1}{\mathrm{x}+1}-\frac{1}{2} \frac{1}{\mathrm{x}^{2}+1}$
$\int \frac{1}{x^{4}-1} d x=\int\left\{\frac{1}{4} \frac{1}{x-1}-\frac{1}{4} \frac{1}{x+1}-\frac{1}{2} \frac{1}{x^{2}+1}\right\} d x$
$=\frac{1}{4} \ln (x-1)-\frac{1}{4} \ln (x+1)-\frac{1}{2} \tan ^{-1} x+c=\frac{1}{4} \ln \frac{x-1}{x+1}-\frac{1}{2} \tan ^{-1} x+c$
10. $\int \frac{x^{2}}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} d x$
$\frac{x^{2}}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\frac{y}{\left(y+a^{2}\right)\left(y+b^{2}\right)}=\frac{A}{y+a^{2}}+\frac{B}{y+b^{2}}$
where $y=x^{2}$
$y=A\left(y+b^{2}\right)+B\left(y+a^{2}\right)$
When $y=-a^{2}$
$-a^{2}=A\left(-a^{2}+b^{2}\right)$
$\therefore \quad A=\frac{a^{2}}{a^{2}-b^{2}}$
When $y=-b^{2}$
$-b^{2}=B\left(-b^{2}+a^{2}\right)$
$\therefore B=-\frac{b^{2}}{a^{2}-b^{2}}$
$\frac{y}{\left(y+a^{2}\right)\left(y+b^{2}\right)}=\frac{a^{2}}{a^{2}-b^{2}} \frac{1}{y+a^{2}}-\frac{b^{2}}{a^{2}-b^{2}} \frac{1}{y+b^{2}}$
or, $\frac{x^{2}}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\frac{a^{2}}{a^{2}-b^{2}} \frac{1}{x^{2}+a^{2}}-\frac{b^{2}}{a^{2}-b^{2}} \frac{1}{x^{2}+b^{2}}$
or, $\int \frac{x^{2}}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} d x=\int\left[\frac{-a^{2}}{a^{2}-b^{2}} \frac{1}{x^{2}+a^{2}}-\frac{b^{2}}{a^{2}-b^{2}} \frac{1}{x^{2}+b^{2}}\right] d x$
$=\frac{a^{2}}{a^{2}-b^{2}} \frac{1}{a} \tan ^{-1} \frac{x}{a}-\frac{b^{2}}{a^{2}-b^{2}} \frac{1}{b} \tan ^{-1} \frac{x}{b}+c$
$=\frac{a}{a^{2}-b^{2}} \tan ^{-1} \frac{x}{a}-\frac{b}{a^{2}-b^{2}} \tan ^{-1} \frac{x}{b}+C$
11. $\int \frac{x^{2}+4}{x^{4}+16} d x=\int \frac{1+\frac{4}{x^{2}}}{x^{2}+\frac{16}{x^{2}}} d x=\int \frac{1+\frac{4}{x^{2}}}{\left(x-\frac{4}{x}\right)^{2}+8}$

Put $x-\frac{4}{x}=y$
$\Rightarrow 1+\frac{4}{x^{2}} d x=d y$
$I=\int \frac{d y}{y^{2}+(2 \sqrt{2})^{2}}=\frac{1}{2 \sqrt{2}} \tan ^{-1} \frac{y}{2 \sqrt{2}}+C=\frac{1}{2 \sqrt{2}} \tan ^{-1} \frac{x^{2}-4}{2 \sqrt{2}}+C$
12. $\int \frac{x^{3}}{(x-a)(x-b)(x-c)} d x$

Let $\frac{x^{3}}{(x-a)(x-b)(x-c)}=1+\frac{A}{(x-a)}+\frac{B}{(x-b)}+\frac{c}{(x-c)}$
$\Rightarrow \quad x^{3}=(x-a)(x-b)(x-c)+A(x-b)(x-c)+B(x-a)(x-c)+c(x-a)(x-b) \ldots$ (i)
Putting $x=a, x=b, x=c$ turn by turn, we get,
$A=\frac{a^{2}}{(a-b)(a-c)}, B=\frac{b^{2}}{(b-a)(b-c)}, C=\frac{c^{2}}{(c-a)(c-b)}$
Now, $\int \frac{x^{3}}{(x-a)(x-b)(x-c)} d x$
$I=1+\frac{a^{2}}{(a-b)(a-c)} \int \frac{1}{x-a} d x+\frac{b^{2}}{(b-a)(b-c)} \int \frac{1}{x-b} d x+\frac{c^{2}}{(c-a)(c-b)}$
$\int \frac{1}{x-c} d x$
$=x+\frac{a^{2}}{(a-b)(a-c)} \ln (x-a)+\frac{b^{2}}{(b-a)(b-c)} \ln (x-b)+\frac{c^{2}}{(c-a)(c-b)} \ln (x-c)$
$+\mathrm{C}$
13. $\int \frac{x^{3} d x}{2 x^{4}-x^{2}-10}$

Put $x^{2}=y$
$2 x d x=d y$
$\therefore \quad \mathrm{dx}=\frac{\mathrm{dy}}{2 \mathrm{x}}$
Now, $\int \frac{x^{3} d x}{2 x^{4}-x^{2}-10}=\int \frac{x^{2} x d x}{2\left(x^{2}\right)^{2}=x^{2}-10}=\int \frac{y \cdot x}{2 y^{2}-y-10} \cdot \frac{d y}{2 x}$
$=\frac{1}{2} \int \frac{y d y}{2 y^{2}-5 y+4 y-10}=\frac{1}{2} \int \frac{y d y}{y(2 y-5)+2(2 y-5)}=\frac{1}{2} \int \frac{y d y}{(y+2)(2 y-5)} \ldots$ (i)
Let $\frac{y}{(y+2)(2 y-5)}=\frac{A}{(y+2)}+\frac{B}{(2 y-5)}$
$\Rightarrow \mathrm{y}=\mathrm{A}(2 \mathrm{y}-5)+\mathrm{B}(\mathrm{y}+2)$
Putting $y=-2$ in (ii), we get,
$-2=A(-4-5)+B \times 0 \Rightarrow A=\frac{2}{9}$

Again, putting $y=\frac{5}{2}$ in (ii), we get
$\frac{5}{2}=A \times 0+B\left(\frac{5}{2}+2\right) \Rightarrow B=\frac{5}{9}$
$\therefore \frac{y}{(y+2)(2 y-5)}=\frac{2}{9(y+2)}+\frac{5}{9(2 y-5)}$
from (i) $\frac{1}{2} \int \frac{y d y}{(y+2)(2 y-5)}=\frac{1}{9} \int \frac{1}{y+2} d y+\frac{5}{18} \int \frac{1}{2 y-5} d y$
$=\frac{1}{9} \ln (y+2)+\frac{5}{36} \ln (2 y-5)+c=\frac{5}{36} \ln \left(2 x^{2}-5\right)+\frac{1}{9} \ln \left(x^{2}+2\right)+c$
14. $\int \frac{d x}{(x-1)^{2}(x-3)^{2}}$

Put $x-1=z(x-3)$
$\Rightarrow \quad x-z x=1-3 z \Rightarrow x=\frac{1-3 z}{1-z}$
$d x=\frac{(1-z)-3-(1-3 z) \times(-1)}{(1-z)^{2}} d z$
$\Rightarrow \mathrm{dx}=\frac{-3+3 \mathrm{z}+1-3 \mathrm{z}}{(1-\mathrm{z})^{2}} \mathrm{dz}=\frac{-2}{(1-\mathrm{z})^{2}} \mathrm{dz}$
Here, $\frac{1}{(x-1)^{2}(x-3)^{2}}=\frac{1}{z^{2}(x-3)^{2}(x-3)^{2}}=\frac{1}{z^{2}\left[\frac{1-3 z}{1-z}-3\right]^{4}}$
$=\frac{1}{z^{2}\left[\frac{1-3 z-3+\ldots 3 z}{1-z}\right]^{4}}=\frac{(1-z)^{4}}{-16 z^{2}}$
Now, $\int \frac{d x}{(x-1)^{2}(x-3)^{2}}=\int \frac{-2}{(1-z)^{2}} \times \frac{(1-z)^{4}}{-16 z^{2}}$
$=\frac{-1}{8} \int \frac{(1-z)^{2}}{z^{2}} d z=\frac{-1}{8} \int \frac{1-2 z+z^{2}}{z^{2}} d z=\frac{-1}{8} \int\left(\frac{1}{z^{2}}-\frac{2}{z}+1\right) d z$
$=\frac{-1}{8}\left[-\frac{1}{z}-2 \ln z+z\right]+c$
$=\frac{-1}{8}\left[-\left(\frac{x-3}{x-1}\right)-2 \ln \left(\frac{x-1}{x-3}\right)+\left(\frac{x-1}{x-3}\right)\right]+c$
15. $I=\int \frac{d x}{(x-1)^{2}(x-4)^{3}}$

Put $x-1=z(x-3)$
$\therefore \quad x=\frac{3 z-1}{z-1}$
or, $\mathrm{dx}=\frac{3(z-1)-(3 z-1)}{(z-1)^{2}} d z=\frac{3 z-3-3 z+1}{(z-1)^{2}} d z=\frac{-2}{(z-1)^{2}} d z$
Also, $\frac{1}{(x-1)^{2}(x-3)^{3}}=\frac{1}{z^{2}(x-3)^{5}}=\frac{1}{z^{2}\left(\frac{3 z-1}{z-1}-3\right)^{5}}=\frac{(z-1)^{5}}{32 z^{2}}$

260 Kriti's Principles of Mathematics-XII

$$
\text { So, } \begin{aligned}
I & =\int \frac{(z-1)^{5}}{32 z^{2}} \cdot \frac{-2}{(z-1)^{2}} d z=\frac{-1}{16} \int \frac{(z-1)^{3}}{z^{2}} d z \\
& =\frac{-1}{16} \int \frac{z^{3}-3 z^{2}+3 z-1}{z^{2}} d z=\frac{-1}{16} \int\left(z-3+\frac{3}{z}-\frac{1}{z^{2}}\right) d z \\
& =\frac{-1}{16}\left(\frac{z^{2}}{2}-3 z+3 \ln z+\frac{1}{z}\right)+C=\frac{-1}{32} z^{2}+\frac{3}{16} z-\frac{3}{16} \ln z-\frac{1}{16} z+C \\
& =\frac{-1}{32}\left(\frac{x-1}{x-3}\right)^{2}+\frac{3}{16} \frac{x-1}{x-3}-\frac{3}{16} \ln \left|\frac{x-1}{x-3}\right|-\frac{1}{16}\left(\frac{x-1}{x-3}\right)+C
\end{aligned}
$$

CHAPTER 17

DIFFERENTIAL EQUATIONS

EXERCISE 17.1

1. Determine the order and degree of the following differential equations.
a. $\frac{d y}{d x}=4 x$
b. $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+2 y=0$
c. $\frac{d^{2} y}{d x^{2}}=x e^{x}$
d. $x \frac{d y}{d x}+\frac{3}{\frac{d y}{d x}}=y^{2}$
e. $\frac{d y}{d x}=\sqrt{\frac{1-x^{2}}{1-y^{2}}}$
f. $\left[\frac{d y}{d x}\right]+3 y\left[\frac{d^{2} y}{d x^{2}}\right]^{3}=0$

Solution

a. Given, $\frac{d y}{d x}=4 x$

Here, $\frac{d y}{d x}$ is the first order derivative, so its order is 1
Here, the power of $\frac{d y}{d x}$ is 1 . So its degree is 1
b. Given, $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+2 y=0$

Here, $\frac{d^{2} y}{d x^{2}}$ is the second order derivative, so it's order is 2
Here, the power of $\frac{d^{2} y}{d x^{2}}$ is 1 . So, it's degree is 1 .
c. Given, $\frac{d^{2} y}{d x^{2}}=x e^{x}$

Here, $\frac{d^{2} y}{d x^{2}}$ is the second order derivative. So, its' order is 2
Here, the power of $\frac{d^{2} y}{d x^{2}}$ is 1 , so its degree is 1 .
d. Given, $x \frac{d y}{d x}+\frac{3}{\frac{d y}{d x}}=y^{2} \Rightarrow x\left(\frac{d y}{d x}\right)^{2}+3=y^{2} \frac{d y}{d x}$

Here, $\frac{d y}{d x}$ is the first order derivative, so it's order is 1 , and power of $\frac{d y}{d x}$ is 2 , so degree is 2 .
e. $\frac{d y}{d x}=\sqrt{\frac{1-x^{2}}{1-y^{2}}}$

Here, $\frac{d y}{d x}$ is the first order derivative. So its order is 1 .
Here, the power of $\frac{d y}{d x}$ is 1 . So, its degree is 1 .
f. Given, $\frac{d y}{d x}+3 y\left(\frac{d^{2} y}{d x^{2}}\right)^{3}=0$

262 Kriti's Principles of Mathematics-XII

Here, $\frac{d^{2} y}{d x^{2}}$ is the second order derivative. So, its order is 2 .
Here, the power of $\frac{d^{2} y}{d x^{2}}$ is 3 . So, its' degree is 3 .

EXERCISE 17.2

1. Solve the following differential equations
a. $\frac{d y}{d x}=\frac{x+4}{y+2}$
b. $x^{2} d x+y^{2} d y=0$
c. $y \cdot \frac{d y}{d x}=\cos x$
d. $\frac{d y}{d x}=e^{x+y}$
e. $e^{x-y} d x+e^{y-x} d y=0$
f. $\frac{d y}{d x}=e^{x-y+x^{3} e^{-y}}$

Solution:

a. $\frac{d y}{d x}=\frac{x+4}{y+2}$
$(y+2) d y=(x+4) d x$
Integrating both sides
$\int(y+2) d y=\int(x+4) d x$
b. $x^{2} d x+y^{2} d y=0$
Integrating
$\int x^{2} d x+\int y^{2} d y=\int 0$
or, $\frac{y^{2}}{2}+2 y=\frac{x^{2}}{2}+4 x+c$
$\frac{x^{3}}{3}+\frac{y^{3}}{3}=\frac{c}{3}$
$\therefore \quad \mathrm{x}^{3}+\mathrm{y}^{3}=\mathrm{c}$
or, $y^{2}+4 y=x^{2}+8 x+c$
c. $y \frac{d y}{d x}=\cos x$
$y d y=\cos x d x$
Integrating both sides
$\int y d y=\int \cos x d x$
or, $\frac{y^{2}}{2}=\sin x+c^{\prime}$ where c^{\prime} is

constant

$\therefore \mathrm{y}^{2}=2 \sin \mathrm{x}+2 \mathrm{c}^{\prime}$
$\therefore y^{2}=2 \sin x+c$
e. $e^{x-y} d x+e^{y-x} d y=0$
or, $e^{x} \cdot e^{-y} d x+e^{y} \cdot e^{-x} d y=0$
or, $\frac{e^{x}}{e^{y}} d x+\frac{e^{y}}{e^{x}} d y=0$
$e^{2 x} d x+e^{2 y} d y=0$
Integrating
$\int e^{2 x} d x+\int e^{2 y} d y=\int 0$
$\frac{e^{2 x}}{2}+\frac{e^{2 y}}{2}=\frac{c}{2}$
$\therefore \quad e^{2 x}+e^{2 y}=c$
d. $\frac{d y}{d x}=e^{x+y}$
$\frac{d y}{d x}=e^{x} \cdot e^{y}$
$e^{-y} d y=e^{x} d x$
Integrating
$\int e^{-y} d y=\int e^{x} d x$
$-e^{-y}=e^{x}+c$
or, $\frac{-1}{e^{y}}=e^{x}+c$
or, $-1=e^{y}\left(e^{x}+c\right)$
$\therefore \quad e^{y}\left(e^{x}+c\right)=-1$
f. $\frac{d y}{d x}=e^{x-y}+x^{3} e^{-y}$
$\frac{d y}{d x}=\frac{\left(e^{x}+x^{3}\right)}{e^{y}}$
$e^{y} d y=e^{x} d x+x^{3} d x$
Integrating
$\int e^{y} d y=\int e^{x} d x+\int x^{3} d x$
$e^{y}=e^{x}+\frac{x^{4}}{4}+c$
$\therefore 4 \mathrm{e}^{\mathrm{x}}-4 \mathrm{e}^{\mathrm{y}}+\mathrm{x}^{4}+\mathrm{c}=0$
2. Solve the differential equations.
a. $(x+2) \frac{d y}{d x}=(y+2)$
b. $x \frac{d y}{d x}+y-1=0$
c. $\cos x \cos y \frac{d y}{d x}=-\sin x \sin y$
d. $\sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0$
e. $\quad\left(e^{y}+1\right) \cos x d x+e^{y} \cdot \sin x \cdot d y=0$
f. $\left(x y^{2}+x\right) d x+\left(x^{2} y+y\right) d y=0$
g. $\sqrt{1+x^{2}} d y+\sqrt{1+y^{2}} d x=0$
h. $x \sqrt{1-y^{2}} d x+y \sqrt{1-x^{2}} d y=0$
i. $\left(1-x^{2}\right) d y-x y d x=x y^{2} d x$

Solution:

a. $(x+2) \frac{d y}{d x}=y+2$
b. $x \frac{d y}{d x}+y-1=0$
$x \frac{d y}{d x}=(1-y)$
or, $\frac{1}{1-y} d y=\frac{d x}{x}$
Integrating
$-\ln (1-y)=\ln x+\ln c$
$\ln (1-y)^{-1}=\operatorname{lnc} x$
$\therefore c x=\frac{1}{1-y}$
or, $x(1-y)=\frac{1}{c} \quad \therefore \mathrm{x}(1-\mathrm{y})=\mathrm{c}$
c. $\operatorname{Cos} x \cdot \cos y \frac{d y}{d x}=-\sin x . \sin y$
$\frac{\cos y}{\sin y} d y=-\frac{\sin x}{\cos x} d x$
$\operatorname{coty} d y=-\tan x d x$
Integrating both sides
$\int \cot y d y=-\int \tan x d x$
In $\sin y=\ln \cos x+\operatorname{lnc}$
siny $=c \cos x$
d. $\operatorname{Sec}^{2} x \cdot \tan y d x+\sec ^{2} y \tan x d y=0$
or, $\frac{\sec ^{2} x}{\tan x}=-\frac{\sec ^{2} y}{\tan y} d y$
Integrating both sides we get
$\int \frac{\sec ^{2} x}{\tan x} d x+\int \frac{\sec ^{2} y}{\tan y} d y=\int 0$
$\ln (\tan x)+\ln (\tan y)=\ln c$
$\ln (\tan x . \tan y)=\ln c$
$\therefore \tan x . \tan y=c$
e. $\left(e^{y}+1\right) \cos x d x+e^{y} \cdot \sin x d y=0$
$\frac{\cos x d x}{\sin x}+\frac{e^{y} d y}{e^{y}+1}=0$
Integrating both sides
$\int \frac{\cos x}{\sin x} d x+\int \frac{e^{y}}{1+e^{y}} d y=\int 0$
$\ln \sin x+\ln \left(e^{y}+1\right)=\ln c$
In $\sin x\left(1+e^{y}\right)=\operatorname{lnc}$
$\therefore \quad \sin x\left(1+e^{y}\right)=c$
g. $\sqrt{1+x^{2}} d y+\sqrt{1+y^{2}} d x=0$
or, $\frac{d y}{\sqrt{1+y^{2}}}+\frac{d x}{\sqrt{1+x^{2}}}=0$
Integrating
f. $\left(x y^{2}+x\right) d x+\left(x^{2} y+y\right) d y=0$
or, $x\left(1+y^{2}\right) d x+y\left(1+x^{2}\right) d y=0$
or, $\frac{x d x}{1+x^{2}}+\frac{y}{1+y^{2}} d y=0$
or, $\left(\frac{2 x}{1+x^{2}}\right) d x+\left(\frac{2 y}{1+y^{2}}\right) d y=0$
Integrating both sides
$\int \frac{2 x}{1+x^{2}}+\int \frac{2 y}{1+y^{2}} d y=\int 0$
$\ln \left(1+x^{2}\right)+\ln \left(1+y^{2}\right)=\operatorname{lnc}$
$\therefore \ln \left(1+\mathrm{x}^{2}\right)\left(1+\mathrm{y}^{2}\right)=\operatorname{lnc}$
$\therefore\left(1+x^{2}\right)\left(1+y^{2}\right)=c$
h. $x \sqrt{1-y^{2}} d x+y \sqrt{1-x^{2}} d y=0$
$\frac{x}{\sqrt{1-x^{2}}} d x+\frac{y}{\sqrt{1-y^{2}}} d y=0$
Put $1-x^{2}=u$ and $1-y^{2}=v$
$\int \frac{1}{\sqrt{1+y^{2}}} d y+\int \frac{1}{\sqrt{1+x^{2}}} d x=\int^{0}$
or, $\ln \left(y+\sqrt{1+y^{2}}\right)+\ln \left(x+\sqrt{1+x^{2}}\right)=$ In c
or, $\ln \left\{\left(x+\sqrt{1+x^{2}}\right)\left(y+\sqrt{1+y^{2}}\right)\right\}=\ln$ C
or, $\left(x+\sqrt{1+x^{2}}\right)\left(y+\sqrt{1+y^{2}}\right)=c$
Then, $-2 x d x=d u,-2 y d y=d v$
So, $\frac{(-2 x) d x}{\sqrt{1-x^{2}}}+\frac{(-2 y) d y}{\sqrt{1-y^{2}}}=0$
$\frac{d y}{\sqrt{u}}+\frac{d v}{\sqrt{v}}=0$
$u^{-1 / 2} d u+v^{-1 / 2} d v=0$
Integrating
$2 u^{1 / 2}+2 v^{1 / 2}=2 c$
$\therefore \sqrt{u}+\sqrt{v}=c$
$\therefore \sqrt{1-x^{2}}+\sqrt{1-y^{2}}=c$
i. $\left(1-x^{2}\right) d y+x y d x=x^{2} y d x$
or, $\left(1-x^{2}\right) d y=x y(1+y) d x$
or, $\frac{d y}{y(1+y)}=\frac{x d x}{1-x^{2}}$
or, $\left(\frac{1}{y}-\frac{1}{y+1}\right) d y=\frac{1}{-2}\left(\frac{-2 x}{1-x^{2}}\right) d x$
Integrating
$\ln y-\ln (y+1)=-\frac{1}{2} \ln \left(1-x^{2}\right)+\operatorname{Inc}$
$\ln \left(\frac{y}{1+y}\right)=\ln \left(1-x^{2}\right)^{-1 / 2}+\operatorname{lnc} \Rightarrow \frac{y}{1+y}=c\left(1-x^{2}\right)^{-1 / 2}$
3. Solve the followings:
a. $\quad \sec ^{2} y\left(1+x^{2}\right) \cdot d y+2 x$ tany $d x=0$ and $y(1)=\frac{\pi}{4}$.
b. $\quad \cos y d y+\cos x \sin y d x=0, y\left(\frac{\pi}{2}\right)=\frac{\pi}{2}$.

Solution:

a. $\sec ^{2} y\left(1+x^{2}\right) d y+2 x \cdot \tan y d x=0$
or, $\frac{\sec ^{2} y}{\tan y} d y+\frac{2 x}{1+x^{2}} d x=0$
Integrating, we get,
$\ln (\tan y)+\ln \left(1+x^{2}\right)=\operatorname{lnc}$
$\left(1+x^{2}\right)$ tany $=c$
When, $x=1$, there $y=\frac{\pi}{4}$
$\therefore(1+1) \tan \frac{\pi}{4}=c$

$$
2.1=c \therefore c=2
$$

Hence, $\left(1+x^{2}\right)$ tany $=2$
b. cosy $d y+\cos x \sin y d x=0$
$\cos y d y=-\cos x \cdot \sin y d x$
$\frac{\text { cosy }}{\sin y} d y=-\cos x d x$
Integrating, we get
Insiny $=-\sin x+c$
$\operatorname{Sin} x+\operatorname{Insin} y=c$
When $x=\frac{\pi}{2}$ then $y=\frac{\pi}{2}$
then $c=1$
$\therefore \quad \sin x+\ln \sin y=1$

EXERCISE 17.3

1. Solve the following differential equations.
a. $x \frac{d y}{d x}=y+x$.
b. $\frac{d y}{d x}-\frac{y}{x}=\frac{y^{2}}{x^{2}}$
c. $\frac{d y}{d x}=\frac{y}{x}+\tan \frac{y}{x}$.
d. $x\left(\frac{d y}{d x}+\tan \frac{y}{x}\right)=y$.
e. $\frac{d y}{d x}-\frac{y}{x}-\sin \frac{y}{x}=0$
f. $\frac{d y}{d x}=\frac{y}{x}+\cos ^{2}\left(\frac{y}{x}\right)$

Solution:

a. $x \frac{d y}{d x}=y+x$
$\frac{d y}{d x}=\frac{y}{x}+1 \ldots \ldots \ldots$ (i) It is a homogenous
Thus, differential equation
Put $y=v x$
Then $\frac{d y}{d x}=v+x \frac{d y}{d x}$
(i) becomes
$v+x \frac{d v}{d x}=v+1$
$\therefore \mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=1$
or, $d v=\frac{d x}{x}$
Integrating both sides
$\int d v=\int \frac{1}{x} d x$
$v=\ln x+c$
$\frac{y}{x}=\ln x+c$
b. $\frac{d y}{d x}-\frac{y}{x}=\frac{y^{2}}{x^{2}}$

It is homogeneous differential equation.
Put $y=v x$
$\frac{d y}{d x}=v+x \cdot \frac{d v}{d x}$
Then $v+x \cdot \frac{d v}{d x}=v^{2}+v$
$x \frac{d v}{d x}=v^{2}$
$v^{-2} d v=\frac{1}{x} d x$
Integrating both sides
$\int v^{-2} d v=\int \frac{1}{x} d x$
$-\mathrm{v}^{-1}=\ln \mathrm{x}+\ln \mathrm{c}$
$-\frac{1}{v}=\ln (c x)$
$-\frac{x}{y}=\ln (c x)$
$\Rightarrow \mathrm{yln}(\mathrm{cx})+\mathrm{x}=0$
d. $x\left(\frac{d y}{d x}+\tan \frac{y}{x}\right)=y$
or, $\frac{d y}{d x}+\tan \frac{y}{x}=\frac{y}{x}$ \qquad
Put $y=v x$ then $\frac{d y}{d x}=v+x \cdot \frac{d v}{d x}$
$v+x \frac{d v}{d x}+\tan v=v$
c. $\frac{d y}{d x}=\frac{y}{x}+\tan \frac{y}{x}$

It is homogenous differential equation,
Put $y=v x$ then $\frac{d y}{d x}=v+x \frac{d v}{d x}$
(i) becomes, $v+x \frac{d v}{d x}=v+\tan v$
$\mathrm{x} \frac{\mathrm{d} v}{\mathrm{dx}}=\tan \mathrm{v}$
$\operatorname{cotv} d v=\frac{1}{x} d x$
Integrating $\int \operatorname{cotv} d v=\int \frac{1}{x} d x$
$\ln \sin v=\ln c x$
$\sin \binom{y}{x}=c x$
e. $\frac{d y}{d x}-\frac{y}{x}-\sin \frac{y}{x}=0$

Put $y=v x$ then $\frac{d y}{d x}=v+x \frac{d v}{d x}$
(i) becomes,
$v+x \cdot \frac{d v}{d x}-v-\sin v=0$

266 Kriti's Principles of Mathematics-XII
$x \frac{d v}{d x}=-\tan v$
$-\operatorname{cotv} d v=\frac{d x}{x}$
Integrating
$\int-\cot v d v=\int \frac{1}{x} d x$
$\Rightarrow-\ln (\sin v)=\ln x+\ln c$
$\Rightarrow \ln (\sin v)^{-1}=\operatorname{lnc} x$
$\Rightarrow \frac{1}{\sin v}=c x$
\Rightarrow cosecv $=c x$
$\therefore \operatorname{cosec}\left(\frac{y}{x}\right)=c x$
$\frac{d y}{d x}=\frac{y}{x}+\cos ^{2}\left(\frac{y}{x}\right)$
Put $y=v x$
$\frac{d y}{d x}=v+x \cdot \frac{d v}{d x}$
$v+x \cdot \frac{d v}{d x}=v+\cos ^{2} v$
$x \frac{d v}{d x}=\cos ^{2} v$
$\sec ^{2} v d v=\frac{1}{x} d x$
Integrating

$$
\begin{aligned}
& \int \sec ^{2} v d x=\int \frac{1}{x} d x \\
& \tan v=\ln (x)+c \\
& \tan \binom{y}{x}=\ln (x)+c \\
& \tan \binom{y}{x}=\ln (x)+c
\end{aligned}
$$

2. Solve the followings.
a. $y^{2}+x^{2} \frac{d y}{d x}=x y \frac{d y}{d x}$
b. $x^{2} y d x-\left(x^{3}+y^{3}\right) d y=0$
c. $\left(x^{2}+y^{2}\right) d x-2 x y d y=0$
d. $(x+y) d x+(y-x) d y=0$
e. $(x+y)^{2} d x=x y d y$
f. $x^{2} \frac{d y}{d x}=\frac{y(x+y)}{2}$

Solution:

a. $y^{2}+x^{2} \frac{d y}{d x}=x y \frac{d y}{d x}$

$$
y^{2}=\left(x y-x^{2}\right) \frac{d y}{d x}
$$

$x \frac{d v}{d x}=\sin v$
$\frac{d v}{\sin v}=\frac{d x}{x}$
$\operatorname{cosec} v d v=\frac{1}{x} d x$
Integrating
$\int \operatorname{cosec} v d v=\int \frac{1}{x} d x$
$\ln ($ cosec $v-\cot v)=\ln x+\operatorname{lnc}$ cosecv - cotv = cx
or, $\frac{1}{\sin v}-\frac{\cos v}{\sin v}=c x$
or, $\frac{1-\cos v}{\sin v}=c x$
or, $\tan \frac{v}{2}=c x \therefore \tan \frac{y}{2 x}=c x$
$\therefore \frac{d y}{d x}=\frac{y^{2}}{x y-x^{2}}$.
Put $y=v x$
Then, $v+x \frac{d v}{d x}=\frac{v^{2} x^{2}}{x^{2} v-x^{2}}$
$v+x \frac{d v}{d x}=\frac{v^{2}}{v-1}$
$x \frac{d v}{d x}=\frac{v^{2}}{v-1}-v$
$x \frac{d v}{d x}=\frac{v^{2}-v^{2}+v}{v-1}$
$x \frac{d v}{d x}=\frac{v}{v-1}$
$\frac{(v-1)}{v} d v=\frac{1}{x} d x$
Integrating
$v-\ln v=\ln x+\ln c$
$v=\ln (c x v)$
$\frac{y}{x}=\ln (c y)$
C. $\left(x^{2}+y^{2}\right) d x-2 x y d y=0$
$\frac{d y}{d x}=\frac{x^{2}+y^{2}}{2 x y}$
$v+x \frac{d v}{d x}=\frac{1+v^{2}}{2 v}$
$x \frac{d v}{d x}=\frac{1+v^{2}-2 v^{2}}{2 v}$
$x \frac{d v}{d x}=\frac{1-v^{2}}{2 v}$
$\left(\frac{2 v}{1-v^{2}}\right) d v=\frac{d x}{x}$
$-\ln \left(1-v^{2}\right)=\ln x+\operatorname{lnc}$
$\ln \left(1-v^{2}\right)^{-1}=\ln (c x)$
$\left(1-v^{2}\right)^{-1}=c x$
$\frac{1}{1-v^{2}}=c x$
$\frac{x^{2}}{x^{2}-y^{2}}=c x$
$\frac{x}{x^{2}-y^{2}}=c$
$\therefore x^{2}-y^{2}=\frac{x}{c}$
$\therefore x^{2}-y^{2}=c x$
$\frac{d y}{d x}=v+x \cdot \frac{d v}{d x}$
(i) becomes
$v+x \cdot \frac{d v}{d x}=\frac{v}{1+v^{3}}$
$x \frac{d v}{d x}=\frac{v-v-v^{4}}{1+v^{3}}$
$x \frac{d v}{d x}=\frac{-v^{4}}{1+v^{3}}$
$\frac{\left(1+v^{3}\right)}{v^{4}} d v=-\frac{d x}{x}$
$v^{-4} d v+\frac{1}{v} d v=-\frac{1}{x} d x$
Integrating
$\frac{v^{-3}}{-3}+\ln v=-\ln x-\ln c$
$\frac{1}{3 v^{3}}=\ln (c x v)$
$\frac{x^{3}}{3 y^{3}}=\ln (c y)$
d. $(x+y) d x+(y-x) d y=0$
$(y-x) d y=-(x+y) d x$
or, $\frac{d y}{d x}=-\frac{(x+y)}{y-x} \therefore \frac{d y}{d x}=\frac{x+y}{x-y}$
Put $y=v x$, then $\frac{d y}{d x}=v+x \cdot \frac{d v}{d x}$
Then (i) reduces to
or, $v+x \cdot \frac{d v}{d x}=\frac{x+v x}{x-v x}$
or, $v+x \frac{d v}{d x}=\frac{1+v}{1-v}$
or, $x \frac{d v}{d x}=\frac{1+v}{1-v}-v$
or, $x \frac{d v}{d x}=\frac{1+v-v+v^{2}}{1-v}$
or, $x \frac{d v}{d x}=\frac{1+v^{2}}{1-v}$
or, $\left(\frac{1-v}{1+v^{2}}\right) d v=\frac{d x}{x}$
or, $\frac{1}{1+v^{2}} d v-\frac{1}{2}\left(\frac{2 v}{1+v^{2}}\right) d v=\frac{1}{x} d x$
Integrating: $\tan ^{-1} v-\frac{1}{2} \ln \left(1+v^{2}\right)=\ln x+c$

$$
\begin{align*}
& \tan ^{-1}\binom{y}{x}=\ln x+\ln \sqrt{1+v^{2}}+c \\
& \tan ^{-1}\binom{y}{x}=\ln \sqrt{x^{2}+y^{2}}+c \\
& \text { f. } x^{2} \frac{d y}{d x}=\frac{y(x+y)}{2} \text { or, } \frac{d y}{d x}=\frac{y(x+y)}{2 x^{2}} \tag{i}
\end{align*}
$$

$$
\begin{array}{ll}
\frac{d y}{d x}=\frac{(x+y)^{2}}{x y} & \text { Put } y=v x \text { then } \frac{d y}{d x}=v+x \frac{d v}{d x} \\
v+x \frac{d v}{d x}=\frac{(x+v x)^{2}}{x^{2} v} & \text { (i) becomes, } \\
v+x \frac{d v}{d x}=\frac{1+v^{2}}{v} & \text { or, } v+x \cdot \frac{d v}{d x}=\frac{v x(x+v x)}{2 x^{2}} \\
x \frac{d v}{d x}=\frac{(1+v)^{2}-v^{2}}{v} & \text { or, } v+x \cdot \frac{d v}{d x}=\frac{v(1+v)}{2} \\
x \frac{d v}{d x}=\frac{1+2 v}{v} & \text { or, } x \frac{d v}{d x}=\frac{v+v^{2}}{2}-v \\
\frac{v}{1+2 v} d v=\frac{d x}{x} & \text { or, } x \frac{d v}{d x}=\frac{v+v^{2}-2 v}{2} \\
\frac{1}{2} \frac{(1+2 v-1)}{1+2 v} d v=\frac{1}{x} d x & \text { or, } x \frac{d v}{d x}=\frac{v^{2}-v}{2} \\
\frac{1}{2}\left(1-\frac{1}{1+2 v}\right) d v=\frac{1}{x} d x & \text { or, } \frac{1}{v(v-1)} d v=\frac{d x}{2 x} \\
\frac{1}{2} d v-\frac{1}{4}\left(\frac{2}{1+2 v}\right) d v=\frac{1}{x} d x & \text { or, }\left(\frac{1}{v-1}-\frac{1}{v}\right) d v=\frac{1}{2} \frac{1}{x} d x \\
\ln t e g r a t i n g & \operatorname{lntegrating:~} \ln (v-1)-\ln (v)=\frac{1}{2} \ln x+ \\
\frac{1}{2} v-\frac{1}{4} \ln (1+2 v)=\ln (c x) & \ln c \\
\frac{1}{2}\left(\frac{y}{x}\right)-\frac{1}{4} \ln \left(1+\frac{2 y}{x}\right)=\ln (c x) & \therefore \frac{\ln \left(\frac{v-1}{v}\right) \ln (c \sqrt{x})}{} \\
& \therefore \frac{v-1}{v}=c \sqrt{x} \\
\end{array}
$$

3. Solve the followings by reducing them into homogenous form.
a. $\frac{d y}{d x}=\frac{y+1}{x+y+1}$
b. $\frac{d y}{d x}=\frac{y+x+1}{x+1}$

Solution:

a. $\frac{d y}{d x}=\frac{y+1}{x+y+1}$

Put $y+1=v x$
Then $\frac{d y}{d x}=v+x \frac{d v}{d x}$
$v+x \cdot \frac{d v}{d x}=\frac{v x}{x+v x}$
$v+x \frac{d v}{d x}=\frac{v}{1+v}$
$x \frac{d v}{d x}=\frac{v}{1+v}-v$
$x \frac{d v}{d x}=\frac{v-v-v^{2}}{1+v}$
$\frac{(1+v)}{v^{2}} d v=-\frac{d x}{x}$
$\left(v^{-2}+\frac{1}{v}\right) d v=-\frac{1}{x} d x$
Integrating
$-\mathrm{v}^{-1}+\ln v=-\ln x-\ln C$
b. $\frac{d y}{d x}=\frac{y+x+1}{x+1}$

Put $y=v(x+1)$
$\frac{d y}{d x}=v+(x+1) \frac{d v}{d x}$
So, $v+(x+1) \frac{d v}{d x}=v+1$
$(x+1) \frac{d v}{d x}=1$
$d v=\frac{d x}{x+1}$
Integrating
$\int d v=\int \frac{1}{x+1} d x$
$v=\ln (x+1)+c$
$\frac{y}{x+1}=\ln (x+1)+c$
$\therefore \quad y=(x+1)\{\ln (x+1)+c\}$
$\frac{1}{v}-\operatorname{lh} v=\ln C x$
$\Rightarrow \frac{x}{y+1}-\ln \left(\frac{y+1}{x}\right)=\ln C x$
$\Rightarrow \frac{x}{y+1}=\ln \left(\frac{y+1}{x} \cdot C x\right)$
$\Rightarrow \frac{x}{y+1}=\ln [C(y+1)]$

EXERCISE 17.4

1. Solve the following equations by reducing them into exact form.
a. $x d x-y d y=0$
b. $x d y-y d x=0$
c. $\left(x+y^{2}\right) d x=2 x y d y$.
d. $y d x-\frac{x}{2} d y=0$
e. $\frac{1}{x+1} d x+\frac{1}{y+1} d y=0$
f. $\frac{1}{1+x^{2}} d x+\frac{1}{1+y^{2}} d y=0$
g. $\frac{x}{1+x^{2}} d x+\frac{y}{1+y^{2}} d y=0$
h. $(x+y) d y+(y-x) d x=0$.
i. $\quad 2 x y d x+\left(x^{2}-y^{2}\right) d y=0$
j. $\quad\left(x^{2}+x y^{2}\right) d x+\left(x^{2} y+y^{2}\right) d y=0$

Solution:

a. $x d x-y d y=0$
b. $x d y-y d x=0$
$\Rightarrow d\left(\frac{x^{2}}{2}-\frac{y^{2}}{2}\right)=0$
$\frac{x d y-y d x}{x^{2}}=0$
$d\binom{y}{x}=0$
Integrating
$\frac{x^{2}}{2}-\frac{y^{2}}{2}=\frac{c}{2}$
$\int d\binom{y}{x}=\int 0$
$x^{2}-y^{2}=c$
$\frac{y}{x}=c$
$\therefore \quad y=c x$
c. $\left(x+y^{2}\right) d x=2 x y d y$
$\frac{x d y}{x^{2}}=\frac{2 x y d y-y^{2} d x}{x^{2}}$
$\frac{1}{x} d x=\frac{2 x y d y-y^{2} d x}{x^{2}}$
$\frac{1}{x} d x=d\left(\frac{y^{2}}{x}\right) \Rightarrow d \ln x=d\left(\frac{y^{2}}{x}\right)$
Integrating we get
$\ln x=\frac{y^{2}}{x}+c$
$x \ln x=y^{2}+c x$
d. $y d x-\frac{x}{2} d y=0$
$y d x=\frac{x}{2} d y$
or, $2 \frac{d x}{x}=\frac{d y}{y}$
$\int 2 \mathrm{~d} \ln x=\int \mathrm{d} \ln y$
$\ln y=2 \ln x+\operatorname{lnc}$
$\ln y=\ln x^{2} c$
$y=c x^{2}$
e. $\frac{1}{x+1} d x+\frac{1}{y+1} d y=0$
Integrating
f. $\frac{d x}{1+x^{2}}+\frac{d y}{1+y^{2}}=0$
Integrating
$\int \frac{1}{x+1} d x \times \int \frac{1}{y+1} d y=\int^{0}$
or, $\ln (x+1)+\ln (y+1)=\operatorname{lnc}$
or, $\ln (x+1)(y+1)=\operatorname{lnc}$
$\therefore(x+1)(y+1)=c$
g. $\frac{x}{1+x^{2}} d x+\frac{y}{1+y^{2}} d y=0$
or, $\frac{2 x}{1+x^{2}} d x+\frac{2 y}{1+y^{2}} d y=0$
Integrating
$\ln \left(1+x^{2}\right)+\ln \left(1+y^{2}\right)=\operatorname{lnc}$
$\therefore \ln \left(1+\mathrm{x}^{2}\right)\left(1+\mathrm{y}^{2}\right)=\operatorname{lnc}$
$\therefore \quad\left(1+\mathrm{x}^{2}\right)\left(1+\mathrm{y}^{2}\right)=\mathrm{c}$
i. $\quad 2 x y d x+\left(x^{2}-y^{2}\right) d y=0$
$2 x y d x+x^{2} d y-y^{2} d y=0$
$d\left(x^{2} y\right)-y^{2} d y=0$
Integrating, we get
$x^{2} y-\frac{y^{3}}{3}=c$
$3 x^{2} y-y^{3}=c$
$\int \frac{d y}{1+x^{2}}+\int \frac{d y}{1+y^{2}}=\int 0$
$\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} c$
or, $\tan ^{-1}\left(\frac{x+y}{1-x y}\right)=\tan ^{-1} c$
$\therefore \frac{x+y}{1-x y}=c$
$\therefore \quad x+y=c(1-x y)$
h. $(x+y) d y+(y-x) d x=0$
$x d y+y d y+y d x-x d x=0$
$(x d y+y d x)+y d y-x d x=0$
$d(x y)+y d y-x d x=0$
Integrating
$\int d(x y)+\int y d y-\int x d x=\int 0$
$x y+\frac{y^{2}}{2}-\frac{x^{2}}{2}=\frac{c}{2}$
$2 x y+y^{2}-x^{2}=c$
j. $\quad\left(x^{2}+x y^{2}\right) d x+\left(x^{2} y+y^{2}\right) d y=0$
or, $x^{2} d x+x y^{2} d x+x^{2} y d y+y^{2} d y$
or, $x^{2} d x+\left(x y^{2} d x+x^{2} y d y\right)+y^{2} d y$
or, $x^{2} d x+\frac{1}{2} d\left(x^{2} y^{2}\right)+y^{2} d y=0$
Integrating
$\frac{x^{3}}{3}+\frac{1}{2}\left(x^{2} y^{2}\right)+\frac{y^{3}}{3}=c$
$2 x^{3}+3 x^{2} y^{2}+2 y^{3}=c$
2. Solve the following equations by reducing them into exact form.
a. $\cos x \cos y d y-\sin x \sin y d x=0$
b. $\quad \sin x \cos x d x-\sin y \cos y d y=0$.
c. $\frac{d y}{d x}=\frac{1-\cos y}{1+\cos x}$
d. $\frac{d y}{d x}=\frac{4 x-y+5}{x+5 y+4}$
e. $\frac{d y}{d x}=\frac{x+y+1}{2 y-x+2}$
f. $\frac{d y}{d x}=\frac{x-3(y+1)}{y+3(x+1)}$
g. $\quad(\sin x \tan y-1) d x-\cos x \sec ^{2} y d y=0$

Solution:

a. $\cos x \cdot \cos y d y-\sin x \cdot \sin y d x=0$
$\cos x \cdot \cos y d y=\sin x \cdot \sin y d x$
$\frac{\text { cos } y}{\sin y} d y-\frac{\sin x}{\cos x} d x=0$
$\frac{\cos y}{\sin y} d y-\frac{\sin x}{\cos x} d x=0$
Integrating
$\int \frac{\cos y}{\sin y} d y-\int \frac{\sin x}{\cos x} d x=\int^{0}$
$\ln (\sin y)+\ln (\cos x)=\operatorname{lnc}$
b. $\quad \sin x \cos x d x-\sin y \cdot \cos y d y=0$
$\frac{1}{2} \sin 2 x d x-\frac{1}{2} \sin 2 y d y=0$
or, $\sin 2 x d x-\sin 2 y d y=0$
Integrating
$\int \sin 2 x d x-\int \sin 2 y d y=\int 0$
$\frac{-\cos 2 x}{2}+\frac{\cos 2 y}{2}=\frac{c}{2}$
$\therefore \cos 2 y-\cos 2 x=c$
$\ln (\sin y \cdot \cos x)=\operatorname{lnc}$
siny. $\cos x=c$
c. $\frac{d y}{d x}=\frac{1-\cos y}{1+\cos x}$
$\frac{d y}{d x}=\frac{2 \sin ^{2} y / 2}{2 \cos ^{2} x / 2}$
or, $\operatorname{cosec}^{2} \frac{y}{2} d y=\sec ^{2} \frac{x}{2} d x$
Integrating
$\int \operatorname{cosec}^{2} \frac{y}{2} d y=\int \sec ^{2} \frac{x}{2} d x$
or, $\frac{-\cot \frac{y}{2}}{\frac{1}{2}}=\frac{\tan \frac{x}{2}}{\frac{1}{2}}+\frac{c}{\frac{1}{2}}$
$\therefore \quad-\cos \frac{y}{2}=\tan \frac{x}{2}+c$
e. $\frac{d y}{d x}=\frac{x+y+1}{2 y-x+2}$
or, $2 y d y-x d y+2 d y=x d x+y d x+$ dx
$2 y d y+2 d y=x d x+y d x+x d y+d x$
$2 y d y+2 d y=x d x+d(x y)+d x$
Integrating
$\int 2 y d y+\int 2 d y=\int x d x+\int d(x y)+\int$
dx
$y^{2}+2 y=\frac{x^{2}}{2}+x y+x+c$
$2 y^{2}+4 y=x^{2}+2 x y+2 x+c$
$2 y^{2}-x^{2}-2 x y+4 y-2 x=c$
g. $(\sin x \cdot \tan y-1) d x=\cos x \cdot \sec ^{2} y d y=0$
$\sin x \cdot \tan y d x-\cos x \cdot \sec ^{2} y d y=d x$
$-d(\cos x \cdot \tan y)=d x$
$d(\cos x \cdot \tan y)+d x=0$
Integrating both sides
$\int d(\cos x \cdot \tan y)+\int d x=\int 0$
cosx.tany $+\mathrm{x}=\mathrm{c}$
d. $\frac{d y}{d x}=\frac{4 x-y+5}{x+5 y+4}$
or, $4 x d x-y d x+5 d x=x d y+5 y d y+$ 4dy
or, $4 x d x+5 d x=(x d y+y d x)+5 y d y+$ 4dy
$4 x d x+5 d x=d(x y)+5 y d y+4 d y$
Integrating both sides
$\int 4 x d x+5 \int d x=\int d(x y)+5 \int y d y+$
$4 \int d y$
$\frac{4 x^{2}}{2}+5 x=x y+\frac{5 y^{2}}{2}+4 y+c$
$4 x^{2}+10 x=2 x y+5 y^{2}+8 y+c$
$4 x^{2}-5 y^{2}+10 x-8 y-2 x y=c$
f. $\frac{d y}{d x}=\frac{x-3(y+1)}{y+3(x+1)}$
or, $y d y+3(x+1) d y=x d x-3(y+1)$ $d x$
or, $y d y+3 x d y+3 d y=x d x-3 y d x-$ 3 dx
or, $y d y+3(x d y+y d x)+3 d y=x d x-$ 3dy
$y d y+3 d(x y)+3 d y=(x-3) d x$
Integrating we get
$\frac{y^{2}}{2}+3 x y+3 y=\frac{x^{2}}{2}-3 x+c$
$\therefore \quad y^{2}+6 x y+6 y=x^{2}-6 x+c$

EXERCISE 17.5

1. Solve the following differential equations.
a. $\left(1-x^{2}\right) \frac{d y}{d x}-x y=1$.
b. $\quad \sec x \frac{d y}{d x}-y=\sin x$.
c. $\quad \cos ^{2} x \frac{d y}{d x}+y=1$.
d. $\sin x \frac{d y}{d x}+y \cos x=\sin 2 x$

272 Kriti's Principles of Mathematics-XII

Solution:

a. $\left(1-x^{2}\right) \frac{d y}{d x}-x . y=1$
$\therefore \frac{d y}{d X}+\left(\frac{-x}{1-x^{2}}\right) y=\frac{1}{1-x^{2}} \ldots \ldots \ldots$ (i)

Comparing (i) with $\frac{d y}{d x}+p y=Q$, we get

$$
\mathrm{p}=\frac{-\mathrm{x}}{1-\mathrm{x}^{2}} \text { and } \mathrm{Q}=\frac{1}{1-\mathrm{x}^{2}}
$$

$$
\int p d x=\frac{1}{2} \int \frac{-2 x}{1-x^{2}} d x
$$

$$
=\frac{1}{2} \ln \left(1-x^{2}\right)=\ln \sqrt{1-x^{2}}
$$

I.F. $=e^{\int p d x}=e^{\ln \sqrt{\left(1-x^{2}\right)}}=\sqrt{1-x^{2}}$

Multiplying (i) both sides by I.F.
$\left[\frac{d y}{d x}+\left(\frac{-x}{1-x^{2}}\right) y\right] \sqrt{1-x^{2}}=\frac{1}{\left(1-x^{2}\right)}$
$\sqrt{1-x^{2}}$
$d\left(y \cdot \sqrt{1-x^{2}}\right)=\frac{1}{\sqrt{1-x^{2}}}$
Integrating
$\int d\left(y \cdot \sqrt{1-x^{2}}\right)=\int \frac{1}{\sqrt{1-x^{2}}} d x$
y. $\sqrt{1-x^{2}}=\sin ^{-1} x+c$
c. $\cos ^{2} x \frac{d y}{d x}+y=1$
$\frac{d y}{d x}+\sec ^{2} x \cdot y=\sec ^{2} x$
Comparing (i) with $\frac{d y}{d x}+p . y=Q$, we get
$\sec ^{2} x$ and $Q=\sec ^{2} x$
$\int p d x=\int \sec ^{2} x d x=\tan x$
Integrating factor (I.F.) $=\mathrm{e}^{\mathrm{Ipdx}}=\mathrm{e}^{\tan x}$ Multiplying (i) both sides by I.F.

$$
\begin{aligned}
& \left(\frac{d y}{d x}+\sec ^{2} x \cdot y\right) e^{\tan x}=\sec ^{2} x e^{\tan x} \\
& d\left(y e^{\tan x}\right)=e^{\tan x} \sec ^{2} x \\
& \text { Integrating both sides, }
\end{aligned}
$$

$y \cdot e^{\tan x}=\int e^{\tan x} \cdot \sec ^{2} x d x$
b. $\sec x \cdot \frac{d y}{d x}-y=\sin x$
$\frac{d y}{d x}-\cos x \cdot y=\sin x \cdot \cos x$
Comparing (i) with $\frac{d y}{d x}+p . y=Q$, we get
$p=-\cos x$ and $Q=\sin x \cdot \cos x$
$\int p d x=-\int \cos x d x=-\sin x$
I.F. $=e^{\text {Ipdx }}=e^{-\sin x}$

Multiplying (i) both sides by I.F. $d\left(y . e^{\sin x}\right)=e^{-\sin x} \cdot \sin x \cdot \cos x d x$ Integrating
$\int d\left(y \cdot e^{-\sin x}\right)=\int e^{-\sin x} \cdot \sin x \cdot \cos x d x$
$y \cdot e^{-\sin x}=\int e^{-u} \cdot u d u$ where $\sin x=u$
$y \cdot e^{-\sin x}=-u e^{-u}-e^{-u}+c$
$y \cdot e^{-\sin x}=(-1-u) e^{-u}=+c$
$y . e^{-\sin x}=(-1-\sin x) e^{-\sin x}+c$
$\therefore \quad y=(1-\sin x)+c e^{\sin x}$
$\therefore y+1+\sin x=c e^{\sin x}$
d. $\frac{d y}{d x}+\cos x y=2 \cos x$

Here, $p=\cos x$ and $q=2 \cos x$
$\int p d x=\int \cos x d x=\ln \sin x$
I.F. $=e^{\int \operatorname{lpdx}}=e^{\ln \sin x}=\sin x$

Multiplying (i) by I.F. we get
$d(y \cdot \sin x)=2 \cos x \cdot \sin x$
Integrating
$\int d(y \cdot \sin x)=\int \sin 2 x d x$
$y \cdot \sin x=-\frac{\cos 2 x}{2}+c$
$y=-\frac{1}{2} \cos 2 x \cdot \operatorname{cosec} x+c \cdot \operatorname{cosec} x$
$y . e^{\tan x}=e^{\tan x}+c$
$y=1+c e^{-\tan x}$
2. Solve the following differential equations.
a. $\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{y}=1$.
b. $\frac{d y}{d x}+y=e^{x}$.
c. $\frac{d y}{d x}+2 y=\frac{1}{2}\left(x^{2}-x\right)$
d. $\operatorname{Sec} 3 x \frac{d y}{d x}-2 y \sec 3 x=1$.
e. $\cos ^{2} x \frac{d y}{d x}+y=\tan x$.
f. $\quad x \frac{d y}{d x}+2 y=x^{2} \ln x$.
g. $x \frac{d y}{d x}-x=1+y$
h. $\frac{d y}{d x}+\frac{y}{x}=e^{x}$.
i. $\left(1+x^{2}\right) \frac{d y}{d x}+y=\tan ^{-1} x$.

Solution:

a. Given, differential equation is $\frac{d y}{d x}+y=1$ \qquad
It is a linear differentiate equation of the type $\frac{d y}{d x}+p y=Q$
Here, $p=1, Q=1$
$\int p d x=\int 1 d x=x$
Integrating factor (I.F.) $=e^{\text {spdx }}=e^{\mathrm{x}}$
Integrating equation (i) both sides by I.F.
$\left[\frac{d y}{d x}+y\right] e^{x}=1 \times e^{x}$
Comparing both sides, we get $\int d\left(y \cdot e^{x}\right)=\int e^{x} d x$
$\therefore \quad \mathrm{y} . \mathrm{e}^{\mathrm{x}}=\mathrm{e}^{\mathrm{x}}+\mathrm{c}$
$\therefore y=1+c e^{-x}$
b. Given,
$\frac{d y}{d x}+y=e^{x}$
Comparing (i) with $\frac{d y}{d x}+p y=Q$, we get
$p=1, Q=e^{x}$
$\int p d x=\int 1 d x=x$
Integrating factor (I.F.) is given by $\mathrm{e}^{\text {} \operatorname{lpdx}}$
I.F. $=e^{x}$

Multiplying (i) both sides by I.F., we get
$\left(\frac{d y}{d x}+y\right) e^{x}=e^{x} \cdot e^{x}$
or, $d\left(y . e^{x}\right)=e^{2 x}$
Integrating both sides
$\int d\left(y \cdot e^{x}\right)=\int e^{2 x} d x$

274 Kriti's Principles of Mathematics-XII

$y \cdot e^{x}=\frac{e^{2 x}}{2}+c$
$\therefore y=\frac{e^{x}}{2}+c e^{-x}$
c. $\frac{d y}{d x}+2 y=\frac{1}{2}\left(x^{2}-x\right)$

Here, $p=2$ and $Q=\frac{1}{2}\left(x^{2}-x\right)$
$\int p d x=2 x$
I.F. $=e^{\text {jpdx }}=e^{2 x}$

Multiplying (i) both sides by I.F.
$\left(\frac{d y}{d x}+2 y\right) e^{2 x}=\frac{1}{2}\left(x^{2}-x\right) e^{2 x}$
$d\left(y . e^{2 x}\right)=\frac{1}{2}\left(x^{2}-x\right) e^{2 x}$
Integrating both sides

$$
\begin{aligned}
& \int d\left(y \cdot e^{2 x}\right)=\frac{1}{2} \int\left(x^{2}-x\right) e^{2 x} \\
& y \cdot e^{2 x}=\frac{1}{2}\left[\left(x^{2}-x\right) \frac{e^{2 x}}{2}-\int(2 x-1) \frac{e^{2 x}}{2} d x\right] \\
& y \cdot e^{2 x}=\frac{1}{2}\left(x^{2}-x\right) e^{2 x}-\frac{1}{4} \int(2 x-1) e^{2 x} d x \\
& y \cdot e^{2 x}=\frac{1}{4}\left(x^{2}-x\right) e^{2 x}-\frac{1}{4}\left[(2 x-1) \frac{e^{2 x}}{2}-\int \frac{2 e^{2 x}}{2} d x\right] \\
& y \cdot e^{2 x}=\frac{1}{4}\left(x^{2}-x\right) e^{2 x}-\frac{1}{8}(2 x-1) e^{2 x}+\frac{1}{8} e^{2 x}+c \\
& y \cdot e^{2 x}=\frac{1}{8} e^{2 x}\left(2 x^{2}-2 x-2 x+1+1\right)+c \\
& \Rightarrow y \cdot e^{2 x}=\frac{1}{4}(x-1)^{2} e^{2 x}+c
\end{aligned}
$$

d. $\operatorname{Sec} 3 x \frac{d y}{d x}-2 y \sec 3 x=1$
$\therefore \frac{d y}{d x}-2 y=\cos 3 x$
(i) It is a linear differential equation of the form $\frac{d y}{d x}+$

$$
p y=Q
$$

Here, $p=-2$ and $Q=\cos 3 x$
Now, $\int p d x=-\int 2 d x=-2 x$
I.F. $=e^{\int \operatorname{lpdx}}=e^{-2 x}$

Multiplying (i) by I.F.
$\left(\frac{d y}{d x}-2 y\right) e^{-2 x}=\cos 3 x \cdot e^{-2 x}$
or, $d\left(y \cdot e^{-2 x}\right)=\operatorname{co3} x \cdot e^{-2 x}$
Integrating both sides,
$\int d\left(y \cdot e^{-2 x}\right)=\int \cos 3 x \cdot e^{-2 x} d x$
$y \cdot e^{-2 x}=\int \cos 3 x \cdot e^{-2 x} d x \ldots \ldots \ldots$ (ii)
Let $I=\int \cos 3 x \cdot e^{-2 x} d x$
or, $I=\cos 3 x \int e^{-2 x} d x-\int\left\{\frac{d}{d x}(\cos 3 x) \cdot \int e^{-2 x} d x\right\} d x=\frac{\cos 3 x \cdot e^{-2 x}}{-2}-\int$ $\left.\frac{-3}{-2} \sin 3 x \cdot e^{-2 x} d x\right)$

$$
I=-\frac{1}{2} \cos 3 x \cdot e^{-2 x}-\frac{3}{2} \int \sin 3 x \cdot e^{-2 x} d x
$$

or, $I=-\frac{1}{2} \cos 3 x \cdot e^{-2 x}-\frac{3}{2}\left[\sin 3 x \int e^{-2 x} d x-\int\left\{\frac{d}{d x}(\sin 3 x) \cdot \int e^{-3 x} d x\right\}\right]$
$I=-\frac{1}{2} \cos 3 x \cdot e^{-2 x}-\frac{3}{2}\left[\sin 3 x \cdot \frac{e^{-2 x}}{-2}-\int \frac{3}{-2} \cos 3 x \cdot e^{-2 x} d x\right]$
$I=-\frac{1}{2} \cos 3 x \cdot e^{-2 x}+\frac{3}{4} \sin 3 x e^{-2 x}-\frac{9}{4}$ I
or, $\frac{13}{4} I=-\frac{1}{2} \cos 3 x \cdot e^{-2 x}+\frac{3}{4} \sin 3 x e^{-2 x}$
$I=\frac{1}{13}(3 \sin 3 x-2 \cos 3 x) e^{-2 x}$
from (ii),
$y \cdot e^{-2 x}=\frac{1}{13}(3 \sin 3 x-2 \cos 3 x) e^{-2 x}+c$
$\therefore \quad y=\frac{1}{13}(3 \sin 3 x-2 \cos 3 x)+c e^{2 x}$
e. $\cos ^{2} x \frac{d y}{d x}+y=\tan x$
f. $x \frac{d y}{d x}+2 y=x^{2} \ln x$
$\Rightarrow \frac{d y}{d x}+\sec ^{2} x \cdot y=\tan x \cdot \sec ^{2} x$
(i) $\frac{d y}{d x}+\frac{2}{x} y=x \ln x$ \qquad
$p=\sec ^{2} x$ and $Q=\sec ^{2} x \cdot \tan x$
Comparing (i) with $\frac{d y}{d x}+p y=Q$, we
$\int p d x=\int \sec ^{2} x d x=\tan x$
I.F. $=e^{\int \operatorname{lpdx}}=e^{\tan x}$

Multiplying (i) by I.F. we get,
$d\left(y . e^{\tan x}\right)=\tan x \cdot \sec ^{2} x \cdot e^{\tan x}$
Integrating
get
$\mathrm{p}=\frac{2}{\mathrm{x}}$ and $\mathrm{Q}=\mathrm{x} \ln \mathrm{x}$
$\int p d x=\int \frac{2}{x} d x=2 \ln x=\ln x^{2}$
I.F. $=e^{\int \operatorname{lddx}}=e^{\ln x^{2}}=x^{2}$

Multiplying (i) by I.F.
$\left(\frac{d y}{d x}+\frac{2}{x} y\right) x^{2}=x^{3} \ln x$
$d\left(y \cdot x^{2}\right)=x^{3} \cdot \ln x$
Integrating both sides, we get
$\int d\left(y \cdot x^{2}\right)=\int x^{3} \ln x d x$

$$
y \cdot x^{2}=\ln x \cdot \int x^{3} d x-\int\left\{\frac{d}{d x}(\log x) \cdot \int x^{3} d x\right\}
$$

dx
$y \cdot x^{2}=\ln x \cdot \frac{x^{4}}{4}-\int \frac{1}{x} \cdot \frac{x^{4}}{4} d x$
$y \cdot x^{2}=\frac{x^{4}}{4} \ln x-\frac{1}{4} \int x^{3} d x$
$y \cdot x^{2}=\frac{x^{4}}{4} \ln x-\frac{1}{16} x^{4}+c$
$\therefore \quad y=\frac{x^{2}}{4} \ln x-\frac{x^{2}}{16}+c x^{-2}$
g. $x \frac{d y}{d x}-x=1+y$
h. $\frac{d y}{d x}+\frac{y}{x}=e^{x}$
$x \frac{d y}{d x}-y=1+x$
$\frac{d y}{d x}-\frac{1}{x} y=\left(\frac{1+x}{x}\right)$
Comparing (i) with $\frac{d y}{d x}+p y=Q$, we get
$p=-\frac{1}{x}$ and $Q=\frac{1+x}{x}$
$\int p d x=\int-\frac{1}{x} d x=-\ln x=\ln x^{-1}$
I.F. $=e^{\int p d x}=e^{\int p d x}=e^{\ln x-1}=x^{-1}$

Multiplying (i) both sides by I.F.
$\left(\frac{d y}{d x}-\frac{x}{1} y\right) x^{-1}=\left(\frac{1+x}{x}\right) x^{-1}$
$d\left(y \cdot x^{-1}\right)=\frac{1+x}{x^{2}}$
$d\left(y \cdot x^{-1}\right)=x^{-2}+\frac{1}{x}$
Integrating both sides,
$\int\left(y \cdot x^{-1}\right)=\int x^{-2} d x+\int \frac{1}{x} d x$
$y \cdot x^{-1}=-x^{-1}+\ln x+c$
$y=-1+x \ln x+c x=x \ln x-1+c x$
i. $\left(1+x^{2}\right) \frac{d y}{d x}+y=\tan ^{-1} x$
$\frac{d y}{d x}+\left(\frac{1}{1+x^{2}}\right) y=\frac{\tan ^{-1} x}{\left(1+x^{2}\right)}$.
Comparing (i) with $\frac{d y}{d x}+p y=Q$, we get
$\mathrm{p}=\frac{1}{1+\mathrm{x}^{2}}, \mathrm{Q}=\frac{\tan ^{-1} \mathrm{x}}{1+\mathrm{x}^{2}}$
$\int p d x=\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x$
I.F. $=e^{\int \mathrm{Pdx}}=e^{\tan -1} x$

Multiplying (i) by I.F. both sides
We get,
$d\left(y \cdot e^{\tan -1} x\right)=\frac{\tan ^{-1} x}{1+x^{2}} \cdot e^{\tan -1} x$
Integrating both sides
$\int d\left(y \cdot e^{\tan -1} x\right)=\int e^{\tan -1} x \frac{\tan ^{-1} x}{1+x^{2}} d x$
$y . e^{\tan -1} x=\int e^{\tan -1} x \frac{\tan ^{-1} x}{1+x^{2}} d x$
Put $e^{\tan ^{-1}} x=u$ in RHS
Then $\frac{1}{1+\mathrm{x}^{2}} \mathrm{dx}=\mathrm{du}$
Then,
$y \cdot e^{\tan -1} x=\int e^{u} \cdot u d u$
$y . e^{\tan -1} x=\int u . e^{u} d x$
$y \cdot e^{\tan -1} x=u \int e^{u} d u-\int\left\{\frac{d u}{d u} \cdot \int e^{u} d u\right\} d u$
$y \cdot e^{\tan -1} x=u \cdot e^{u}-\int 1 . e^{u} d u$
$y . e^{\tan -1} x=u e^{u}-e^{u}+c$
$y . e^{\tan -1} x=\tan ^{-1} x e^{\tan -1 x}-e^{\tan -1} e+c$
$y=\tan ^{-1} x-1+\frac{c}{e^{\tan -1 x}}$
3. Solve the following differential equations.
a. $(1+x) \frac{d y}{d x}-x y=1-x$.
b. $\frac{d y}{d x}+\frac{4 x}{x^{2}+1} y=-\frac{1}{\left(x^{2}+1\right)^{2}}$.
c. $\left(x^{2}-1\right) \frac{d y}{d x}+2 x y=\frac{2}{x^{2}-1}$
d. $\frac{d y}{d x}+\frac{y}{x \ln x}=\frac{1}{x}$
e. $\frac{d y}{d x}+\frac{y}{x}=y^{2}$
f. $\frac{d y}{d x}+x y=x y^{3}$
g. $\left(1-x^{2}\right) \frac{d y}{d x}+x y=x y^{2}$

Solution:

a. $(1+x) \frac{d y}{d x}-x y=1-x$

$$
\begin{equation*}
\frac{d y}{d x}-\frac{x}{1+x} \cdot y=\frac{1-x}{1+x} . \tag{i}
\end{equation*}
$$

$p=-\frac{x}{1+x}$ and $Q=\frac{1-x}{1+x}$

278 Kriti's Principles of Mathematics-XII

$\int p d x=-\int \frac{x}{x+1} d x=-\int \frac{x+1-1}{x+1} d x=-\int 1 d x+\int \frac{1}{x+1}=-x+\ln (x+1)$
I.F. $=e^{\int \operatorname{lpdx}}=e^{-x+\ln (x+1)}=e^{-x}(x+1)$

Multiplying (i) by by I.F. we get
$d\left(y \cdot e^{x}(x+1)\right)=(1-x) e^{-x}$
Integrating $\int d\left(y(x+1) e^{-x}\right)=\int e^{-x}(1-x) d x$
or, $y(x+1) e^{-x}=\frac{(1-x) e^{-x}}{-1}+e^{-x}+c$
or, $y e^{-x}(x+1)=-(1-x) e^{-x}+e^{-x}+c$
or, $y e^{-x}(x+1)=e^{-x}(1-1+x)+c$
or, $y(x+1) e^{-x}=e x^{-x}+c$
$\therefore y(x+1)=x+c e^{x}$
b. $\frac{d y}{d x}+\frac{4 x}{1+x^{2}} \cdot y=-\frac{1}{\left(x^{2}+1\right)^{2}}$

Here, $p=\frac{4 x}{x^{2}+1}$ and $Q=\frac{-1}{\left(x^{2}+1\right)^{2}}$

$$
\begin{aligned}
& \int p d x=2 \int \frac{2 x}{x^{2}+1} d x=2 \ln \left(x^{2}+1\right) \\
& =\ln \left(x^{2}+1\right)^{2} \\
& \text { I.F. }=e^{\int p d x}=\left(x^{2}+1\right)^{2}
\end{aligned}
$$

Multiplying (i) by I.F. we get
$\mathrm{d}\left\{\mathrm{y} \cdot\left(\mathrm{x}^{2}+1\right)^{2}\right\}=-1$

$$
\begin{aligned}
& \left(x^{2}+1\right)^{2} \times\left(x^{2}+1\right)^{2} \\
& \Rightarrow \quad \int d\left\{y\left(x^{2}+1\right)^{2}\right\}=-x+c \\
& \quad y\left(x^{2}+1\right)^{2}=-x+c
\end{aligned}
$$

c. $\left(x^{2}-1\right) \frac{d y}{d x}+2 x y=\frac{2}{x^{2}-1}$
$\therefore \frac{d y}{d x}+\frac{2 x}{x^{2}-1} y=\frac{2}{\left(x^{2}-1\right)}$
Comparing (i) with $\frac{d y}{d x}+p . y=Q$, we get
$\mathrm{p}=\frac{2 \mathrm{x}}{\mathrm{x}^{2}-1}$ and $\mathrm{Q}=\frac{2}{\left(\mathrm{x}^{2}-1\right)^{2}}$
Now, $\int p d x=\int \frac{2 x}{x^{2}-1} d x=\ln \left(x^{2}-1\right)$
I.F. $=e^{\int p d x}=e^{\ln \left(x^{2}-1\right)}=\left(x^{2}-1\right)$

Multiplying (i) both sides by I.F.
$\left(\frac{d y}{d x}+\frac{2 x}{x^{2}-1} y\right)\left(x^{2}-1\right)=\frac{2}{\left(x^{2}-1\right)^{2}}\left(x^{2}\right.$ $-1)$
$\mathrm{d}\left\{\mathrm{y}\left(\mathrm{x}^{2}-1\right)\right\}=\frac{2}{\mathrm{x}^{2}-1}$
Integrating $\int d\left(y \cdot\left(x^{2}-1\right)\right)=2 \int \frac{1}{x^{2}-1}$
dx

$$
\begin{equation*}
y \cdot\left(x^{2}-1\right)=2 \cdot \ln \left|\frac{x-1}{x+1}\right|+c \tag{i}
\end{equation*}
$$

d. $\frac{d y}{d x}+\frac{y}{x \cdot \ln x}=\frac{1}{x}$
e. $\frac{d y}{d x}+\frac{y}{x}=y^{2}$ or, $\frac{1}{y^{2}} \frac{d y}{d x}+\frac{1}{x \cdot y}=1$

Comparing (i) with $\frac{d y}{d x}+p \cdot y=Q$
$\mathrm{p}=\frac{1}{\mathrm{x} \cdot \ln \mathrm{x}}$ and $\mathrm{Q}=\frac{1}{\mathrm{x}}$
Put $\frac{1}{y}=z$ then $-\frac{1}{y^{2}} \frac{d y}{d x}=\frac{d z}{d x}$
(i) becomes
$\int p d x=\int \frac{1}{x \cdot \ln x} d x$
Put $\ln x=u$ then $\frac{1}{x} d x=d u$
$-\frac{d z}{d x}+\frac{1}{x} \cdot z=1$ or, $\frac{d z}{d x}-\frac{1}{x} \cdot z=-1 \ldots$
Comparing (ii) with $\frac{d y}{d x}+p . y=Q$ we get
$p=-\frac{1}{x}$ and $Q=-1$
$\int p d x=\int \frac{d u}{u}=\ln u$
I.F $=e^{\text {lodx }}=e^{\ln u}=u=\ln x$

Multiplying (i) by I.F. we get
$d(y . \ln x)=\frac{1}{x} \ln x$
Integrating both sides
$\int d(y \cdot \ln x)=\int \frac{1}{x} \ln x d x$

$$
y \cdot \ln x=\int v d v \text { where } \ln x=v
$$

$y \cdot \ln x=\frac{v^{2}}{2}+c$
$y \cdot \ln x=\frac{(\ln x)^{2}}{2}+c$
$\therefore \quad y=\frac{1}{2} \ln x+\frac{c}{\ln x}$
f. $\frac{d y}{d x}+x y=x y^{3}$
$\frac{1}{y^{3}} \frac{d y}{d x}+\frac{x}{y^{2}}=x$
Put $\frac{1}{\mathrm{y}^{2}}=\mathrm{z}$
Then $-\frac{1}{\mathrm{y}^{3}} \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dz}}{\mathrm{dx}}$
(i) becomes
$\frac{d z}{d x}-x z=-x$
Comparing (ii) with $\frac{d y}{d x}+p . y=Q$, we get
$\mathrm{p}=-\mathrm{x}$ and $\mathrm{Q}=-\mathrm{x}$
$\int p d x=-\int x d x=e^{-x^{2} / 2}$
I.F. $=e^{\operatorname{lndx}}=e^{-\frac{x^{2}}{2}}$

Multiplying (ii) by I.F.
$d\left(z, e^{-x^{2 / 2}}\right)=-x . e^{-\frac{x^{2}}{2}}$
Integrating
z. $e^{-\frac{x^{2}}{2}}=\int-x \cdot e^{-\frac{x^{2}}{2}} d x$
z. $e^{-\frac{x^{2}}{2}}=\int e^{u} d u$ where $u=-\frac{x^{2}}{2}$
$\int p d x=-\int \frac{1}{x} d x=-\ln x=\ln x^{-1}$
I.F. $=e^{\operatorname{lod} x}=e^{\ln x-1}=x^{-1}=\frac{1}{x}$

Multiplying (ii) by I.F.
$\left(\frac{d z}{d x}-\frac{1}{x} \cdot z\right) \frac{1}{x}=-1 \cdot \frac{1}{x}$
$d\left(z \cdot \frac{1}{x}\right)=-\frac{1}{x}$
Integrating both sides, we get
$\int d\left(z \cdot \frac{1}{x}\right)=-\frac{1}{x}$
Integrating both sides, we get
$\int d\left(z \cdot \frac{1}{x}\right)=-\int \frac{1}{x} d x$
$z \cdot \frac{1}{x}=-\ln x+c \Rightarrow \frac{1}{y}=-x \ln x+c x$
$\therefore \quad \frac{1}{x y}+\ln x=c$
g. $\left(1-x^{2}\right) \frac{d y}{d x}+x . y=x y^{2}$
$\frac{1}{y^{2}} \frac{d y}{d x}+\left(\frac{x}{1-x^{2}}\right) \frac{1}{y}=\frac{x}{1-x^{2}}$.
Put $\frac{1}{y}=z$ then $\frac{1}{y^{2}} \frac{d y}{d x}=-\frac{d z}{d x}$
Then, $-\frac{d z}{d x}+\left(\frac{x}{1-x^{2}}\right) \cdot z=\frac{x}{1-x^{2}}$
$\frac{d z}{d x}-\left(\frac{x}{1-x^{2}}\right) z=-\frac{x}{1-x^{2}}$
Here, $\mathrm{p}=\frac{-\mathrm{x}}{1-\mathrm{x}^{2}}$ and $\mathrm{Q}=\frac{-\mathrm{x}}{1-\mathrm{x}^{2}}$
$\int p d x=\frac{1}{2} \int-\frac{2 x}{1-x^{2}}$

$$
=\frac{1}{2} \ln \left(1-x^{2}\right)=\ln \sqrt{1-x^{2}}
$$

I.F. $=e^{\operatorname{lod} x}=e^{\ln \sqrt{1-x^{2}}}=\sqrt{1-x^{2}}$

Multiplying (ii) by I.F. we get
$d\left(z . \sqrt{1-x^{2}}=-\frac{x}{1-x^{2}} \sqrt{1-x^{2}}\right.$
Integrating
$z \sqrt{1-x^{2}}=\int \frac{x}{\sqrt{1-x^{2}}} d x$
z. $\sqrt{1-x^{2}}=\frac{1}{2} \int \frac{d u}{\sqrt{u}}$ where $1-x^{2}=u$

280 Kriti's Principles of Mathematics-XII

$\frac{1}{y^{2}} e^{-\frac{x^{2}}{2}}=e^{-\frac{x^{2}}{2}}+c$
$\frac{1}{y} \cdot \sqrt{1-x^{2}}=\sqrt{1-x^{2}}+c$
$\frac{1}{y^{2}}=1+c e^{\frac{x^{2}}{2}}$

EXERCISE 17.6

1. 40% of a radioactive substance disappears in 100 years.
a. What is its half life?
b. After how many years will 90% be gone?

Solution:

Let $y=y(t)$ be the amount of radioactive substances at time t.
Then $y(t)=k e^{c t}$
At $t=0, y(0)=k e^{c \times 0} \Rightarrow y(0)=k$
$\therefore \mathrm{y}(\mathrm{t})=\mathrm{y}(0) \mathrm{e}^{\mathrm{ct}}$
At $\mathrm{t}=100,40 \%$ of radioactive substance disappears.
$\therefore 60 \%$ remaining i.e.
\therefore Remaining radioactive substance after 100 years is
$y(100)=\frac{60}{100} \times y(0)$
Now from (ii) at $t=100$, we get
$y(100)=y(0) e^{100 c}$
or, $\frac{60}{100} \times y(0)=y(0) e^{100 c}$
or, $\frac{6}{10}=e^{100 c}$
or, $100 c=\ln \frac{6}{10}$
or, $100 c=\ln 0.6$
or, $c=\frac{\log 0.6}{100}=-0.0051082$
Substituting the value of c on (ii) we get $y(t)=y(0) e^{-0.0051082 t}$

a. Half life:

Now, the half life is the time duration after which half of its initial value disappears, let the half life period be $t=T$.
Then, $y(T)=y(0) e^{-0.0051082 T}$
or, $\frac{y(0)}{2}=y(0) e^{-0.0051082 T}$
or, $\mathrm{e}^{-0.0051082 T}=0.5$
or, $-0.0051082 \mathrm{~T}=\ln 0.5$
$\therefore \quad \mathrm{T}=\frac{\log 0.5}{0.0051082}=\frac{-0.693171}{-0.0051082}=135.69$
\therefore Half life, $T=135.69$ years
b. Since 90% of the value is gone means 10% of the original value remains. Let T_{1} be the required years.
Then, $y\left(T_{1}\right)=y(0) e^{-0.0051082 T_{1}}$
or, $\frac{1}{10} y(0)=y(0) e^{-0.0051082 T_{1}}$
or, $0.1=e^{-0.0051082 T_{1}}$
or, $-0.0051082 \mathrm{~T}=\ln 0.1$
or, $T_{1}=\frac{\log 0.1}{-0.0051082}=\frac{-2.3025851}{-0.0051082}=450.76$
$\therefore \mathrm{T}_{1}=450.76$ years
2. Radioactive carbon (Carbon - 14) has a half life of 5568 years (At the end of that period of time one half of the original amount remains). Derive the formula for the amount remaining after t years.

Solution:

Let $\mathrm{y}(\mathrm{t})$ be the amount of radioactive carbon at time t .
Then $y(t)=k e^{c t}$
At time $\mathrm{t}=0, \mathrm{y}(0)=\mathrm{ke}{ }^{\circ} \Rightarrow \mathrm{y}(0)=\mathrm{k}$
$\therefore \quad y(t)=y(0) e^{c t}$
At time $t=5568$, half of the original amount remains
$\therefore \quad y(5568)=\frac{y(0)}{2} \therefore$ From (ii), $y(5568)=y(0) e^{5568 c}$
$\Rightarrow \frac{y(0)}{2}=y(0) e^{5568 c}$
or, $e^{5568 c}=0.5$
or, $5568 \mathrm{c}=\ln 0.5$
$\therefore c=\frac{\log 0.5}{5568}$
Using value of con (i) we get

$$
\frac{\log 0.5}{5568} \times t
$$

$y(t)=k e 5568$
Which is required formula.
3. The half life of isotopic radium is approximately 2000 years. Beginning with 200 grams of this radium, find a formula that will give the amount remaining after t years. After how many years will one third of the original 200 grams remains?

Solution:

Let $y(t)$ be the amount of isotopic radium remaining after t years
Then $y(t)=k e^{c t}$
At time $\mathrm{t}=0, \mathrm{y}(0)=\mathrm{ke}^{0} \Rightarrow 200=\mathrm{k} .1 \quad \therefore \mathrm{k}=200$
$\therefore \mathrm{y}(\mathrm{t})=200 \mathrm{e}^{\mathrm{ct}}$
Again at $\mathrm{t}=2000, \mathrm{y}(2000)=\frac{1}{2} \times 200$
$\therefore \mathrm{y}(2000)=200 \mathrm{e}^{20000 \mathrm{c}}$
or, $\frac{1}{2} \times 200=200 e^{2000 c} \Rightarrow e^{2000 c}=0.5$
or, $2000 \mathrm{c}=\ln 0.5$
or, $c=\frac{\log 0.5}{2000}=-0.00034657$.
Substituting the value of c on (ii) we get $\mathrm{y}(\mathrm{t})=200 \mathrm{e}^{-0.00034657 \mathrm{t}}$

282 Kriti's Principles of Mathematics-XII

Again, let at $t=T, y(T)=\frac{1}{3} \times 200$ grams.
Then $y(T)=200 e^{-0.00034657 T}$
$\Rightarrow \frac{1}{3} \times 200=200 \mathrm{e}^{-0.00034657 \mathrm{~T}}$
or, $-0.00034657 \mathrm{~T}=\ln 1 / 3$ i.e. $-\ln 3$
$\therefore \quad \mathrm{T}=\frac{\log 3}{0.0003457}=\frac{1.0986123}{0.00034657}=3170.6$
$\therefore \mathrm{T}=3170.6$ years
4. At time $t=0$, five million bacteria were living in George's lung. Three hours later the number had increased to nine million. Assuming that the conditions for growth do not change over the next few hours, find the number of bacteria at the end of (a) 12 hours. (b) 36 hours.

Solution:

Let $y(t)$ denotes the amount of bacteria at time t.
Then $y(t)=k e^{c t}$
At time $t=0, y(0)=k e^{0}$

$$
\begin{equation*}
\Rightarrow 5=\mathrm{ke}^{\circ} \Rightarrow \mathrm{k}=5 \tag{i}
\end{equation*}
$$

$\therefore y(t)=5 e^{c t}$
Again at $t=3, y(3)=9$
$\therefore \quad \mathrm{y}(3)=5 \mathrm{e}^{\mathrm{c} \mathrm{\times 3}} \Rightarrow 9=5 \mathrm{e}^{3 \mathrm{c}}$
or, $\mathrm{e}^{3 \mathrm{c}}=9 / 5=1.8$
$\therefore \quad 3 \mathrm{c}=\ln 1.8$
$\therefore \quad c=\frac{\log 1.8}{3}=0.1959277$
Substituting the value of c on (ii) we get
$y(t)=5 e^{0.1959288 t}$
a. At $t=12$ hours:

$$
y(12)=5 \times e 0.1959288 \times 12=5 \times 10.4976=52.488 \text { millions }
$$

b. At $t=36$ hours:

$$
y(36)=5 \times \mathrm{e} 0.1959288 \times 36=5 \times 1156.8314=5784.416 \text { millions }
$$

5. Assume that the population of a certain city increases at a rate proportional to the number of its inhabitants at any time. If the population doubles in 40 years, in how many years it triple?

Solution:

Let x be the number of individuals in at time t. We know that the population of a certain city increases at a rate proportional to the number of its inhabitants at any time. Hence, we are led to the differential equation.
$\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{kx}$
where, k is a constant of proportionality. The population x is positive and is increasing and hence $d x / d t>0$. Therefore, from (i), we must have $k>0$. Now, suppose that at time $\mathrm{t}_{0}=0$ the population is x_{0}. Then, in addition to the differential equation (i), we have the initial condition.
$\mathrm{x}\left(\mathrm{t}_{0}\right)=\mathrm{x}(0)=\mathrm{x}_{0}$
The differential equation(i)is separable. Separating variables, integrating, and simplifying, we obtain.
$\mathrm{x}=\mathrm{C} \mathrm{e}^{\mathrm{kt}}$
Applying the initial condition, $x=x_{0}$ at $t=t_{0}=0$, to this, we have
$\mathrm{x}_{0}=\mathrm{Ce}^{\mathrm{kt0}}=\mathrm{C}$

From this we at once find $C=x^{0} e^{-k t_{0}}$ and hence we obtain the unique solution $\mathrm{x}=\mathrm{x}_{0} \mathrm{e}^{\mathrm{k}\left(t-t_{0}\right)}$ of the differential equation (i), which satisfies the initial condition (ii). Now, when $t=40$, we have $x=2 x_{0}$. Hence, we obtain
$2 x_{0}=x_{0} e^{40 \mathrm{k}} \Leftrightarrow 2=\mathrm{e}^{40 \mathrm{k}} \Leftrightarrow \frac{\ln 2}{40}=\mathrm{k}$
If we let $x=3 x_{0}, x_{0} e^{(\ln 2 / 40) t} \Leftrightarrow 3=e^{(\ln 2 / 40) t} \Leftrightarrow \ln 3=\frac{\ln 2}{40} t \Leftrightarrow t=40\left(\frac{\ln 3}{\ln 2}\right) \approx 63.40$
Therefore, the population will triple in about 63.40 years.
6. The population of the city of Bingville increases at a rate proportional to the numbers of its inhabitants present ant any time t. If the population of Bingville was 30,000 in 1970 and 35,000 in 1980, what will be the population of Bingville in 1990?

Solution:

According to the formula in the exercise 5, we have
$x=x_{0} e^{k\left(t-t_{0}\right)}$
Hence we obtain
$x(1980)=30,000 e^{k(1980-1970)} \Leftrightarrow \frac{35,000}{30,000}=e^{10 k} \Leftrightarrow \frac{1}{10} \ln \left(\frac{7}{6}\right)=k$
Therefore, the population of Bingville in 1990 is
$x(1990)=30,000 \mathrm{e}^{2 \ln \left(\frac{7}{6}\right)} \approx 40,833$

CHAPTER 18

LINEAR PROGRAMMING

EXERCISE 18

1. Find the basic solution of the following system of equations.
a. $x+2 y+z=6$
$4 x+3 y+z=12$
b. $x+2 y+z=4$
$2 x+y+5 z=5$

Solution:

a. Here, given equations are $x+y+z=6$ and $4 x+3 y+z=12$

There are 3 variables and 2 equations so, there are two basic solution and one non-basic.
Case - I: if $z=0$, then,

$$
\begin{align*}
& x+y=6 \ldots \ldots \tag{i}\\
& 4 x+3 y=12 \tag{ii}
\end{align*}
$$

Solving equation (i) and (ii)
$\therefore \quad y=\frac{12}{5}$ (basic)
$\therefore \quad \mathrm{x}=\frac{6}{5}$ (basic)
$\therefore \mathrm{z}=0$ (non-basic)
Case - II: if $y=0$

$$
\begin{align*}
& x+z=6 \ldots \tag{iii}\\
& 4 x+z=12 \tag{iv}
\end{align*}
$$

Solving (iii) and (iv0
$\therefore \quad \mathrm{x}=2$ (basic)
$\therefore \quad z=4$ (basic)
$\therefore \quad \mathrm{y}=0$ (non-basic)
Case-III: if $x=0$

$$
\begin{align*}
& y+z=6 \ldots \tag{v}\\
& 3 y+z=12 \tag{vi}
\end{align*}
$$

Solving (v) and (vi)
$\therefore y=6$ (basic)
$\therefore \quad z=-6$ (basic)
$\therefore \quad \mathrm{x}=0$ (non basic)
b. Here, Given equations are

$$
\begin{aligned}
& x+2 y+z=4 \\
& 2 x+y+5 z=5
\end{aligned}
$$

There are 3 variables in 2 equations among them 2 are basic and 1 is nonbasic.
Case-I: if $z=0$

$$
\begin{align*}
& x+2 y=4 \tag{i}\\
& 2 x+y=5 \tag{ii}
\end{align*}
$$

Solving equation (i) and equation (ii)
$\therefore y=1$ (basic)
$\therefore \quad \mathrm{x}=2$ (basic)
$\therefore \quad \mathrm{z}=0$ (non-basic)
Case-II: if $y=0$

$$
\begin{equation*}
x+z=4 \tag{iii}
\end{equation*}
$$

$2 x+5 z=5$

Solving (iii) and (iv)
$\therefore \quad z=-1$ (basic)
$\therefore y=0$ (non-basic)
$\therefore \quad \mathrm{x}=3$ (basic)
Case-III: if $x=0$

$$
\begin{align*}
& 2 y+z=4 \ldots \ldots \ldots \tag{v}\\
& y+5 z=5 \ldots \ldots
\end{align*}
$$

Solving (v) and (vi)
$\therefore \quad z=\frac{2}{3}$ (basic)
$\therefore y=\frac{5}{3}$ (basic)
$\therefore \quad \mathrm{x}=0$ (non-basic)
2. Find all basic feasible solutions of the following system of equations.
a. $x+2 y-z=3$
b. $2 x+3 y+z=12$ $x+2 y-3 z=5$

Solution:

a. Given equations are
$x+2 y-z=3$
$x-y+z=5$
There are 3 variables and 2 equations. So, among them 2 are basic and 1 is non-basic.
Case-I: if $z=0$
$x+2 y=3$
$x-y=5$
Solving (i) and (ii)
$\therefore \quad x=\frac{13}{3}$ (basic)
$\therefore \quad y=\frac{-2}{3}$ (basic)
$\therefore \quad \mathrm{z}=0$ (non-basic)
Case-II: if $y=0$
$x-z=3$... (iii)
$x+z=5$
Solving (ii) and (i)
$\therefore \quad \mathrm{x}=4$ (basic)
$\therefore z=1$ (basic)
$\therefore \quad \mathrm{y}=0$ (non-basic)
Case-III: if $x=0$
$2 y-z=3$
$-\mathrm{y}+\mathrm{z}=5 \ldots \ldots$.... (vi)
Solving (v) and (vi)
$\therefore \quad y=8$ (basic)
$\therefore \quad z=13$ (basic)
$\therefore \quad \mathrm{x}=0$ (non-basic)
Since, the case II and III are non-negative, so they give basic feasible solution.
\therefore The basic feasible solution are $(4,0,1)$ and $(0,8,13)$
b. Here, the given equations are
$2 x+3 y+z=12$
$x+2 y-3 z=5$
There are 3 variables and 2 equations. Among them 2 are basic and 1 is non-
basic.
Case-l: if $z=0$
$2 x+3 y=12$
$x+2 y=5$
Solving (i) and (ii)
$\therefore \quad y=-2$ (basic)
$\therefore \quad \mathrm{x}=9$ (basic)
$\therefore \quad \mathrm{z}=0$ (non-basic)
Case-II: if $\mathrm{y}=0$
$2 x+z=12$
$x-3 z=5$ \qquad
Solving (iii) and (iv)
$\therefore \quad z=\frac{2}{7}$ (basic)
$\therefore \quad x=\frac{41}{7}$ (basic)
$\therefore \quad \mathrm{y}=0$ (non-basic)
Case III: If $x=0$,
$3 y+z=12$
$2 y-3 z=5$
solving (v) and (vi), we get
$y=\frac{41}{11}$ and $z=\frac{9}{11}$
Since, the cases II and III are non-negative, so the basic feasible solution are $\left(\frac{41}{7}, 0, \frac{3}{7}\right)$ and $\left(0, \frac{41}{11}, \frac{9}{11}\right)$
3. Express the following LP in standard form. Also find the optimal solution using simplex method.
a. Max. $Z=10 x+15 y$
Subject to

$$
\begin{aligned}
& x+2 y \leq 20 \\
& x+y \leq 16
\end{aligned}
$$

b. Max. $Z=3 x+5 y$

Subject to the constraints

$$
x, y \geq 0
$$

$$
\begin{aligned}
& x+2 y \leq 5 \\
& -2 x+3 y \geq-7 \\
& x, y \geq 0
\end{aligned}
$$

Solution:

a. Introducting the slack-variable s_{1}, s_{2}, the given LPP can be written as
$x+2 y+s_{1}=20$
$x+y+s_{2}=16$
$z-10 x-15 y-0 . s_{1}-0 . s_{2}=0$
$\mathrm{x}, \mathrm{y}, \mathrm{s}_{1}, \mathrm{~s}_{2} \leq 0$

Basic variables	x	y	s_{1}	$\mathrm{~s}_{2}$	RHS
s_{1}	1	2	1	0	20
$\mathrm{~s}_{2}$	1	1	0	1	16
	-10	-15	0	0	0

Pivot element = 2

Applying $R_{1} \rightarrow \frac{1}{2} R_{1}$ we get,

Basic variables	x	y	s_{1}	$\mathrm{~s}_{2}$	RHS
y	$\frac{1}{2}$	1	$\frac{1}{2}$	0	10
$\mathrm{~s}_{2}$	1	1	0	1	16
	-10	-15	0	0	0

Applying $R_{1} \rightarrow R_{1}-R_{2}$ and $R_{3} \rightarrow R_{3}+15 R_{2}$ we get,

Basic variables	x	y	s_{1}	$\mathrm{~s}_{2}$	RHS
y	$\frac{1}{2}$	1	$\frac{1}{2}$	0	10
$\mathrm{~s}_{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	1	6
	$-\frac{5}{2}$	0	$\frac{15}{2}$	0	150

Pivot element $=\frac{1}{2}$

Basic variables	x	y	s_{1}	$\mathrm{~s}_{2}$	RHS
y	$\frac{1}{2}$	1	$\frac{1}{2}$	0	10
x	1	0	-1	2	12
	$-\frac{5}{21}$	0	$\frac{15}{2}$	0	150

Applying $R_{1} \rightarrow R_{1}-\frac{1}{2} R_{2}, R_{3} \rightarrow R_{3}+\frac{5}{2} R_{2}$ we get

Basic variables	x	y	s_{1}	$\mathrm{~s}_{2}$	RHS
y	0	1	1	1	4
x	1	0	-1	2	12
	0	0	5	5	180

Here, all the entries in the last row are non-negative so, we get a optimal solution as,
$x=12, y=4$ and
$\operatorname{Max}(z)=10 x+15 y$

$$
\begin{aligned}
& =10 \times 12+15 \times 4 \\
& =120+60 \\
& =180
\end{aligned}
$$

b. Introducing the slack-variable $\mathrm{s}_{1}, \mathrm{~s}_{2}$, the given LPP can be written as
$\mathrm{x}+2 \mathrm{y}+\mathrm{s}_{1}=5$
$2 x-3 y+s_{2}=7$
$\mathrm{x}, \mathrm{y}, \mathrm{s}_{1}, \mathrm{~s}_{2} \geq 0$
and $z-3 x-5 y-0 . s_{1}-0 . s_{2}=0$
The initial simplex tableau

Basic variables	x	y	s_{1}	$\mathrm{~s}_{2}$	RHS
s_{1}	1	2	1	0	5
$\mathrm{~s}_{2}$	2	-3	0	1	7

	-3	-5	0	0	0

Here, poivot element $=2$
To make pivot element 1 , applying $R_{1} \rightarrow \frac{1}{2} R_{1}$, we get

Basic variables	x	y	s_{1}	$\mathrm{~s}_{2}$	RHS
y	$\frac{1}{2}$	$\boxed{1}$	$\frac{1}{2}$	0	$\frac{5}{2}$
$\mathrm{~s}_{2}$	2	-3	0	1	7
	-3	-5	0	0	0

Applying $R_{2} \rightarrow R_{2}+3 R_{1}$ and $R_{3} \rightarrow R_{3}+5 R_{1}$, we get

Basic variables	x	y	s_{1}	$\mathrm{~s}_{2}$	RHS
y	$\frac{1}{2}$	1	$\frac{1}{2}$	0	$\frac{5}{2}$
$\mathrm{~s}_{2}$	$\boxed{7}$		0	$\frac{3}{2}$	1
	$-\frac{1}{2}$	0	$\frac{5}{2}$	0	$\frac{25}{2}$

Pivot element $=\frac{7}{2}$
Applying $R_{2} \rightarrow \frac{2}{7} R_{2}$ we get,

Basic variables	x	y	s_{1}	$\mathrm{~s}_{2}$	RHS
y	$\frac{1}{2}$	1	$\frac{1}{2}$	0	$\frac{5}{2}$
X	1	0	$\frac{3}{7}$	$\frac{2}{7}$	$\frac{31}{7}$
	$-\frac{1}{2}$	0	$\frac{5}{2}$	0	$\frac{25}{2}$

Applying $R_{1} \rightarrow R_{1}-\frac{1}{2} R_{2}$ and $R_{3} \rightarrow R_{3}+\frac{1}{2} R_{2}$ we get,

Basic variables	x	y	s_{1}	$\mathrm{~s}_{2}$	RHS
y	0	1	$\frac{2}{7}$	$\frac{1}{7}$	$\frac{2}{7}$
x	1	0	$\frac{3}{7}$	$\frac{2}{7}$	$\frac{31}{7}$
	0	0	$\frac{19}{7}$	$\frac{1}{7}$	$\frac{103}{7}$

Here, all the entries in the last row are non-negative. So, we get an optimal solution as,

$$
\begin{aligned}
& x=\frac{31}{7}, y=\frac{2}{7} \text { and } \\
& \begin{aligned}
\operatorname{Max}(z) & =3 x+5 y \\
& =3 \times \frac{31}{7}+5 \times \frac{2}{7} \\
& =\frac{93}{7}+\frac{10}{7}=\frac{103}{7}
\end{aligned}
\end{aligned}
$$

4. By using simplex method find the maximum value of
a. Max. $Z=7 x_{1}+5 x_{2}$
Subject to

$$
\begin{aligned}
& \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 6 \\
& 4 \mathrm{x}_{1}+3 \mathrm{x}_{2} \leq 12 \\
& \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
\end{aligned}
$$

b. Max. $Z=9 x+y$
Subject to

$$
\begin{aligned}
& 2 x+y \leq 8 \\
& 4 x+3 y \leq 18 \\
& x, y \geq 0
\end{aligned}
$$

c. Max. $F=6 x_{1}-9 x_{2}$
Subject to $2 x_{1}-3 x_{2} \leq 6$, $\mathrm{x}_{1}+\mathrm{x}_{2} \leq 20$
$x_{1}, x_{2} \geq 0$
d. Max. $Z=2 x+3 y$
Subject to
$2 x+y \leq 14$
$x, y \geq 0$

Solution:

a. Here, max. $z=7 x_{1}+5 x_{2}$

Subject to $x_{1}+2 x_{2}=6$
$4 x_{1}+3 x_{2} \leq 12$
$x_{1}, x_{2} \geq 0$
Introducting the slack - variable $\mathrm{s}_{1}, \mathrm{~s}_{2}$ given LPP can be written as,
$\mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{s}_{1}=6$
$4 x_{1}+3 x_{2}+s_{2}=12$ and
$\mathrm{z}-7 \mathrm{x}_{1}-5 \mathrm{x}_{2}-0 . \mathrm{s}_{1}-0 . \mathrm{s}_{2}=0$
The simplex tableau is;

Basic variables	$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{s}_{\mathbf{1}}$	$\mathbf{s}_{\mathbf{2}}$	RHS
r	1	2	1	0	6
s	4	3	0	1	12
	-7	-5	0	0	0

The most negativity entry is -7 so, x_{1} column is pivot column. Then,
$\frac{6}{1}=6, \frac{12}{4}=3$
Here, $3<6$ so, 4 is pivot element.
$R_{2} \rightarrow \frac{1}{4} R_{2}$

Basic variables	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{s}_{1}	\mathbf{s}_{2}	RHS
s_{1}	1	2	1	0	6
x_{1}	1	$\frac{3}{4}$	0	$\frac{1}{4}$	3
		-7	-5	0	0
		0			

$R_{1} \rightarrow R_{1}-R_{2}, R_{3} \rightarrow R_{3}+7 R_{2}$

Basic variables	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{s}_{1}	$\mathbf{s}_{\mathbf{2}}$	RHS
s_{1}	0	$\frac{5}{4}$	1	$\frac{-1}{4}$	3
x_{1}	1	$\frac{3}{4}$	0	$\frac{1}{4}$	3
	0	$\frac{1}{4}$	0	$\frac{7}{4}$	21

Here, all the elements in last row are positive so, it is optimal solution.
$\operatorname{Max} .(Z)=21$ at $x_{1}=3, x_{2}=0$.
b. Here, max. $z=9 x+y$

Subject to $2 x+y \leq 8$
$4 x+3 y \leq 18$
$x, y \geq 0$
Introducting the slack - variable $\mathrm{s}_{1}, \mathrm{~s}_{2}$ given LPP can be written as,
$2 x+y+s_{1}=8$
$4 x+3 y+s_{2}=18$
$z-9 x-y-0 . s_{1}-0 . s_{2}=0$
The simplex tableau is

Basic variables	\mathbf{x}	\mathbf{y}	$\mathbf{s}_{\mathbf{1}}$	$\mathbf{s}_{\mathbf{2}}$	RHS
s_{1}	2	1	1	0	8
$\mathrm{~s}_{2}$	4	3	0	1	18
	-9	-1	0	0	0

The most negativity entry is -9 so, x column is pivot column. Then, $\frac{8}{2}=4, \frac{18}{4}=$ 4.5

Here, 2 is pivot element.
$R_{1} \rightarrow \frac{1}{2} R_{1}$

Basic variables	\mathbf{x}	\mathbf{y}	$\mathbf{s}_{\mathbf{1}}$	$\mathbf{s}_{\mathbf{2}}$	RHS
x	1	2	$\frac{1}{2}$	0	4
$\mathrm{~s}_{2}$	4	3	0	1	18
	-9	-1	0	0	0

$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-4 \mathrm{R}_{1}$

Basic variables	\mathbf{x}	\mathbf{y}	\mathbf{s}_{1}	\mathbf{s}_{2}	RHS
x	1	$\frac{1}{2}$	$\frac{1}{2}$	0	4
$\mathrm{~s}_{2}$	0	1	-2	1	2
	-9	-1	0	0	0

$R_{3} \rightarrow R_{3}+9 R_{1}$

Basic variables	\mathbf{x}	\mathbf{y}	$\mathbf{s}_{\mathbf{1}}$	$\mathbf{s}_{\mathbf{2}}$	$\mathbf{R H S}$
x	1	$\frac{1}{2}$	$\frac{1}{2}$	0	4
$\mathrm{~s}_{2}$	0	1	2		
		1	-2		
	0	$\frac{7}{2}$	$\frac{9}{2}$	0	36

Here, all the element in R_{3} are positive so, it is optimal solution.
Max. $(z)=36$ at $x=4, y=0$.
c. Here, max. $F=6 x_{1}-9 x_{2}$

Subject to $2 \mathrm{x}_{1}-3 \mathrm{x}_{2} \leq 6$
$x_{1}+x_{2} \leq 20$
$x_{1}, x_{2} \geq 0$
Introducting the slack - variable s_{1}, s_{2} given LPP can be written as,
$2 x_{1}-3 x_{2}+s_{1}=6$
$\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{s}_{2}=20$ and
$F-6 x_{1}+9 x_{2}-0 . s_{1}-0 . s_{2}=0$
The initial simplex tableau is;

Basic variables	\mathbf{x}	\mathbf{y}	$\mathbf{s}_{\mathbf{1}}$	$\mathbf{s}_{\mathbf{2}}$	RHS
r	2	-3	1	0	6
s	1	1	0	1	20
	-6	9	0	0	0

The most negativity entry is -6 so, x column is pivot column. Then, $\frac{6}{2}=3, \frac{20}{1}=$ 20.

Here, $3<20$ so, 2 is pivot column.
$R_{1} \rightarrow \frac{1}{2} R_{1}$

Basic variables	\mathbf{x}	\mathbf{y}	$\mathbf{s}_{\mathbf{1}}$	$\mathbf{s}_{\mathbf{2}}$	RHS
x	1	$\frac{-3}{2}$	$\frac{1}{2}$	0	3
$\mathrm{~s}_{2}$	1	1	0		20
	-6	9	0	0	0

Now, $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}+6 R_{1}$

Basic variables	\mathbf{x}	\mathbf{y}	\mathbf{s}_{1}	$\mathbf{s}_{\mathbf{2}}$	$\mathbf{R H S}$
x	1	$\frac{-3}{2}$	$\frac{1}{2}$	0	3
$\mathrm{~s}_{2}$	0	$\frac{5}{2}$	$\frac{-1}{2}$		17
		$\frac{5}{2}$			
	0	0	3	0	18

Here, all the elements in last row are positive so, the
Max. $(F)=18$, at $x=3, y=0$.
d. Here, max. $z=2 x+3 y$

Subject to $x+2 y \leq 10$
$2 x+y=\leq 14$
$x, y \geq 0$
Introducting the slack - variable $\mathrm{s}_{1}, \mathrm{~s}_{2}$ given LPP can be written as,
$x+2 y+s_{1}=10$
$2 x+y+s_{2}=14$ and
$z-2 x-3 y-0 . s_{1}-0 . s_{2}=0$
The initial simplex tableau;

Basic variables	\mathbf{x}	\mathbf{y}	$\mathbf{s}_{\mathbf{1}}$	$\mathbf{s}_{\mathbf{2}}$	RHS
s_{1}	1	$(2$	1	0	10
$\mathrm{~s}_{2}$	2	1	0	1	14
	-2	-3	0	0	0

The most negativity entry is -3 so, y column is pivot column. Then, $\frac{10}{2}=5, \frac{14}{1}$
$=14$
Here, $5<14$ so 2 is pivot element.
$R_{1} \rightarrow \frac{1}{2} R_{1}$

Basic variables	\mathbf{x}	\mathbf{y}	$\mathbf{s}_{\mathbf{1}}$	$\mathbf{s}_{\mathbf{2}}$	RHS
y	$\frac{1}{2}$	1	$\frac{1}{2}$	0	
x	2	1	0	1	14
	-2	-3	0	0	0

$\mathrm{R}_{2} \rightarrow \mathrm{R}_{1}, \mathrm{R}_{3} \rightarrow 3 \mathrm{R}_{1}$

Basic variables	\mathbf{x}	\mathbf{y}	\mathbf{s}_{1}	\mathbf{s}_{2}	RHS
y	$\frac{1}{2}$	1	$\frac{1}{2}$	0	5
	0	1	9		

s	$\frac{3}{2}$		$\frac{-1}{2}$		
	$-\frac{1}{2}$	0	$\frac{3}{2}$	0	15

All the values in last row is not positive. So, it is not optimal solution.
Here, the most negativity entry is $\frac{-1}{2}$ so x column is pivot column. Then,
$\frac{5}{\frac{1}{2}}=\frac{5 \times 2}{10}, \frac{9}{\frac{3}{2}}=\frac{9 \times 2}{3}=6$
Here, $6<10$ so, $\frac{3}{2}$ is pivot element.
$\mathrm{R}_{2} \rightarrow \frac{2}{3} \mathrm{R}_{2}$

Basic variables	\mathbf{x}	\mathbf{y}	$\mathbf{s}_{\mathbf{1}}$	$\mathbf{s}_{\mathbf{2}}$	RHS
y	$\frac{1}{2}$	1	$\frac{1}{2}$	$\frac{2}{3}$	5
x	1		$\frac{-1}{3}$		
	$\frac{\mathbf{- 1}}{2}$	0	$\frac{3}{2}$	0	15

$R_{1} \rightarrow R_{1} \frac{-1}{2} R_{2}, R_{3} \rightarrow \frac{1}{2} R_{2}+R_{3}$

Basic variables	\mathbf{x}	\mathbf{y}	\mathbf{s}_{1}	$\mathbf{s}_{\mathbf{2}}$	RHS
y	0	1	$\frac{5}{6}$	$\frac{-1}{3}$	2
	1	0	6		
			$\frac{-1}{3}$	$\frac{2}{3}$	
	0	0	$\frac{4}{3}$	$\frac{1}{3}$	18

Here, all the elements in R_{3} are positive so, it is optimal solution.
Max. $(z)=18$ at $\{x=6, y=2\}$
5. One kind of cake takes 200 gm of flour and 25 gm of fat and another kind of cake takes 100 gm of flour and 50 gm of fat. Suppose we want to make as many cakes as possible but have only 4 kg of flour and 1.175 kg of fat available, although there is no shortage of the various other ingredients. If the profit on selling first and second kinds of cakes are Rs. 3 and Rs. 2 respectively.
a. Formulate the LP Problem
b. Express it into standard form
c. Solve the LP Problem by simplex method and find the maximum profit.

Solution:

Types of cakes	Quality of		Profit (Rs.)
	Flour (gm)	Fat (gm)	
First	200	25	3
Second	100	50	2
Total	4000	1175	

Let the number of first types of cake $=x$ and the number of second type of cake $=y$
Then the total quantity of flour $=200 x+100 y$
By given condition,
$200 x+100 y \leq 4000 \Rightarrow 2 x+y \leq 40 \ldots$ (i)
Again the total quantity of fat $=25 x+50 y$
By given conditions
$25 x+50 y \leq 1175 \Rightarrow x+2 y \leq 47$
Since x and y cannot be negative, so $x \geq 0, y \geq 0$.
Total profit $=3 x+2 y$
\therefore Objective function is
Maximize $Z=3 x+2 y$ subject to
$2 x+y \leq 40$
$x+2 y \leq 47$
$x \geq 0, y \geq 0$
Introducing the slack variable S_{1} and S_{2}, the given LPP can be written as,
$Z-3 x-2 y=0$ such that
$2 x+y+s_{1}=40$
$x+2 y+s_{2}=47$
$\mathrm{x}, \mathrm{y}, \mathrm{s}_{1}, \mathrm{~s}_{2} \geq 0$
The initial simplex tableau

Basic Variable	x	y	s_{1}	s_{2}	RHS
s_{1}	2	1	1	0	40
$\mathrm{~s}_{2}$	1	2	0	1	47
	-3	-2	0	0	0

Here, Pivot element = 2
To make the pivot element 1 , applying $R_{1} \rightarrow \frac{1}{2} R_{1}$, we get

Basic Variable	x	y	s_{1}	$\mathrm{~s}_{2}$	RHS
x	$\boxed{1}$	$\frac{1}{2}$	$\frac{1}{2}$	0	20
$\mathrm{~s}_{2}$	1	2	0	1	47
	-3	-2	0	0	0

Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}+3 R_{1}$, we get

Basic Variable	\mathbf{x}	\mathbf{y}	\mathbf{s}_{1}	\mathbf{s}_{2}	RHS
x	1	$\frac{1}{2}$	$\frac{1}{2}$	0	20
$\mathrm{~s}_{2}$	0	$\frac{3}{2}$	$-\frac{1}{2}$	1	27
	0	$-\frac{1}{2}$	$\frac{3}{2}$	0	60

Pivot element $=\frac{3}{2}$
To make the pivot element 1 , applying $R_{2} \rightarrow \frac{2}{3} R_{2}$, we get

Basic Variable	\mathbf{x}	\mathbf{y}	\mathbf{s}_{1}	$\mathbf{s}_{\mathbf{2}}$	RHS
x	1	$\frac{1}{2}$	$\frac{1}{2}$	0	20
	0	1	$-\frac{1}{3}$	$\frac{2}{3}$	18
	0	$-\frac{1}{2}$	$\frac{3}{2}$	0	60

Applying $R_{1} \rightarrow R_{1}-\frac{1}{2} R_{2}$ and $R_{3} \rightarrow R_{3}+\frac{1}{2} R_{2}$ we get,

Basic Variable	x	y	s_{1}	$\mathrm{~s}_{2}$	RHS
x	1	0	$\frac{2}{3}$	$-\frac{1}{3}$	11
y	0	1	$-\frac{1}{3}$	$\frac{2}{3}$	18
	0	0	$\frac{4}{3}$	$\frac{1}{3}$	69

Since all the entries in the last row is non-negative. So, we get an optimal solution as $x=11, y=18$ and
$\operatorname{Max} .(z)=3 x+2 y=3 \times 11+2 \times 18=33+36=69$
6. Two spare parts X and Y are to be produced. Each one has to go through two processes A and B. Each of X has to spend 3 hours in A and 9 hours in B. Also each of Y has to spend 4 hours in A and 4 hours in B. The time available for A and B are at most 36 hours and 60 hours respectively. If the profit per unit of X and Y are Rs. 50 and Rs. 60 respectively.
a. Formulate the LP Problem
b. Express it into standard form
c. Solve the LP Problem by simplex method and find the maximum profit.

Solution:

Process	Spare parts		Total time available
	X	Y	
A	3	4	36
B	9	4	60
Profit per unit	Rs. 50	Rs. 60	

Let the number of parts of the type X and Y respectively. Then the formulation of the above LP problem is given below.
Max profit $(Z)=50 x+60 y$ subject to
$3 x+4 y \leq 36$
$9 x+4 y \leq 60$
$x, y \geq 0$
Introducing the slack variable S_{1} and S_{2}, the given LPP can be written as,
$z-50 x-60 y$ subject to
$3 x+4 y+s_{1}=36$
$9 x+4 y+s_{2}=60$
$\mathrm{x}, \mathrm{y}, \mathrm{s}_{1}, \mathrm{~s}_{2} \geq 0$
The initial simplex tableau

Basic Variable	x	y	s_{1}	$\mathrm{~s}_{2}$	RHS
s_{1}	3	4	1	0	36
$\mathrm{~s}_{2}$	9	4	0	1	60
	-50	-60	0	0	0

Since, -60 is the most negative entry, so y-column is the pivot column. Again since $\frac{36}{4}=9, \frac{60}{4}=15$ and $9<15$, so r-row is the pivot row, thus getting 4 (interesting of y-column and r-row) is the pivot entry.

Applying $R_{1} \rightarrow \frac{1}{4} R_{1}$, we get

Basic Variable	x	y	s_{1}	s_{2}	RHS
y	$\frac{3}{4}$	1	$\frac{1}{4}$	0	9
$\mathrm{~s}_{2}$	9	4	0	1	60
	-50	-60	0	0	0

Applying $R_{2} \rightarrow R_{2}-4 R_{1}$ and $R_{3} \rightarrow R_{3}+60 R_{1}$, we get

Basic Variable	\mathbf{x}	\mathbf{y}	$\mathbf{s}_{\mathbf{1}}$	$\mathbf{s}_{\mathbf{2}}$	RHS
\mathbf{y}	$\frac{3}{4}$	1	$\frac{1}{4}$	0	9
\mathbf{s}_{2}	6	0	-1	1	24
	-5	0	15	0	540

-5 is the only negative entry, so x-column is the pivot column. Again since, $\frac{9}{3 / 4}=$ 12,
$\frac{24}{6}=4$ and $4<12$, so r-row is the pivot row, thus getting 6 is the pivot entry.
Applying $R_{2} \rightarrow \frac{1}{6} R_{2}$, we get

Basic Variable	x	y	s_{1}	s_{2}	RHS
y	$\frac{3}{4}$	1	$\frac{1}{4}$	0	9
x	1	0	$-\frac{1}{6}$	$\frac{1}{6}$	4
	-5	0	15	0	540

Applying $R_{1} \rightarrow R_{1}-\frac{3}{4} R_{2}$ and $R_{3} \rightarrow R_{3}+5 R_{2}$ we get,

Basic Variable	\mathbf{x}	\mathbf{y}	\mathbf{s}_{1}	\mathbf{s}_{2}	RHS
y	0	1	$\frac{3}{8}$	$-\frac{1}{8}$	6
x	1	0	$-\frac{1}{6}$	$\frac{1}{6}$	4
	0	0	$\frac{85}{6}$	$\frac{5}{6}$	560

Since all the entries in the last row is non-negative. So, we get an optimal solution is obtained.
Maximum value of $Z=560$ when $x=4, y=6$
Checking: $\mathrm{Max} Z=50 \mathrm{x}+60 \mathrm{y}=50 \times 4+60 \times 6=560$

CHAPTER 19

SYSTEM OF LINEAR EQUATION

EXERCISE 19.1

1. Solve the following system of linear equations by Gauss elimination method:
a. $\begin{aligned} 4 x+5 y & =12 \\ 3 x+2 y & =9\end{aligned}$
b. $5 x+2 y=4$
$7 x+3 y=5$
c. $5 x-3 y=8$
$2 x+5 y=59$
d. $2 x-3 y=7$
$3 x+y=5$

Solution:

a. Given equations are
$4 x+5 y=12$
$3 x+2 y=9$

Multiplying by 3 in (i) \& 4 in eq. (ii) and subtracting eq. (ii) from eq. (i)
Forward elimination
$12 x+15 y=36$
$12 x+8 y=36$
$\overline{-\quad-}$
$\therefore \mathrm{y}=0$
Backward substitution
Put the value of y in eq. (i), we get

$$
4 x+5 \times 0=12
$$

or, $4 x=12$

$$
x=3
$$

$\therefore \quad x=3, y=0$
b. Given equation are
$5 x+2 y=4$
$7 x+3 y=5$
Multiplying by 7 in eq. (i) \& 5 in eq. (ii) and subtracting eq. (ii) from eq. (i)
Forward elimination
$35 x+14 y=28$
$35 x+15 y=25$
$-\quad-\quad-$
$-y=3$
$\therefore y=-3$
Backward substitution

$$
5 x+2 y=4
$$

or, $5 x+2 \times(-3)=4$
or, $5 x=4+6$
or, $5 x=10$
$\therefore \quad \mathrm{x}=2$
Hence, the value of $x \& y$ are 2 and -3 respectively.
c. $5 x-3 y=8$
$2 x+5 y=59$
Forward elimination
Multiplying by 2 in eq. (ii) \& 5 in eq. (ii) and subtracting eq. (ii) from eq. (i)
$10 x-6 y=16$
$10 x+25 y=295$

$-\quad-\quad-$
$-31 y=-279$

$\therefore \mathrm{y}=9$
Backward substitution
Put the value of y in eq. (i)

$$
5 x-3 \times 9=8
$$

or, $5 x=8+27$
or, $5 x=35$
$\therefore \quad x=7$
Hence, $x=7 \& y=9$
d. $2 x-3 y=7$
$3 x+y=5$
Forward elimination
Multiplying by 3 in eq. (i) \& 2 in eq. (ii) and subtracting eq. (ii) from eq. (i)
$6 x-9 y=21$
$6 x+2 y=10$
$\frac{-\quad-}{-11 y=11}$
$\therefore \quad y=-1$
Backward substitution,
Put the value of y in eq. (ii)
or, $2 x-3 y=7$
or, $2 x-3 \times(-1)=7$
or, $2 x=7-3$
$\therefore \quad x=2$
Hence, the required value of $x \& y$ are $2 \&-1$ respectively.
2. Solve the following system of linear equations by Gauss elimination method:
a. $5 x-y+4 z=5$
$2 x+3 y+5 z=2$
$5 x-2 y+6 z=-1$
b. $x-y+2 z=7$
$3 x+4 y-5 z=-5$
$2 x-y+3 z=12$
c. $2 x+3 y+3 z=5$

$$
x-2 y+z=-4
$$

$$
3 x-y-2 z=3
$$

d. $x+2 y+3 z=14$
$3 x+4 y+2 z=17$
$2 x+3 y+z=11$

Solution:

a. Here, given equation are
$5 x-y+4 z=5$
$2 x+3 y+5 z=2$
$5 x-2 y+6 z=-1$
Multiplying by 2 in eq. (i) \& 5 in eq. (ii) and subtracting eq. (ii) from eq. (i)
$10 x+15 y+25 z=$
10
$10 x-2 y+8 z=10$

- - - -

$-17 y+17 z=0 \ldots$
(iv)

Again,
Subtracting eq. (iii) from eq. (i)

$$
\begin{aligned}
& 5 x-y+4 z=5 \\
& 5 x-2 y+6 z=- \\
& 1 \\
& -\quad+\quad-\quad+ \\
& \hline y-2 z=6 \ldots(v)
\end{aligned}
$$

Multiplying by 17 in eq. (v) \& subtracting eq. (v) from eq. (iv)
$17 y+17 z=0$
$17 y-34 z=102$
$\frac{-\quad+}{51 z=-102}$
$\therefore z=-2$
The system of linear equations becomes
$5 x-y+y z=5$
$y-2 z=6$
$2 z=-2$
Put the value of z in eq. (v)

$$
y-2 \times(-2)=6
$$

or, $y=6-y$
$\therefore \quad y=2$
Again, put the values of $x \& y$ in eq. (i)

$$
5 x-y+y z=5
$$

or, $5 x-2+4 \times(-2)=5$
or, $5 x=5+7+8$
or, $5 x=15$
$\therefore \quad x=3$
Hence, $x=3, y=2, z=-2$
b. Here, given equations are

$$
\begin{align*}
& x-y+2 z=7 \tag{i}\\
& 3 x+4 y-5 z=-5 \tag{ii}\\
& 2 x-y+3 z=12
\end{align*}
$$

Multiplying by 3 in eq. (i) \& subtracting eq. (ii) from eq. (i)

$$
3 x-3 y+6 z=21
$$

$$
3 x+4 y-5 z=-5
$$

$$
\frac{-\quad++}{-7 y+11 z=26 \ldots}
$$

(iv)

Multiplying by 2 in eq. (i) and subtracting eq. (iii) from eq. (i)
$2 x-2 y+4 z=$
14
$2 x-y+3 z=12$

$-\quad+\quad-\quad-$
$-y+2=2 \ldots(v)$

Multiplying by 7 in eq. (v) and subtracting eq. (v) from eq. (iv)
$-7 y+11 z=26$
$-7 y+7 z=14$
$+\quad-\quad-$
$-y+z=2 \ldots$ (iv)
Multiplying by 7 in eq. (v) and subtracting eq. (v) from eq. (iv)
$-7 y+11 z=26$
$-7 y+7 z=14$
or, $4 z=12$
$\therefore \mathrm{z}=3$
The system of linear equations become
$x-y+2 z=7$
$-y+z=2$
z $=3$
Put the value of z in eq. (v)

$$
-y+3=2
$$

or, $-\mathrm{y}=-3+2$
or, $y=1$
Again, Put the value of $y \& z$ in eq. (i)

$$
x-1+2 \times 3=7
$$

or, $x=7-6+1$
or, $x=2$
Hence, $x=2, y=1, z=3$.
c. We have,
$2 x+3 y+3 z=5$
$x-2 y+z=-4$
$3 x-y-2 z=3$
from (i) and (ii), we get
$7 y+z=13$
from (ii) and (iii) we get
$5 y-5 z=15$
$\therefore \quad y-z=3$
Adding (iv) and (v), we get
$8 y=16$
$\therefore \quad y=2$
from (v), $2-z=3$
$\therefore \quad z=-1$
from (ii), $x-4-1=-4$
$\Rightarrow x=-4+5=1$
Hence, $x=1, y=2, z=-1$
d. Here, given equations are

$$
\begin{align*}
& x+2 y+3 z=14 \tag{i}\\
& 3 x+4 y+2 z=17 \tag{ii}\\
& 2 x+3 y+z=11
\end{align*}
$$

Multiplying by 3 in eq. (i) and subtracting eq. (ii) from eq. (i)
$3 x+6 y+9 z=$
42
$3 x+4 y+2 z=$
17
$\frac{-\quad-\quad-}{2 y+7 z=25 .}$
(iv)

Multiplying by 2 in eq. (i) and subtracting eq. (iii) from (ii)
$2 x+4 y+6 z=$
28
$2 x+3 y+z=11$
\qquad
$y+5 z=17 \ldots$
(v)

Multiplying by 2 in eq. (v) \& subtracting eq. (v) from (iv)
$2 y+7 z=25$
$2 y+10 z=34$
$-\quad-\quad+$
$\therefore \mathrm{z}=3$
The system of linear equations becomes
$x+2 y+3 z=14$
$y+5 z=17$
$z=3$
Put the value of z in eq. (v)
or, $y+5 \times 3=17$
or, $y=17-15=2$
$\therefore \mathrm{y}=2$
Put the value of $x \& y$ in eq. (i)

$$
x+2 y+3 z=14
$$

or, $x+2 \times 2+3 \times 3=14$
or, $x=14-9-4$
or, $x=14-13$
$\therefore \quad \mathrm{x}=1$
Hence, $x=1, y=2 \& z=3$
3. Test the consistency of the following system of equations by Gaussian elimination method.
a. $x+3 y=5$
$3 x+y=4$
b. $3 x-2 y=3$
$3 x-2 y=6$
c. $-2 x+5 y=3$
$6 x-15 y=-9$
d. $x-2 y-5 z=-12$
$2 x-y=7$
$-4 x+5 y+6 z=1$
e. $2 x-y+4 z=4$
f. $x+3 y+4 z=8$
$2 x+y+2 z=5$
$5 x+2 z=7$

Solution:

a. $x+3 y=5$
$3 x+y=4$
Multiplying by 3 in eq. (i) and subtracting eq. (ii) from eq. (i) Forward elimination
$3 x+9 y=15$
$3 x+y=4$
$\frac{-\quad-}{8 y=11}$
$y=\frac{11}{8}$
Backward substitution
Put the value of y in eq. (i)

$$
x+\frac{3 \times 11}{8}=5
$$

or, $x=5-\frac{33}{8}$
or, $x=\frac{7}{8}$
$\therefore \quad x=\frac{7}{8}, y=\frac{11}{8}$
It is consistent and has unique solution.
b. Here,
$3 x-2 y=3$
$3 x-2 y=6$
Subtracting eq. (ii) from eq. (i)
$3 x-2 y=3$
$3 x-2 y=6$

$-\quad+\quad-$
$0=-3$

Hence, it is inconsistent and has no solution.
c. $-2 x+5 y=3$
$6 x-15 y=-9$
Multiplying by 3 in eq. (i) \& adding eq. (i) and eq. (ii)
$-6 x+15 y=9$
$6 x-15 y=-9$
$-+\quad+$
$0=0$
It is consistent having infinitely many solution.
d. Given equations are:

$$
\begin{align*}
& x-2 y-5 z=-12 \tag{i}\\
& 2 x-y=7 \tag{ii}\\
& -4 x+5 y+6 z=1 \tag{iii}\\
& \text { Multiplying by } 4 \text { in e } \\
& 4 x-8 y-20 z=- \\
& 48 \\
& -4 x+5 y+6 z=1 \tag{iv}\\
& -\quad+ \\
& -3 y-14 z=-47
\end{align*}
$$

Multiplying by 4 in eq. (i) and adding eq. (i) \& eq. (iii)
or, $3 y+14 z=47$
Multiplying by 2 in eq. (i) and subtracting eq. (ii) from eq. (i)
$2 x-4 y-10 z=-24$
$2 x-y=7$
$\frac{+\quad-}{-3 y-10 z=-31 \ldots}$
(iv)

Adding eq. (iv) and eq. (v)
$3 y+14 z=47$
$\frac{-3 y-10 z=-31}{4 z=16}$
$\therefore \mathrm{z}=4$
The system of linear equations becomes
$x-2 y-5 z=-12$
$3 y+14 z=47$
z = 4
Put the value of z in eq. (i)

$$
3 y+14 \times 4=47
$$

or, $3 y=47-56$
or, $3 y=-9$
$\therefore \quad y=-3$
e. Here,
$2 x-y+4 z=4$
$x+2 y-3 z=1$
$3 x+3 z=6$

Multiplying by 2 in equation (i) and subtracting equation (ii) from equation (i)
$2 x-y+4 z=4$
$2 x+4 y-6 z=2$
$-\quad-\quad+\quad=2$
Multiplying by 3 in equation (i) and subtracting equation (iii) from equation (ii)
$3 x+6 y-92=3$
$3 x+3 z=6$
$-\frac{-}{6 y-12 z=-3}$
or, $2 y-4 z=-1$
Multiplying by 2 in equation (iv) and adding equation (iv) and equation (v)
$-10 y+20 z=4$
$\frac{10 y-20 z=-5}{0-1}$
Here, $0=-1$
It is inconsistent having no solution.
f. Here, Given equations are
$x+3 y+4 z=8$ \qquad
$2 x+y+2 z=5$
$5 x+2 z=7$
Multiplying by 2 in equation (i) and subtracting equation (ii) from equation (i)
$2 x+6 y+8 z=16$
$2 x+y+22=5$
$\frac{--}{5 y+6 z=11 \ldots}$...... (iv)
Multiplying by 5 in equation (i) and subtracting equation (iii) from equation (i)
$5 x+15 y+20 z=40$
$5 x+0 . y+22=7$
$\frac{-\quad-}{15 y+18 z=33}$.. \qquad
Multiplying by 3 in equation (iv) and subtracting equation (v) from equation (iv)
$15 y+18 z=33$
$15 y+18 z=33$
$\begin{array}{r}-\quad-\quad \\ \hline 0=0\end{array}$
It is consistent having infinitely many solution.

CHAPTER 20

PARALLEL FORCES

EXERCISE 20

1. Find the resultant of two parallel forces 4 N and 6 N at a distance of 5 m , when they are (a) like parallel, (b) unlike parallel

Solution:

a. Let A and B be two parallel forces acting at points. M and N respectively.

The magnitude of the resultant is given by
$R=A+B=4 N+6 N=10 N$
The direction of the resultant is same as that of the two forces.
Let the position of the resultant R be at 0 , at a at a distance \times from M .

We have, $\mathrm{A} \times \mathrm{Mo}=\mathrm{B} \times$ No
or, $4 \times x=b(45-x)$
or, $4 x+6 x=30 \Rightarrow x=3 m$
b. When they are unlike parallel

Let the resultant R of unlike parallel force P and Q then $R=6 N-4 N=2 N$
$\frac{\mathrm{P}}{\mathrm{AC}}=\frac{\mathrm{Q}}{\mathrm{AB}}=\frac{\mathrm{R}}{\mathrm{BC}}$
$\frac{6}{5-x}=\frac{4}{x}=\frac{2}{5}$
$\frac{6}{5-x}=\frac{2}{5}$
$30=10-2 x$

$3 x=-10 m$
Also, $\frac{4}{x}=\frac{2}{5}$
or, $x=10 \mathrm{~m}$
\therefore Resultant $=2 \mathrm{~N}, 10 \mathrm{~m}$ away from 6 N
2. Find two like parallel forces at a distance of 20 cm equivalent to 100 N force, the line of action of one of them being at a distance of 5 cm from the given force.

Solution:

Suppose P and Q be two like parallel forces acting at the point A and B such that $A B=20 \mathrm{~cm}$. Then the line of action of their resultant is the force $P+Q=$ 100 N acting at the point C where $A C=5 \mathrm{~cm}$ and $B C=15 \mathrm{~cm}$. By question, forces are parallel, so we have

$$
\begin{array}{ll}
\frac{P}{B C}=\frac{Q}{A C}=\frac{P+Q}{A B} & \\
\begin{array}{ll}
\text { or, } \frac{P}{15}=\frac{Q}{5}=\frac{100}{20}=5 & \\
\text { or, } \frac{P}{15}=5 & \text { or, } \frac{Q}{5}=5 \\
\text { or, } \mathrm{P}=15 \times 5 & \text { or, } \mathrm{Q}=5 \times 5 \\
& =75 \mathrm{~N}
\end{array} & \text { or, } \mathrm{Q}=25 \mathrm{~N}
\end{array}
$$

Hence, the required forces are 75 N and 25 N
3. Find two unlike parallel forces at a distance of 20 cm equivalent to 100 N force, the line of action of the greater of them being at a distance of 5 cm from the given force.

Solution:

Suppose P and Q be two unlike parallel forces $(P>Q)$ acting at the point A and B such that $A B=20 \mathrm{~cm}$. Since forces are unlike, so that their resultant is the force $P-Q=100 \mathrm{~N}$ acting at the point C, where $A C=5 \mathrm{~cm}$. Since forces are parallel. So, we have,

$$
\begin{aligned}
& \frac{P}{B C}=\frac{Q}{A C}=\frac{P-Q}{B C-A C}=\frac{P-Q}{A B}=\frac{100}{20}=5 \\
& \frac{P}{25}=\frac{Q}{5}=5 \\
& \therefore \quad \frac{P}{25}=5 \\
& \text { or, } \frac{Q}{5}=5 \\
& \therefore P=25 \times 5 \\
& \text { or, } Q=5 \times 5 \\
& =125 \mathrm{~N} \\
& \text { or, } Q=25 \mathrm{~N}
\end{aligned}
$$

Required forces are 125 N and 25 N .
4. The extremities of a straight bamboo pole 3 m long rests on two smooth pegs at A and B in the same horizontal line. A heavy load hangs form a point C on the pole. If $\mathrm{AC}=3 \mathrm{BC}$ and the pressure at B is 140 N more than that at A , find the weight of the load.

Solution:

Let $A B$ be the straight bamboo of $3 m$ long. Let $P N$ and $(P+140) N$ acting at A and B. Since the heavy load hangs at point C such that $A C=3 B C$. So, the line of action of the resultant acting at point C. Since forces are parallel,
$\therefore \frac{P}{B C}=\frac{P+140}{A C} \Rightarrow \frac{P}{B C}=\frac{P+140}{3 B C}$
$\Rightarrow 3 P=P+140$
Hence, $\mathrm{P}=70 \mathrm{~N}$

Hence, the weight of the load $=P V+(P+140) \mathrm{N}$

$$
=70 \mathrm{~N}+(70+140) \mathrm{N}=280 \mathrm{~N}
$$

5. A heavy uniform beam 5 m long is supported in a horizontal position by two props, one is at one end and the other is such that the beam projects 1.5 m beyond it. If the weight of the beam is 70 kg wt , find the pressures at the props.

Solution:

Let $A B$ be the uniform beam $A B=5 \mathrm{~m}$
Let C be the midpoint of $A B$ so that $A C=C B=2.5 \mathrm{~m}$
Let E and D be two props such that $D B=1.75 m, C D=2.5 m-1.75 m=0.75 m$, $E C=1.5 m-0.75 m=0.75 m$
Let R_{1} and R_{2} be the reactions at E and F.
$\therefore \quad \frac{\mathrm{R}_{1}}{\mathrm{CD}}=\frac{\mathrm{R}_{2}}{\mathrm{EC}}=\frac{70}{\mathrm{ED}}$
$\Rightarrow \frac{\mathrm{R}_{1}}{0.75}=\frac{\mathrm{R}_{2}}{0.75}=\frac{70}{1.5}$
$\therefore \quad \mathrm{R}_{1}=\frac{70 \times 0.75}{1.5}=35 \mathrm{~kg}$

$$
\mathrm{R}_{2}=\frac{70 \times 0.75}{1.5}=35 \mathrm{~kg}
$$

6. P and Q are like parallel forces with the resultant R . If P is moved parallel to itself through a distance x, show that R is displaced by a distance $\frac{P x}{R}$.

Solution:

Let R be the resultant of two like parallel forces P and Q acting of A and B respectively. Suppose resultant R acts and P_{1} then
$\frac{\mathrm{P}}{\mathrm{CB}}=\frac{\mathrm{Q}}{\mathrm{AC}}=\frac{\mathrm{R}}{\mathrm{AB}}$
from $\frac{P}{C B}=\frac{R}{A B} \Rightarrow C B=\frac{P \cdot A B}{R}$..
For the second case, let P acts at A^{1} such that $A A^{1}=x$ then the resultant displace from C to C^{1}.
So, $\frac{P}{C^{1} B}=\frac{Q}{A^{1} C^{1}}=\frac{R}{A^{\prime} B}$
from, $\frac{P}{C^{1} B}=\frac{R}{A^{1} B}$
or, $C^{1} B=\frac{P \cdot A^{1} B}{R} \ldots \ldots \ldots$ (ii)
Now, $C^{1}=C B-C^{1} B=\frac{P \cdot A B}{R}-\frac{P \cdot A^{1} B}{R}\left[\because\right.$ from (i) and $\left.\Downarrow_{\text {(ii) }}\right] \quad \underset{R}{\downarrow} \quad \underset{Q}{\downarrow}$

$$
=\frac{P}{R}\left(A B-A^{1} B\right)
$$

or, $C C^{1}=\frac{P X}{R}$ Hence proved.
7. Two like parallel forces of magnitudes P and Q are acting at the end points A and B of a rod $A B$ of length r. If two opposite forces each of magnitude F are added to P and Q , then prove that the line of action of the new resultant will move a distance $\frac{\mathrm{Fx}}{\mathrm{P}+\mathrm{Q}}$.

Solution:

Suppose the two forces P and Q acting at A and B and let their resultant $P+Q$ acting at C_{1}.
$\therefore \frac{P}{B C_{1}}=\frac{Q}{A C_{1}}=\frac{P+Q}{B C_{1}+A C_{1}}$
or, $\frac{P}{B C_{1}}=\frac{P+Q}{A B}$

$\therefore \quad B C_{1}=P \cdot \frac{A B}{P+Q}$
If the force P is moved parallel to itself through a distance x to D then the resultant act at C_{2}, where $A D=x$.
Then, $\frac{P}{{B C_{2}}_{2}}=\frac{Q}{D C_{2}}=\frac{P+Q}{{B C_{2}+D C_{2}}^{P}}$
or, $\frac{P}{\mathrm{BC}_{2}}=\frac{\mathrm{P}+\mathrm{Q}}{\mathrm{BD}}$
$\therefore \quad B C_{2}=\frac{P}{P+Q} . B D$
Now, the required distance which the resultant moves $C_{1} C_{2}=B C_{2}-B C_{1}$
$=\frac{P \cdot B D}{P+Q}-\frac{P \cdot A B}{P+Q}=\frac{P}{P+Q}(B D-A B)=\frac{P}{P+Q} \cdot A D=\frac{P x}{P+Q}$

306 Kriti's Principles of Mathematics-XII

8. Straight uniform rod is 3 m long when a load of 5 N is placed at one end it balances about a point 25 cm from that end. Find the weight of the rod.

Solution:

Let W be the weight of the rod $A B$, acting at centre point C of $A B$. A load $5 N$ is placed at A, it balances 25 cms from that end. i.e. $A D=25 \mathrm{cms} A B=3 \mathrm{~m}=300$ cms.
$\therefore \quad A C=B C=\frac{300}{2}=150 \mathrm{cms}$
$\therefore \quad D C=A C-A D=150 \mathrm{cms}-25 \mathrm{cms}=125 \mathrm{cms}$
Now, using the like parallel forces theorem.
$\frac{5}{\mathrm{DC}}=\frac{\mathrm{W}}{\mathrm{AD}}$
$\therefore W=\frac{5 A D}{C D}=\frac{5 \times 25}{125}=1 \mathrm{~N}$

CHAPTER 21

DYNAMICS

EXERCISE 21.1

1. a. An average sized onion has a mass 50 g . Find the weight of the apple in Newton? ($\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
b. A bicycle of mass 20 kg is accelerated at $2 \mathrm{~m} / \mathrm{sec}^{2}$. Find the force acting on it.
c. Find the acceleration produced when a force of 5 hg wt. acts on a mass of 1 kg.

Solution:

a. Here, mass $(\mathrm{m})=50 \mathrm{~g}=\frac{50}{100} \mathrm{~kg}=$ 0.05 kg
b. Here, mass $(\mathrm{m})=20 \mathrm{~kg}$

Acceleration (a) $=2 \mathrm{~m} / \mathrm{s}^{2}$
Force (f) = ?
$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\therefore \mathrm{f}=\mathrm{ma}=20 \times 2=40 \mathrm{~N}$
Weight $(w)=$?
$\therefore \quad \mathrm{w}=\mathrm{mg}=0.05 \times 9.8=0.49 \mathrm{~N}$ Ans.
c. Here, acceleration (a) = ?

Force $(\mathrm{f})=5 \mathrm{~kg}=50 \mathrm{~N}$
Mass (m) $=1 \mathrm{~kg}$
$\therefore \mathrm{F}=\mathrm{ma}$
or, $a=\frac{f}{m}=\frac{50}{1}$
$\therefore a=50 \mathrm{~m} / \mathrm{s}^{2}$
2. a. A bicycle has mass 50 kg .If its velocity increases from $2 \mathrm{~m} / \mathrm{sec}$ to $5 \mathrm{~m} / \mathrm{sec}$ in 6 seconds, find the force exerted on it.
b. A body of mass 10 kg falling from a certain height is brought to rest after striking the ground with a speed of $5 \mathrm{~m} / \mathrm{sec}$. If the resistance force of the ground is 200 N , find the duration of contact.
c. A car is pushed on a frictional smooth plane with an average force of 50 N for 10 sec . If the car with mass 500 kg is at rest in the beginning, find the velocity acquired by the car.

Solution:

a. Mass of bicycle $(\mathrm{m})=50 \mathrm{~kg}$ Initial velocity $(\mathrm{u})=2 \mathrm{~m} / \mathrm{s}$
Final velocity $(\mathrm{v})=5 \mathrm{~m} / \mathrm{s}$
Time taken $(\mathrm{t})=6 \mathrm{sec}$
Force exerted (f) = ?
$\therefore \quad F=\frac{m(v-u)}{t}=\frac{50(5-2)}{6}=\frac{50 \times 3}{6}=$
25N
$\therefore \mathrm{F}=25 \mathrm{~N}$
b. Here, mass of the body $(\mathrm{m})=10 \mathrm{~kg}$

Initial velocity $(\mathrm{u})=5 \mathrm{~m} / \mathrm{s}$
Final velocity $(\mathrm{v})=0$
Force on the ground (f) $=200 \mathrm{~N}$
Duration of contact $(\mathrm{t})=$?
Now, applying the formula, $f=$

$$
\begin{aligned}
& \frac{m v-m u}{t} \\
\text { or, } t & =\frac{m(v-u)}{f}=\frac{10(0-5)}{200}=-0.25 \\
\therefore \quad t & =0.25 \mathrm{sec}
\end{aligned}
$$

c. Here, Average force $(\mathrm{f})=50 \mathrm{~N}$ Mass of car $(\mathrm{m})=500 \mathrm{~kg}$

Time taken $(\mathrm{t})=10 \mathrm{sec} \quad$ Initial velocity $(\mathrm{u})=0$

Final velocity $(\mathrm{v})=$?
Now, we have, $f=\frac{m(v-u)}{t}$
or, $v=\frac{\mathrm{ft}}{\mathrm{m}}+\mathrm{u}$
or, $v=\frac{50 \times 10}{500}+0$
$\therefore \quad v=1 \mathrm{~m} / \mathrm{s}$
3. a. A horse directs a horizontal Jet of water, moving with a velocity of 30 $\mathrm{m} / \mathrm{sec}$ on a vertical wall. If the mass of water per second striking the wall is $3 \mathrm{~kg} / \mathrm{sec}$, find the force on the wall.
b. Sand allowed to fall vertically at a steady rate hits a horizontal floor with a speed $0.04 \mathrm{~ms}^{-1}$. If the force exerted on the floor is 0.004 N , find the mass of sand falling per second.
c. Rain drops falling vertically on ground at the rate of $0.3 \mathrm{kgs}^{-1}$ come to rest after hitting the ground. If the resistance force of the ground is 3 N , find the velocity of rain drops just before hitting the ground.

Solution:

a. Mass of water per second $\left(\frac{\mathrm{m}}{\mathrm{t}}\right)=$ $3 \mathrm{~kg} / \mathrm{sec}$.
Initial velocity $(\mathrm{u})=30 \mathrm{~m} / \mathrm{s}$
Final velocity $(\mathrm{v})=0$
Force on the wall (f) = ?
Now, apply, $f=\frac{m v-m u}{t}$
or, $f=\frac{m(v-u)}{t}=\frac{m}{t}(v-u)=3(0-30)=-$ 90
$\therefore \mathrm{f}=90 \mathrm{~N}$
b. Here, initial velocity $(u)=0$

Fin al velocity $(\mathrm{v})=0.04 \mathrm{~m} / \mathrm{s}$
Force exerted on the floor (f) $=$ 0.004 N

Mass of sand falling per second (m / t) $=$?
Now, applying $f=\frac{m v-m u}{t}=\frac{m}{t}(v-$ u)
or, $\frac{m}{t}=\frac{f}{v-u}=\frac{0.004}{(0.04-0)}=0.1$
$\therefore \frac{\mathrm{m}}{\mathrm{t}}=0.1 \mathrm{~kg} / \mathrm{s}$
\therefore Mass of sand falling per second $=$ $0.1 \mathrm{~kg} / \mathrm{sec}$
c. Quantity of rain falling per second $\left(\frac{\mathrm{m}}{\mathrm{t}}\right)=0.3 \mathrm{~kg} / \mathrm{s}$

Force of the ground (f) $=3 \mathrm{~N}$
Velocity before hitting the ground $(\mathrm{u})=$?
Velocity after hitting the ground $(\mathrm{v})=0$
We know, $f=\frac{m v-m u}{t}=\frac{m}{t}(v-u)$
or, $3=0.3(0-u)$
or, $u=-10 \mathrm{~m} / \mathrm{s}$
$\therefore u=10 \mathrm{~m} / \mathrm{s}$
4. a. A force 1 kg wt. acts on a body continuously for seconds and causes it to describe one metre in that time, find the mass of the body.
b. A body of, mass 25 kg is acted upon by a force of 200 N . How long will it take to move the body from rest through 64 m ?
c. A force of 520 N acting on a body for 30 secs increases its velocity from 290
$\mathrm{m} / \mathrm{sec}$ to $350 \mathrm{~m} / \mathrm{sec}$. Find the mass of the body.
d. A bullet of mass 20 g fired into a wall with a velocity of $30 \mathrm{~m} / \mathrm{sec}$ loses its velocity in penetrating into a wall through 3 cms . Find the average force exerted by the wall.
e. How large a force required to bring a motorbike of mass 500 kg moving with a velocity of $50 \mathrm{~ms}^{-1}$ to rest at
i. a distance of 50 m
ii. in 10 secs
f. A constant force of 20 N acting on an object reduces if velocity from $30 \mathrm{~ms}^{-1}$ to $10 \mathrm{~ms}^{-1}$ in 3 secs. Find the mass of the object.
g. A car of mass 1000 kg travelling at $36 \mathrm{~km} / \mathrm{hr}$ is brought to rest over a distance of 20 m . Find the average braking force.
h. Find the velocity of a 5 kg shot that will just penetrate through a wall 20 cms thick the resistance being 40 tons wt.

Solution:

a. Suppose m be the mass of an object and a be the acceleration. So that
$\mathrm{f}=\mathrm{ma} \quad[\because \mathrm{f}=$
$1 \times 9.8=9.8 \mathrm{~N}]$
or, $9.8=\mathrm{ma}$
or, $a=\frac{9.8}{m}$
Now, $s=\frac{1}{2} a t^{2}$
or, $I=\frac{1}{2} \times \frac{9.8}{m} \times 10^{2}$
or, $I=\frac{9.8 \times 50}{m}$
or, $m=490 \mathrm{~kg}$
b. Mass of body $(\mathrm{m})=25 \mathrm{~kg}$

Force (f) = 200N
Time taken (t) = ?
Initial velocity $(\mathrm{u})=0$
Distance covered (s) = 64m
we have, $\mathrm{f}=\mathrm{ma}$
or, $a=\frac{f}{m}=\frac{200}{25}=8$
$\therefore a=8 \mathrm{~m} / \mathrm{s}^{2}$
Now, $s=u t+\frac{1}{2} a t^{2}$
or, $64=0+\frac{1}{2} \times 8 \times t^{2}$
or, $4 \mathrm{t}^{2}=64$
or, $\mathrm{t}^{2}=16$
$\therefore \mathrm{t}=4 \mathrm{sec}$
c. Here, force $(\mathrm{f})=520 \mathrm{~N}$

Time (t) $=30 \mathrm{sec}$
Initial velocity $(\mathrm{u})=290 \mathrm{~m} / \mathrm{s}$
Final velocity $(\mathrm{v})=350 \mathrm{~m} / \mathrm{s}$
Mass of body $(\mathrm{m})=$?
We have, $f=\frac{m(v-u)}{t}$
or, $m=\frac{\mathrm{ft}}{\mathrm{v-u}}=\frac{520 \times 30}{350-290}=\frac{520 \times 30}{60}=$
260
$\therefore \mathrm{m}=260 \mathrm{~kg}$
d. Mass of bullet $(\mathrm{m})=20 \mathrm{gms}=0.02 \mathrm{~kg}$

Initial velocity $(u)=30 \mathrm{~m} / \mathrm{s}$
Distance (s) $=3 \mathrm{cms}=0.03 \mathrm{~m}$
Average force (f) = ?
Final velocity $(\mathrm{v})=0$
\therefore Applying, $\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as}$
or, $0=30^{2}+2 a \times 0.03$
or, $-900=0.06$ a
or, $a=-\frac{900}{0.06}=-15000$
$\therefore a=-15,000 \mathrm{~m} / \mathrm{s}^{2}$

Now, force, $\mathrm{f}=\mathrm{ma}=0.02 \times(-15,000)=-$ 300
$\therefore \mathrm{f}=300 \mathrm{~N}$
e. Mass of motor bike $(\mathrm{m})=500 \mathrm{~kg}$

Initial velocity $(\mathrm{u})=50 \mathrm{~m} / \mathrm{s}$
Final velocity $(\mathrm{v})=0$
f. Force (f) $=20 \mathrm{~N}$

Initial velocity $(u)=30 \mathrm{~m} / \mathrm{s}$
Final velocity $(\mathrm{v})=10 \mathrm{~m} / \mathrm{s}$

310 Kriti's Principles of Mathematics-XII

Force (f) = ?
(i) A distance of 50 m

Since, $s=50 \mathrm{~m}$
Now, using, $v^{2}=u^{2}+2 a s$
or, $0^{2}=50^{2}+2 a \times 50$
or, $2500=100 \mathrm{a}$
or, $\mathrm{a}=-25$ where a is retardation
$\therefore a=25 \mathrm{~m} / \mathrm{s}^{2}$
$\therefore \mathrm{f}=$ mass \times retardation $=500 \times 25=$
12500 N
(ii) In 10 seconds

Now, $v=u+a t$
or, $0=50+a \times 10$
or, $10 a=-50$
$\mathrm{a}=-5 \mathrm{~m} / \mathrm{s}^{2}$, where a is retardation
$\therefore \mathrm{f}=$ mass \times retardation $=500$ $\times 5=2500 \mathrm{~N}$
g. Final velocity $(\mathrm{v})=0$

Distance (s) $=20 \mathrm{~m}$
Average force (f) = ?
We have,
$\therefore \quad \mathrm{v}^{2}=\mathrm{u}^{2}+2$ as
or, $0^{2}=10^{2}+2 . a \times 20$
or, $-100=40 \mathrm{a}$
or, $\mathrm{a}=-\frac{100}{40}=-2.5 \mathrm{~m} / \mathrm{s}^{2}$ where a is retardation.
Now, $f=$ mass \times retardation $=1000 \times 2.5=2,500 \mathrm{~N}$
h. Mass of shot $(\mathrm{m})=5 \mathrm{~kg}$

Penetrating space $(S)=20 \mathrm{cms}=0.2 \mathrm{~m}$
Resistance $(\mathrm{f})=40$ tones $=40 \times 1000 \times 9.8 \mathrm{~N}$
If a is the retardation produced by the wall then, $f=-m a$
or, $a=-\frac{f}{m}=-\frac{40 \times 1000 \times 9.8}{5}=-78400 \mathrm{~m} / \mathrm{s}^{2}$
Let u is initial velocity and v be final velocity then $u=2, v=0$
Using the formula,

$$
v^{2}=u^{2}+2 a s
$$

or, $0^{2}=u^{2}+2(-78400) \times 0.2$
or, $u^{2}=31,360$
or, $u=\sqrt{31360}$
$\therefore u=177.08 \mathrm{~m} / \mathrm{s}$
5. Find the velocity of 4 kg shot that will just penetrate through a wall 16 cms thick, the resistance being 4 metric tons weight.

Solution:

Here, mass of the shot $(\mathrm{m})=4 \mathrm{~kg}$
Penetrated space (S) $=16 \mathrm{cms}=0.16 \mathrm{~m}$
Resistance (F) $=4$ metric tons

$$
=4 \times 1,000 \times 9.8=392000 \mathrm{~N}
$$

If a is retardation produced by the wall then, $F=-m a$
or, $a=-\frac{F}{m}=-\frac{39200}{4}=-9800 \mathrm{~m} / \mathrm{s}^{2}$
Let u is the initial velocity and v is final velocity then, $u=2, v=0$
Using the formula,
$v^{2}=u^{2}+2 a s$
or, $0^{2}=u^{2}+2(-9800) \times 0.16$
or, $u^{2}=3136$
or, $u=\sqrt{3136} \Rightarrow u=56 \mathrm{~m} / \mathrm{s}$
6. A resultant force of 25 N acts on a mass of 0.5 kg starting from rest. Find.
a. the acceleration
b. the final velocity after 20 secs
c. the distance moved $\left(g=10 \mathrm{~m} / \mathrm{sec}^{2}\right)$

Solution:

Here, force acting (f) $=25 \mathrm{~N}$
Mass of body $(\mathrm{m})=0.50 \mathrm{~kg}$
Initial velocity $(\mathrm{u})=0$
a. The acceleration in ms^{-2}

Now, $f=$ ma
or, $a=\frac{F}{m}=\frac{25}{0.50}=50 \mathrm{~m} / \mathrm{s}^{2}$
b. The final velocity after 20 sec .
\Rightarrow Let v be the velocity after 20 sec .
Then, using $v=u+a t$
or, $v=0+50 \times 20$
$\therefore \quad v=1,000 \mathrm{~m} / \mathrm{s}$
Distance of penetration of the target
If a is the retardation of the system, then $F=m a$
$\Rightarrow \mathrm{a}=\frac{\mathrm{F}}{\mathrm{m}}=\frac{72}{0.006}=12,000 \mathrm{~m} / \mathrm{s}^{2}$
If S is the required distance of penetration of target then, $s=\frac{1}{2}$ at $^{2}=\frac{1}{2} \times 12,000 \times$ $(0.01)^{2}$
$\therefore \quad S=0.6 \mathrm{~m}$
c. The distance moved in 20 sec .

If S is required distance moved in 20 sec.
Then, $S=u t+\frac{1}{2} a t^{2}$
or, $S=0+\frac{1}{2} \times 50 \times(20)^{2}$
or, $S=10,000 \mathrm{~m} \therefore S=10 \mathrm{~km}$
7. a. A body of mass 20 kg falls 10 m form rest and is then brought to rest penetrating 0.5 m into sand. Find the resistance of the sand on it in kg wt .
b. A mass of 4 kg falls 200 cms from rest and is then brought to rest by penetrating 20 cms into some sand. Find the average thrust of the sand on it.

Solution:

a. Mass of body $(\mathrm{m})=20 \mathrm{~kg}$

Distance covered (s) $=10 \mathrm{~m}$
Initial velocity $(\mathrm{u})=0$
$\therefore v^{2}=u^{2}+2 g h \Rightarrow v^{2}=20 g$
The velocity given by (i) is reduced to zero when the body goes to 0.5 m into sand. If a is the retardation of the system then,
$(0)^{2}=v^{2}-2 \times a \times 0.5 \Rightarrow a=v^{2} \Rightarrow a=20 \mathrm{~g} \mathrm{~m} / \mathrm{s}^{2}$
Let T be the average thrust of the sand on the body. Now, when the body is penetrating into the sand, then the force acting on the body are
a. A force TN of the sand acting upward
b. The weight 20 gN of the body acting downward.

Resultant upward force $=(\mathrm{T}-20 \mathrm{~g}) \mathrm{N}$
Then applying Newton's second law of motion, we have,
or, $\mathrm{T}-\mathrm{mg}=\mathrm{ma}$
or, $T-20 \mathrm{~g}=20 \times \mathrm{ln}$
or, $T=20 \mathrm{~g}+200 \mathrm{~g}$
$\therefore \mathrm{T}=220 \mathrm{kgwt}$
b. Suppose V is the velocity of the body when it falls 200 cms from rest under gravity.
Then $u=0, v=v, h=2 m$
or, $v^{2}=u^{2}+2 g h$
$\therefore \mathrm{v}^{2}=0+2 \mathrm{~g} \times 2 \Rightarrow \mathrm{v}^{2}=4 \mathrm{~g}$
The velocity given by (i) is reduced to zero when the body goes to $20 \mathrm{cms}=$ 0.2 m into sand. If a is the retardation of the system, then
or, $\mathrm{O}^{2}=\mathrm{v}^{2}-2 \times a \times 0.2$
or, $a=\frac{v^{2}}{0.4}=\frac{4 \mathrm{~g}}{0.4}=10 \mathrm{~g} \mathrm{~m} / \mathrm{s}^{2}$
Let T be the average thrust of the sand on the body.
Now when the body is penetrating into the sand, then the force acting on the body are
a. A force TN of the sand acting upward
b. The weight 4 gN of the body acting downward
\therefore Resultant upward thrust $=(\mathrm{T}-4 \mathrm{~g}) \mathrm{N}$
Then apply Newton's second law of motion,
$\mathrm{T}-\mathrm{mg}=\mathrm{ma}$
or, $T=4 \mathrm{~g}=4 \times 10 \mathrm{~g}$
or, $T=40 \mathrm{~g} \Rightarrow T=40 \mathrm{~kg} \mathrm{wt}$
8. A bullet of mass 0.006 kg travelling at $120 \mathrm{~m} / \mathrm{sec}$ penetrates deeply into a fixed target \& is brought to rest in 0.01 secs. Calculate.
The average retarding force exerted on the bullet. ($\mathrm{g}=10 \mathrm{~ms}^{-2}$)

Solution:

Mass of the bullet $(\mathrm{m})=0.006 \mathrm{~kg}$
Time taken $(\mathrm{t})=0.01 \mathrm{sec}$.
If F be the average retarding force on bullet then,
$F=\frac{\text { Change in momentum }}{\text { Time taken }}=\frac{\mathrm{m}(\mathrm{v}-\mathrm{u})}{\mathrm{t}}=\frac{0.006 \times(120-0)}{0.01}=72 \mathrm{~N}$
9. a. A bullet of mass 0.02 kg ejected out of a rifle of mass 10 kg with a speed of $1000 \mathrm{~m} / \mathrm{sec}$. What will be the speed of the recoil of rifle?
b. A gun weighing 10 kg fires a bullet of 10 g with a velocity of $330 \mathrm{~ms}^{-1}$. With what velocity does the gun recoil? What is the resultant momentum of the gun and the bullet before firing?
c. A shot of mass 700 kg is fired with a velocity of $600 \mathrm{~m} / \mathrm{sec}$ from a gun of mass 40 metric tons. If the recoil be resisted by a constant force equal to the
weight of 200 metric tons, through how many metres will the gun recoil?
d. A shot whose mass is 10 kg is discharged by a 5 metric ton gun with a velocity of $245 \mathrm{~m} / \mathrm{sec}$. Find the constant force which would be required to stop the recoil of the gun in $1 \frac{1}{4}$ seconds.
e. A shot of 400 kg is discharged by a gun of 80 metric tons with a velocity of $400 \mathrm{~m} / \mathrm{sec}$. Find the constant force which would be required to stop the recoil of the gun in 2 metres.
f. A shot where mass is 40 kg is discharged from a $7,000 \mathrm{~kg}$ gun with velocity of $140 \mathrm{~ms}^{-1}$. Find the constant force which acts on the gun would stop it after a recoil of 6.4 m .
g. A bullet of mass 2 kg is fired from a gun of mass 100 kg with a velocity $250 \mathrm{~m} / \mathrm{sec}$. Find the recoil velocity of the gun.

Solution:

a. Mass of bullet $(M)=0.02 \mathrm{~kg}$

Mass of rifle (m) $=10 \mathrm{~kg}$
Muzzle velocity of bullet (v) $=1,000 \mathrm{~m} / \mathrm{s}$
Recoil velocity of rifle (v) = ?
We know,
Mass of the bullet \times Muzzle velocity $=$ Mass of rifle \times Recoil velocity
or, $0.02 \times 1,000=10 \times v$
or, $v=\frac{0.2 \times 1,000}{10}=20 \mathrm{~m} / \mathrm{s}$
b. Here, momentum of the bullet $=m v=330 \times 0.1$

Momentum of the gun $=M v=10 \times v$
\therefore Momentum of bullet $=$ Momentum of gun
or, $330 \times 0.1=10 \times v$
or, $v=\frac{330 \times 0.1}{10}=3.3 \mathrm{~m} / \mathrm{s}$
Since initial velocity of gun and bullet $=0 \mathrm{~m} / \mathrm{s}$
Total momentum before firing $=\mathrm{mu}+\mathrm{Mu}=0.1 \times 0+10 \times 0=0$
c. Here, $\mathrm{m}=$ Mass of shot $=700 \mathrm{~kg}$
$\mathrm{v}=$ Velocity of shot $=600 \mathrm{~m} / \mathrm{s}$
$M=$ Mass of the gun $=40$ metric tons $=(40 \times 1000) \mathrm{kg}$
$\mathrm{V}=$ Velocity of the gun = ?
Momentum of the shut $=\mathrm{mv}=700 \times 600$
Momentum of the gun $=\mathrm{Mv}=(40 \times 1000)$ v
By the principal of conservation of linear momentum.
Momentum of shot $=$ momentum of gun (in magnitude)
or, $700 \times 600=(40 \times 1000) v$
or, $v=\frac{700 \times 600}{40 \times 1000}=10.5 \mathrm{~m} / \mathrm{s}$
\therefore Velocity of gun $=109.5 \mathrm{~m} / \mathrm{s}$
d. Let v be the recoil velocity of the gun

Then moment of the shut $=10 \times 245$
Momentum of the gun $=5000 \times v$
But we know momentum of the shot $=$ Momentum of the gun
or, $10 \times 245=5000 \times v$
or, $v=0.49 \mathrm{~m} / \mathrm{s}$

314 Kriti's Principles of Mathematics-XII

The gun recoils with velocity $0.49 \mathrm{~m} / \mathrm{s}$. Apply a constant force to the gun so that it will stop after recoiling at time $1 \frac{1}{4}=\frac{5}{4}$ seconds.
Let a be the retardation then $0=v-a t \Rightarrow a=\frac{v}{t}$
If f is required constant force to be applied then,
$\mathrm{f}=\mathrm{ma}=\mathrm{m} \times \frac{\mathrm{v}}{\mathrm{t}}=\frac{5000 \times 0.49}{5 / 4}=\frac{5000 \times 0.49 \times 4}{5}=1960 \mathrm{~N}$
e. Let v be the velocity of the gun then momentum of the shot $=400 \times 400$

Momentum of the gun $=80,000 \times v$
\therefore Momentum of gun $=$ Momentum of shot
or, $80,000 \times v=400 \times 400$
or, $v=2 \mathrm{~m} / \mathrm{s}$
The gun recoils with velocity $2 \mathrm{~m} / \mathrm{s}$. Applying a constant force to the gun so that it will stop after recoiling at distance 2 meters.
\Rightarrow Let a be the retardation, then $0^{2}=v^{2}-2 a s \Rightarrow a=\frac{v^{2}}{25}$
If f is the required constant force to be applied then,
$f=m a=m \times \frac{v^{2}}{25}=80,000 \times \frac{2^{2}}{2 \times 2}=80,000 \mathrm{~N}$
f. Let v be the recoil velocity at the gun then, momentum of the shot $=40 \times 140$

Momentum of the gun $=7,000 \times v$
But, momentum of gun $=$ Momentum of shot $7,000 \times v=40 \times 140$
or, $\mathrm{v}=0.8 \mathrm{~m} / \mathrm{s}$
The gun recoil with velocity $0.8 \mathrm{~m} / \mathrm{s}$. Applying a constant force to the gun so that it wll stop after recoiling at distance 6.4 m .
Let a be the retardation, then, $0^{2}=v^{2}-2 a s \Rightarrow a=\frac{v^{2}}{25}$
If f be the required constant force to be applied then,
$f=m a=7,000 \times \frac{(0.8)^{2}}{2 \times 6.4}=350 \mathrm{~N}$
g. Let v be the recoil velocity at gun then momentum of bullet $=2 \times 250$

Momentum of gun $=100 \times v$
But, momentum of gun $=$ Momentum of bullet
$100 \times v=2 \times 250$
$\mathrm{v}=5 \mathrm{~m} / \mathrm{s}$

EXERCISE 21.2

1. A ball is thrown with a velocity of $98 \mathrm{~m} / \mathrm{sec}$ at an elevation of 30°, find
a. the horizontal range,
b. time of light
c. magnitude and direction of the velocity after 2 seconds.
d. position after 2 seconds.

Solution:

Initial velocity $(\mathrm{u})=98 \mathrm{~m} / \mathrm{s}$
Angle of elevation $(\theta)=30^{\circ}$
a. Horizontal range $(R)=\frac{u^{2} \sin ^{2} \theta}{g}$

$=\frac{(98)^{2} \cdot \sin ^{2} \cdot 30}{10}=\frac{9604 \times 50.866}{10}=831.7 \mathrm{~m}$
b. Time of flight $(\mathrm{T})=\frac{2 \mathrm{u} \sin \theta}{\mathrm{g}}=\frac{2 \times 98 \times \sin 30^{\circ}}{10}=9.8 \mathrm{sec}$
c. Let v be the striking velocity of the ball making an angle θ with horizontal.
$\therefore v_{x}=$ horizontal component $=v \cos \theta=98 \cdot \cos 30^{\circ}=\frac{98 \sqrt{3}}{2}=49 \sqrt{3} \mathrm{~m}$
$v_{y}=$ vertical component $=u \sin \alpha-g t=98 \sin 30^{\circ}-10 \times 2=\frac{98}{2}-20=49-20=$ 29m
$\therefore \quad$ Now, $\mathrm{v}^{2}=\mathrm{v}_{\mathrm{x}}{ }^{2}+\mathrm{v}_{\mathrm{y}}{ }^{2}=(49 \sqrt{3})^{2}-(29)^{2}=7202.58-841=6361.58$
$\therefore \mathrm{v}=79.76 \mathrm{~m} / \mathrm{s}$
Direction, $\operatorname{Tan} \theta=\frac{v_{y}}{v_{x}}=\frac{29}{49 \sqrt{3}}=0.342$
$\theta=\operatorname{Tan}^{-1}(0.342)$
$\theta=20^{\circ}$
d. If (x, y) be position of projectile after time $t=2 \mathrm{sec}$
$\therefore \quad x=u \cos \alpha \mathrm{t}=98 \times \cos 30^{\circ} \times 2=98 \times \frac{\sqrt{3}}{2} \times 2=98 \sqrt{3} \mathrm{~m}$

$$
\begin{aligned}
y & =u \sin \alpha t-\frac{1}{2} g t^{2}=98 \times \sin 30^{\circ} \times 2-\frac{1}{2} \times 10 \times 2^{2} \\
& =98 \times \frac{1}{2} \times 2-\frac{40}{2}=98-20=78 \mathrm{~m}
\end{aligned}
$$

\therefore Position $(\mathrm{x}, \mathrm{y})=(98 \sqrt{3}, 78)$
2. a. Find the velocity and the direction of projection of a shot which passes in a horizontal direction just over the top of a wall which is 250 m off and 125 m high ($\mathrm{g}=9.8 \mathrm{~ms}^{-2}$]
b. A shot is seen to pass horizontally just over a vertical wall 64 m high and 96 m off. Find the magnitude and direction of the velocity of the shot with which it was fired.

Solution:

a. Let u be the velocity of the projection of a shot making an angle α with the horizon. Since the shot just passes the top of the building, it moves horizontally.
\therefore Max. height $(H)=125 \mathrm{~m}$
Horizontal range $(R)=2 \times 250 \mathrm{~m}=500 \mathrm{~m}$
$\therefore H=\frac{u^{2} \sin ^{2} \alpha}{2 g} \Rightarrow 125=\frac{u^{2} \sin ^{2} \alpha}{2 g}$
and, $R=\frac{u^{2} \sin ^{2} \alpha}{g} \Rightarrow 500=\frac{u^{2} \sin ^{2} \alpha}{g}$
Dividing (i) by (ii)
$\frac{1}{4}=\frac{\sin ^{2} \alpha}{2 \sin \alpha \cdot \cos \alpha} \Rightarrow \operatorname{Tan} \alpha=1=\operatorname{Tan} 45^{\circ} \Rightarrow \alpha=45^{\circ}$
Velocity of projection:

Substituting the value of α in (i) $\Rightarrow 125=\frac{u^{2}}{2 g} \times\left(\frac{1}{\sqrt{2}}\right)^{2} \Rightarrow u^{2}=500 \times 9.8=u=$ $70 \mathrm{~m} / \mathrm{s}$
b. The velocity of a particle when at its greatest height is $\sqrt{\frac{2}{5}}$ of its velocity when at half its greatest height. Show that the angle of projection is 60°.

316 Kriti's Principles of Mathematics-XII

Let u be the velocity and α, angle of projection off a particle. Let H be the greatest height. If v be the velocity at $\frac{H}{2}$, then the velocity at H is $\sqrt{\frac{2}{5}} v$.
$\therefore \sqrt{\frac{2}{5}} v=u \cos \alpha$
or, $v^{2}=\frac{5}{2} u^{2} \cos ^{2} \alpha$
Also, $\mathrm{H}=\frac{\mathrm{u}^{2} \sin ^{2} \alpha}{2 g}$

And, $v^{2}=u^{2}-2 g \frac{H}{2}$
or, $\frac{5}{2} u^{2} \cos ^{2} \alpha=u^{2}-g \frac{u^{2} \sin ^{2} \alpha}{2 g}$ (From (i) and (ii)
or, $\frac{5}{2} \cos ^{2} \alpha=1-\frac{\sin ^{2} \alpha}{2}$
or, $5 \cos ^{2} \alpha=2-\sin ^{2} \alpha$
or, $5-5 \sin ^{2} \alpha=2-\sin ^{2} \alpha$
or, $-4 \sin ^{2} \alpha=-3$
or, $\sin ^{2} \alpha=\frac{3}{4}$
or, $\sin \alpha=\frac{\sqrt{3}}{2}$
$\therefore \alpha=60^{\circ}$
3. A projectile thrown from a point in a horizontal plane come back to the plane in 4 secs at a distance of 58.8 m from the point of projection, find the velocity of the projectile.

Solution:

Here, time of projection $(\mathrm{t})=4 \mathrm{sec}$
Horizontal range (R) $=58.8 \mathrm{~m}$
Velocity of projection (u) = ?
Let α be the angle of projection, then We know,
$\mathrm{t}=\frac{2 \mathrm{usin} \alpha}{\mathrm{g}}$
and $R=\frac{u^{2} \sin ^{2} \alpha}{g}$
or, $4=\frac{2 u \sin \alpha}{10}$
or, $u \sin \alpha=20$

$$
\begin{equation*}
60 R=\frac{v^{2} 2 \sin \alpha \cos \alpha}{g} \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
u^{2} \sin \alpha \cdot \cos \alpha=300 \tag{i}
\end{equation*}
$$

from (i) and (ii)

$\left(\frac{20}{\sin \alpha}\right)^{2} \sin \alpha \cdot \cos \alpha=300 \Rightarrow \frac{\cos \alpha}{\sin \alpha}=\frac{3}{4}$
or, $\tan \alpha=\frac{4}{3}$,

$$
\therefore \sin \alpha=\frac{4}{5}
$$

Substituting the value of $\sin \alpha$ in (i)
$u \sin \alpha=20$
$u \cdot \frac{4}{5}=20 \Rightarrow u=25 \mathrm{~m} / \mathrm{s}$
4. Find the angle of projection when the range on a horizontal plane is 4 times the greatest height attained.

Solution:

Angle of projection $(\alpha)=$?
Given, Horizontal range $=4$ maximum height
or, $\frac{u^{2} \sin ^{2} \alpha}{\mathrm{~g}}=4 . \frac{\mathrm{u}^{2} \sin ^{2} \alpha}{2 \mathrm{~g}}$
or, $2 \sin \alpha \cdot \cos \alpha=\frac{4 \sin ^{2} \alpha}{2}$
or, $1=\frac{\sin \alpha}{\cos \alpha} \Rightarrow \operatorname{Tan} \alpha=\operatorname{Tan} 45^{\circ}$
$\therefore \alpha=45^{\circ}$
5. The horizontal range of a projectile is $4 \sqrt{3}$ times its maximum height. Find the angle of projection.

Solution:

Angle of projection $(\alpha)=$?
Given, Horizontal range $=4 \sqrt{3}$ max. height
$\frac{u^{2} \sin ^{2} \alpha}{g}=4 \sqrt{3} \frac{u^{2} \alpha \sin ^{2} \alpha}{2 g}$
or, $2 \sin \alpha \cdot \cos \alpha=2 \sqrt{3} \sin ^{2} \alpha$
or, $\tan \alpha=\frac{1}{\sqrt{3}}=\tan 30^{\circ}$
$\therefore \alpha=30^{\circ}$
6. From the top of a tower 144 m high, a particle is projected horizontally with a velocity of $60 \mathrm{~m} / \mathrm{sec}$. Find its velocity when it reaches the ground.

Solution:

Here, for horizontal projectile, just before hitting the ground,
$h \max =144 \mathrm{~m}$
$u=60 \mathrm{~m} / \mathrm{s}, \mathrm{v}=?, \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}$
Let $\mathrm{T}=$ time of flight
$v=$ Velocity with which it hits the ground
$\alpha=$ angle made by \vec{v} with positive x-axis
Now,
$\mathrm{u}_{\mathrm{x}}=\mathrm{u}=60 \mathrm{~m} / \mathrm{s}, \mathrm{u}_{\mathrm{y}}=0$
$v_{x}=u x=60 \mathrm{~m} / \mathrm{s}, v_{y}=u y+g T=0+g T$
We have, $T=\sqrt{\frac{2 \mathrm{H}}{g}}=\sqrt{\frac{2 \times 144}{10}}$

$\mathrm{T}=5.37 \mathrm{sec}$
Again, we have, $v=\sqrt{v_{x}{ }^{2}+v_{y}{ }^{2}}=\sqrt{u^{2}+(g T)^{2}}$

$$
=\sqrt{(60)^{2}+(10 \times 5.37)^{2}}=\sqrt{3600+53.7}=60.45 \mathrm{~m} / \mathrm{s}
$$

7. A stone is projected from the top of a tower 72.5 m high at an angle of 45° which strikes the ground at a distance of 50 m from the foot of the tower. Find the velocity of projection.

Solution:

For horizontal projectile, just before hitting the ground $\mathrm{hmax}=72.5 \mathrm{~m}, \mathrm{R}=50 \mathrm{~m}$, $v=?, g=10 \mathrm{~m} / \mathrm{s}^{2}, \alpha=45^{\circ}$.
Let u be the velocity with which body be projected t be the we taken by the body to reach the ground. Now, taking upward direction as positive.

318 Kriti's Principles of Mathematics-XII

We have,
$-h=u \sin \alpha . t-\frac{1}{2} \times 10 \times t^{2}$
or, $-72.5=\frac{\mathrm{ut}}{2}-5 \mathrm{t}^{2}$
The particle hits at a distance of 50 m from the base of the tower, so that
$\mathrm{s}=\mathrm{u} \cos \alpha . \mathrm{t} \Rightarrow \frac{\mathrm{ut}}{\sqrt{2}}=50$ \qquad
from (i) and (ii)
$-72.5=\frac{50 \sqrt{2}}{2}=5 t^{2}$
$-72.5=35.46-5 t^{2}$
$5 t^{2}=107.96$
$\mathrm{t}^{2}=21.59$
$t=4.65$
Again, from (ii)
$\frac{u \times 4.65}{\sqrt{2}}=50$
$u=\frac{50 \sqrt{2}}{4.65}=15.21 \mathrm{~m} / \mathrm{s}$
Hence, required projected velocity $=15.21 \mathrm{~m} / \mathrm{s}$
8. A ball is projected from a point with a velocity $64 \mathrm{~m} / \mathrm{sec}$ from the top of a tower 128 m high in direction making an angle 30° with the horizon. Find when and at what distance from the foot of the tower it will strike the ground.
Here, initial velocity (u) $=64 \mathrm{~m} / \mathrm{s}$
Angle of projection $(\theta)=30^{\circ}$
Height fallen $(H)=128 \mathrm{~m}$
Time of flight $(\mathrm{T})=$?
Horizontal range $(R)=$?
We have,
$H=\frac{1}{2} g T^{2} \Rightarrow T=\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}}=\sqrt{\frac{2 \times 128}{10}}=5.06 \mathrm{sec}$
Horizontal range $(R)=u T$

$$
=64 \times 5.06=323.8 \mathrm{~m}
$$

9. A canon ball has the same range R on a horizontal plane for two different angles of projection. If H and H^{\prime} are the greatest heights and t_{1} and t_{2} are the time of flights in two paths for which this is possible, prove that
a. $\mathrm{R}^{2}=16 \mathrm{HH}^{\prime}$
b. $\mathrm{R}=\frac{1}{2} \mathrm{gtt}^{\prime}$

Solution:

a. Let α and α_{1} be two different angle of projections having the same range R.
$R=\frac{u^{2} \sin ^{2} \alpha}{g}=\frac{u^{2} \sin ^{2} \alpha_{1}}{g}$
or, $\frac{\sin ^{2} \alpha}{2 \alpha}=\sin 2 \alpha_{1}$
or, $2 \alpha=180-2 \alpha_{1} \Rightarrow \alpha=90-\alpha_{1}$
So, that, $\mathrm{H}=\frac{\mathrm{u}^{2} \sin \alpha^{2}}{2 \mathrm{~g}}$ and, $\mathrm{H}^{1}=\frac{\mathrm{u}^{2} \sin ^{2}(90-\alpha)}{2 \mathrm{~g}}=\frac{\mathrm{u}^{2} \cos ^{2} \alpha}{2 \mathrm{~g}}$
$t_{1}=\frac{2 u \sin \alpha}{g}$ and $t_{2}=\frac{2 u \sin (90-\alpha)}{g}=\frac{2 u \cos \alpha}{g}$

Now, $R^{2}=\left(\frac{u^{2} \sin ^{2} \alpha}{g}\right)=\frac{u^{2} 4 \sin ^{2} \alpha \cdot \cos ^{2} \alpha}{g^{2}}$

$$
=4 \frac{u^{2} \sin ^{2} \alpha}{g} \cdot \frac{u^{2} \cos ^{2} \alpha}{g}=4.4 \frac{u^{2} \sin ^{2} \alpha}{2 g} \cdot \frac{u^{2} \cos ^{2} \alpha}{2 g}=16 \mathrm{HH} \text {, Hence proved. }
$$

b. Again, $R=\frac{u^{2} \sin ^{2} \alpha}{g}=\frac{u^{2} .2 \sin \alpha \cdot \cos \alpha}{g}=\frac{1}{2} g \frac{2 u^{2} \sin \alpha}{g} \times \frac{2 u \cos \alpha}{g}=\frac{1}{2} g t t^{1}$ Hence proved.
10. A particle is projected with a velocity u. If the greatest height attained by the particle be H , prove that the range R on the horizontal plane through the point of projection is
$R=4 \sqrt{H\left(\frac{u^{2}}{2 g}-H\right)}$

Solution:

If α is the angle of projection, then
$H=$ greatest height $=\frac{u^{2} \sin \alpha}{2 g}$
and, $R=$ horizontal range $=\frac{u^{2} \sin ^{2} \alpha}{g}$
Then, $\frac{u^{2}}{2 g}-H=\frac{u^{2}}{2 g}-\frac{u^{2} \sin ^{2} \alpha}{2 g}=\frac{u^{2}\left(1-\sin ^{2} \alpha\right)}{2 g}=\frac{u^{2} \cos ^{2} \alpha}{2 g}$
Now, $4 \sqrt{H\left(\frac{u^{2}}{2 g}-H\right)}=4 \sqrt{\frac{u^{2} \sin ^{2} \alpha}{2 g} \cdot \frac{u^{2} \cos ^{2} \alpha}{2 g}}=\frac{4 \cdot u^{2} \sin \alpha \cdot \cos \alpha}{2 g}=\frac{u^{2} \sin ^{2} \alpha}{g}$

$$
=R
$$

$\therefore R=4 \sqrt{H\left(\frac{u^{2}}{2 g}-H\right)}$
11. If R be the horizontal range and T, the time of flight of a projection, show that $\tan \alpha=\frac{\mathrm{gT}^{2}}{2 \mathrm{R}}$, where α is the angle of projection.

Solution:

Let u be the velocity of the projection, then
We know,
$R=$ horizontal range $=\frac{u^{2} \sin ^{2} \alpha}{g}$
$\mathrm{T}=$ time of flight $=\frac{2 \mathrm{u} \sin \alpha}{\mathrm{g}}$
from (i) and (ii)
$\frac{g T^{2}}{2 R}=g\left(\frac{2 u \sin \alpha}{g}\right)^{2}=\frac{g \cdot 4 u^{2} \sin ^{2} \alpha}{g}=\frac{4 u^{2} \sin ^{2} \alpha}{4 u^{2} \sin \alpha \cdot \cos \alpha}=\tan \alpha$
$\therefore \quad \operatorname{Tan} \alpha=\frac{\mathrm{gT}^{2}}{2 \mathrm{R}}$ Hence proved.
12. A ball is projected with a velocity of $49 \mathrm{~m} / \mathrm{s}$, find the two directions along which the ball must be projected so as to have arrange of 122.5 m .

Solution:

Here, $u=49 \mathrm{~m} / \mathrm{s}, \mathrm{R}=122.5 \mathrm{~m}$
Angle of projection $(\alpha)=$?

320 Kriti's Principles of Mathematics-XII

We know that, $R=\frac{u^{2} \sin ^{2} \alpha}{g}$
or, $\sin ^{2} \alpha=\frac{R g}{u^{2}}=\frac{122.5 \times 9.8}{49 \times 49}$
or, $\sin ^{2} \alpha=\frac{1}{2}$
or, $\sin ^{2} \alpha=\sin 30^{\circ}$ or $\sin 150^{\circ}$
$\therefore \quad \alpha=15^{\circ}$ or, 75°
13. A body is thrown from the top of a tower 96 m high with a velocity $80 \mathrm{~m} / \mathrm{sec}$ at an angle of 30° above the horizon. Find the horizontal distance from the foot of the tower to the point where it hits the ground.

Solution:

Here,
Initial velocity $(u)=80 \mathrm{~m} / \mathrm{s}$
Height fallen $(H)=96 \mathrm{~m}$
Time of flight $(\mathrm{T})=$?
Horizontal range $(R)=$?
Angle of projection $(Q)=30^{\circ}$
We have, $\mathrm{H}=\frac{1}{2} \mathrm{gT}^{2}$

$\mathrm{T}=\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}}=\sqrt{\frac{2 \times 96}{10}}$
$\mathrm{T}=4.38 \mathrm{sec}$
Horizontal range $(R)=u . T=80 \times 4.38=350.54 \mathrm{~m}$
14. A ball thrown by a player from a height of 2 m at an angle of 30° with the horizon with a velocity of $18 \mathrm{~m} / \mathrm{sec}$ is caught by another player at a height of 0.4 m from the ground. How far apart were the two players?

Solution:

Distance between the players $(\mathrm{x})=$?
Initial velocity $(u)=18 \mathrm{~m} / \mathrm{s}$
Angle (θ) $=30^{\circ}$
Vertical distance to the traveler $(\mathrm{y})=2-0.4=1.6 \mathrm{~m}$
We have, $\mathrm{y}=\frac{1 \mathrm{gT}^{2}}{2}$

$$
\begin{aligned}
& t^{2}=\frac{2 y}{g}=\frac{2 \times 1.6}{10}, \quad t=0.57 \mathrm{sec} \\
\therefore \quad & x=u . t=18 \times 0.57=10.18 \mathrm{~m}
\end{aligned}
$$

CHAPTER 22

MATHEMATICS FOR ECONOMICS AND FINANCE

EXERCISE 22.1

1. Find the quadratic supply function $Q s=f(P)$ from the information given.

Price (P)	40	50	80
Quantity supplied (Q)	600	3300	15000

Solution:

Let $Q_{s}=a p^{2}+b p+c \ldots \ldots$.... (i) be a quadratic supply function.
Then according to question, when $p=40$ then $Q_{s}=600$
$\therefore a \times 40^{2}+b \times 40+c=600 \Rightarrow 1600 a-40 b+c=600$
Similarly, other two points are (50, 3300) and (80, 1500)
Then,
$2500 a+50 b+c=3300 \ldots \ldots$.... (ii)
$6400 \mathrm{a}+806+\mathrm{c}=15000$
From (i) and (ii)
$2500 a+50 b+c=3300$
$1600 a+40 b+c=600$
$-\quad-\quad-\quad-\quad$
$90 a+b=270$
from (ii) and (iii)
$6400 a+80 b+c=15000$
$2500 a+50 b+c=3300$
$-\quad-\quad-\quad-\quad 11700$
$130 a+b=390$
from (iv) and (v)
$130 a+b=390$
$90 a+b=270$
$\overline{-\quad-\quad-}$
$\therefore \mathrm{a}=3$
from (iv) $b=0$
Substituting the value of a and b in (i) we get $c=-4200$
Hence, required quadratic supply function is $Q_{s}=3 p^{2}-4200$
2. The supply and demand functions are given by $P=Q^{2}+12 Q+32$,
$P=-Q^{2}-4 Q+200$ respectively. Find equilibrium price and quantity.

Solution:

Given, supply function $P_{s}=Q^{2}+12 Q+32$
Demand function $P_{d}=Q^{2}-4 Q+200$
For equilibrium, $\mathrm{P}_{\mathrm{d}}=\mathrm{P}_{\mathrm{s}}$
i.e. $Q^{2}+12 Q+32=-Q^{2}-4 Q+200$
$2 Q^{2}+16 Q-168=0$
$Q^{2}+8 Q-84=0$
$Q^{2}+14 Q-6 Q-84=0$
$\therefore Q=6, Q=-14$ (not possible)

322 Kriti's Principles of Mathematics-XII

When $\mathrm{Q}=6$
Then $p=6^{2}+12 \times 6+32=36+72+32=140$
\therefore equilibrium price $=140$
3. Given the supply and demand functions
$Q_{S}=(P+5) \sqrt{P+10}$
$\mathrm{Q}_{\mathrm{d}}=\frac{210-9 \mathrm{P}-3 \mathrm{P}^{2}}{\sqrt{\mathrm{P}+10}}$
Calculate the equilibrium price and quantity.

Solution:

Given, $Q_{s}=(P+5) \sqrt{p+10}$ and $Q_{1}=\frac{210-9 p-3 p^{2}}{\sqrt{p+10}}$
For equilibrium condition,
Qs $=Q_{d}$
i.e. $(P+5) \sqrt{p+10}=\frac{210-9 p-3 p^{2}}{\sqrt{p+10}}$
or, $(p+5)(p+10)=210-9 p-3 p^{2}$
or, $p^{2}+15 p+50+3 p^{2}+9 p-210=0$
or, $4 p^{2}+24 p-160=0$
or, $p^{2}+6 p-40=0$
or, $p^{2}+10 p-4 p-40=0$
$\therefore \mathrm{p}=4$
Then $Q=9 \sqrt{14}$
\therefore equilibrium point $(4,9 \sqrt{14})$
4. The average cost of a product is given as $\mathrm{AC}=15 \mathrm{Q}-3600+\frac{486000}{\mathrm{Q}}$

Find the quantity for which the total cost is minimum. Also find the minimum cost.

Solution:

Given, average cost $(A C)=15 Q-3600+\frac{486,000}{Q}$
Total cost function (TS) $=A C \times Q$
$\therefore T C=15 Q^{2}-3600 Q+486,000$
Comparing it with $y=a x^{2}+b x+c$
$a=15, b=-3600$ and $c=486,000$
Since $a>0$, TC represents a parabola concave upward. Being upward, TC has minimum value at $Q=-\frac{b}{2 a} \quad\left(x=-\frac{b}{2 a}\right)$
i.e. $Q=+\frac{3600}{30}=120$
\therefore Total cost is minimum at $\mathrm{Q}=120$ units
Then the min. total cost is TC $=15 \times 120^{2}-3600 \times 120+486000=2,70,000$
5. For the price Rs. P, the quantity demanded is given by $\mathrm{Q}=600,000-2,500 \mathrm{P}$.

Determine the total revenue function $R=f(P)$.
a. What is the concavity of the revenue function?
b. What is the total revenue when price is Rs. 50 ?
c. Find the price for which the total revenue is maximized.

Solution:

a. Demand function is given by
$Q=6,00,000-2,500 \mathrm{P}$
Total revenue function (TR) $=P \times Q$
$\therefore \quad R=600,000 p-2,500 p^{2}$
Comparing it with $\mathrm{y}=a \mathrm{x}^{2}+\mathrm{bx}+\mathrm{c}$,
We get $a=-2500, b=600,000$ and $c=0$
Since $a<0$, the graph is concave downward parabola.
b. When $p=$ Rs. 50, then total revenue is

$$
R=-2500 \times 50^{2}+600,000 \times 50=\text { Rs. } 3,62,50,000
$$

c. total revenue is maximized at $P=-\frac{b}{2 a}$ i.e. $P=\frac{-600,000}{-5,000}=120$
\therefore Revenue is maximized at $P=R s .120$
6. Given the fixed cost as 32 , variable cost per unit as 5 per unit and the demand function $P=25-2 Q$, express the profit function π in terms of Q.
a. Find the value(s) of Q for break even.
b. Find the value of Q for which π is maximum.
c. What is the maximum profit?
d. Sketch the graph of π.

Solution:

Fixed cost $=32 \quad$ Variable cost $=5$ per unti
\therefore total cost for producing a units is given by, TS $=5 Q+32$
Also, demand function $p=25-2 Q$
\therefore total revenue function $T R=25 Q-2 Q^{2}$
a. For break-even $T R=T C$
$25 Q-2 Q^{2}=5 Q+32$
$20 Q-2 Q^{2}-32=0$
or, $Q^{2}-10 Q+16=0$
or, $Q^{2}-8 Q-2 Q+16=0$
$\therefore \quad Q=2$ or 8
b. Profit function $\pi=T R-T C=25 Q-2 Q^{2}-5 Q-32$
$\pi=-2 Q^{2}+20 Q-32$
Since coefficient of Q^{2} is negative, parabola is concave downward,
Profit is maximum at $Q=-\frac{20}{-4}=5$
c. Maximum profit $\pi_{\max }=\frac{4 \mathrm{ac}-\mathrm{b}^{2}}{4 \mathrm{a}}=\frac{4 \times(-2)(-32)-400}{-8}=18$
d.

324 Kriti's Principles of Mathematics-XII

7. For a firm, the total revenue and the total cost are given by
$T R=-2 Q^{2}+14 Q$
$T C=2 Q+10$
a. Find the value(s) of Q for which the firm (i) breaks even, (ii) maximizes profit.
b. Sketch the graph of TR and TC on the same diagram and show the breakeven point(s) and the maximum profit.

Solution:

a. $\quad T R=-2 Q^{2}+14 Q$
$T C=2 Q+10$
For break-even, TR = TC
$-2 Q^{2}+14 Q=2 Q+10$
$2 Q^{2}-12 Q+10=0$
$Q^{2}-6 Q+5=0$
$Q^{2}-5 Q-Q+5=0$
$\mathrm{Q}=1$ or 5
Now, profit function $\pi=T R-T C$
$\therefore \pi=Q^{2}-6 Q+5$
It is quadratic function. Since $\mathrm{a}<0$ concave downward, gives max profit at
$Q=-\frac{b}{2 a}=\frac{6}{2}=3$
b. Find the value of Q for which π is maximum.

EXERCISE 22.2

1. Write the consumption matrix and the system of linear equations formed from the Leontief input-output model in the following cases
a.

Producers	Users		Final (External) demand
	C_{1}	C_{2}	
C_{1}	200	250	450
C_{2}	125	50	225

b.

Purchased from	Consumed by (in Crores Rs.)		External Demand (In Crores Rs.)	
	Manufacturing	Agriculture		
Manufacturing	250	140	30	80
Agriculture	100	105	15	130
Services	50	35	45	20

Solution:

a. Given, $x_{11}=200, x_{12}=250, d_{1}=450$
$\therefore \quad \mathrm{x}_{1}=\mathrm{x}_{11}+\mathrm{x}_{12}+\mathrm{d}_{1}=900$

$$
x_{21}=125, x_{22}=50, d_{2}=225
$$

$\therefore \quad \mathrm{x}_{2}=\mathrm{x}_{21}+\mathrm{x}_{22}+\mathrm{d}_{2}=400$
\therefore the consumption matrix or coefficient input matrix is given by $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ where
$a_{i j}=\frac{x_{i j}}{x_{j}}$ for all i, j
so, $a_{11}=\frac{x_{11}}{x_{1}}=\frac{200}{900}=\frac{2}{9}$
$a_{12}=\frac{x_{12}}{x_{2}}=\frac{125}{400}=\frac{5}{36}$

$$
a_{21}=\frac{x_{21}}{x_{1}}=\frac{125}{450}=\frac{5}{16}
$$

$$
a_{22}=\frac{x_{22}}{x_{2}}=\frac{50}{450}=\frac{1}{9}
$$

\therefore Input coefficient matrix is $\left[\begin{array}{cc}\frac{2}{9} & \frac{5}{16} \\ \frac{5}{36} & \frac{1}{9}\end{array}\right]$
b. Given,
$x_{11}=250, x_{12}=140, x_{13}=30, d_{1}=80$
Then total output $\left(x_{1}\right)=x_{11}+x_{12}+x_{13}+d_{1}=250+140+30+80=500$
$x_{21}=100, x_{22}=105, x_{23}=15, d_{2}=130$
\therefore Total output $\left(\mathrm{x}_{2}\right)=\mathrm{x}_{21}+\mathrm{x}_{22}+\mathrm{x}_{23}+\mathrm{d}_{2}=350$

$$
x_{31}=50, x_{32}=35, x_{33}=45, d_{3}=20
$$

\therefore Total output $\left(\mathrm{x}_{3}\right)=\mathrm{x}_{31}+\mathrm{x}_{32}+\mathrm{x}_{33}+\mathrm{d}_{3}=150$
Let $A=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$
Matrix where $a_{i j}=\frac{x_{i j}}{x_{j}}$
$a_{11}=\frac{x_{11}}{x_{1}}=\frac{250}{500}=0.5 \quad a_{12}=\frac{x_{12}}{x_{2}}=\frac{140}{350}=0.4$
$a_{13}=\frac{x_{13}}{x_{3}}=\frac{30}{150}=0.2 \quad a_{21}=\frac{x_{21}}{x_{1}}=\frac{100}{500}=0.2$
$a_{22}=\frac{x_{22}}{x_{2}}=\frac{105}{350}=0.3$
$a_{23}=\frac{x_{23}}{x_{3}}=\frac{15}{150}=0.1$
$a_{31}=\frac{x_{31}}{x_{1}}=\frac{50}{500}=0.1$
$a_{32}=\frac{x_{32}}{x_{1}}=\frac{35}{200}=0.1$
$a_{33}=\frac{x_{33}}{x_{3}}=\frac{45}{150}=0.3$
Therefore, $A=\left(\begin{array}{lll}0.5 & 0.4 & 0.2 \\ 0.2 & 0.3 & 0.1 \\ 0.1 & 0.1 & 0.3\end{array}\right)$
2. Given three sector economy with sectors sector 1 , sector 2 , sector 3 , the consumption matrix is given as

$$
\mathrm{A}=\left[\begin{array}{lll}
0.1 & 0.4 & 0.2 \\
0.4 & 0.3 & 0.2 \\
0.1 & 0.0 & 0.2
\end{array}\right]
$$

If the first sector decides to produce 200 units, what amounts will be consumed by consumed by it?

326 Kriti's Principles of Mathematics-XII

Solution:

Given, consumption input coefficient matrix is sector I, Sector II and Sector III

$$
\mathrm{A}=\left(\begin{array}{lll}
0.1 & 0.4 & 0.2 \\
0.4 & 0.3 & 0.2 \\
0.1 & 0.0 & 0.2
\end{array}\right) \begin{aligned}
& \text { Sector I } \\
& \text { Sector II } \\
& \text { Sector III }
\end{aligned}
$$

If first sector decides to produce 200 units, then it consumes 0.1×200 units $=20$ units of itself
and 0.4×200 units $=80$ units of sectors 2
and 0.1×200 units $=20$ units of sector 3
3. For a two-sector economy, the consumption matrix is $\mathrm{A}=\left[\begin{array}{ll}0.1 & 0.6 \\ 0.5 & 0.2\end{array}\right]$, and the external demand is $\mathrm{D}=\left[\begin{array}{l}18 \\ 11\end{array}\right]$. Find the production level to satisfy the external demand.

Solution:

Given,
Coefficient matrix $A=\left[\begin{array}{ll}0.1 & 0.6 \\ 0.5 & 0.2\end{array}\right]$ and external demand vector $D=\left[\begin{array}{l}18 \\ 11\end{array}\right]$
Then technolny matrix $\mathrm{T}=\mathrm{I}-\mathrm{A}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)-\left(\begin{array}{ll}0.1 & 0.6 \\ 0.5 & 0.2\end{array}\right)$
$\mathrm{T}=\left[\begin{array}{cc}0.9 & -0.6 \\ -0.5 & 0.8\end{array}\right]$
$|T|=\left|\begin{array}{cc}0.9 & -0.6 \\ -0.5 & 0.8\end{array}\right|=0.72-0.30=0.42$
$\therefore \mathrm{T}^{-1}=\frac{\text { Adj. (T) }}{|\mathrm{T}|}=\frac{\left[\begin{array}{ll}0.8 & 0.6 \\ 0.5 & 0.9\end{array}\right]}{0.42}$
Let $X=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ be the gross output to meet the final demand then,
$\mathrm{X}=\mathrm{T}^{-1} \mathrm{D}=\frac{1}{0.42}\left[\begin{array}{ll}0.8 & 0.6 \\ 0.5 & 0.9\end{array}\right]\left[\begin{array}{l}18 \\ 11\end{array}\right]=\frac{1}{0.42}\left[\begin{array}{c}21 \\ 18.9\end{array}\right]=\left[\begin{array}{l}50 \\ 45\end{array}\right]$
\therefore The production level is 50 units and 45 units respectively.
4. If the input-output coefficient matrix $\mathrm{A}=\left(\begin{array}{ll}0.2 & 0.4 \\ 0.5 & 0.3\end{array}\right)$. Find the Leontief's technology test and viability as per Hawkin's Simon's condition. Also find the demand vector D which is consistent with the output vector $\binom{100}{80}$.

Solution:

Here, $A=\left(\begin{array}{ll}0.2 & 0.4 \\ 0.5 & 0.3\end{array}\right)$
The Leontif's technology matrix T is given by
$\mathrm{T}=\mathrm{I}-\mathrm{A}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)-\left(\begin{array}{ll}0.2 & 0.4 \\ 0.5 & 0.3\end{array}\right)=\left(\begin{array}{ll}1-0.2 & 0-0.4 \\ 0-0.5 & 1-0.3\end{array}\right)$
$\therefore \mathrm{T}=\left(\begin{array}{cc}0.8 & -0.4 \\ -0.5 & 0.7\end{array}\right)$ which is required Leontif's technology matrix.

For the viability test by Hawkin's Simon condition.
$\mathrm{T}=\mathrm{I}-\mathrm{A}=\left(\begin{array}{cc}0.8 & -0.4 \\ -0.5 & 0.7\end{array}\right)$
Since each element in the leading diagonal of the matrix T is positive.
Also, $|\mathrm{T}|=\left|\begin{array}{cc}0.8 & -0.4 \\ -0.5 & 0.7\end{array}\right|=0.56-0.20=0.36>0$
Hence, the given input-output system is viable as per Hawkin's Simon condition.
By given $X=\binom{x_{1}}{x_{2}}=\binom{100}{80}$
Now, $D=\binom{d_{1}}{d_{2}}$ be the demand vector.
Then $(I-A) X=D$
$\Rightarrow\left(\begin{array}{cc}0.8 & -0.4 \\ -0.5 & 0.7\end{array}\right)\binom{100}{80}=\binom{d_{1}}{d_{2}}$
$\Rightarrow\binom{d_{1}}{d_{2}}=\binom{80-30}{-50+56}$
$\Rightarrow\binom{d_{1}}{d_{2}}=\binom{48}{6}$
\therefore Demand vector $(D)=\binom{d_{1}}{d_{2}}=\binom{48}{6}$
5. A and D, the input-output coefficient matrix and the demand vector respectively are given below:
$A=\left(\begin{array}{ll}0.1 & 0.4 \\ 0.2 & 0.2\end{array}\right)$ and $D=\binom{560}{320}$
Find the Leontif's technology matrix and the total output.

Solution

Here, $A=\left(\begin{array}{ll}0.1 & 0.4 \\ 0.2 & 0.2\end{array}\right)$
$\mathrm{T}=\mathrm{I}-\mathrm{A}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)-\left(\begin{array}{ll}0.1 & 0.4 \\ 0.2 & 0.2\end{array}\right)$
$=\left(\begin{array}{ll}1-0.1 & 0-0.4 \\ 0-0.2 & 1-0.2\end{array}\right)$
$\mathrm{T}==\left(\begin{array}{cc}0.9 & -0.4 \\ -0.2 & 0.8\end{array}\right)$, which is required Leontif's technology matrix.
$|T|=\left|\begin{array}{cc}0.9 & -0.4 \\ -0.2 & 0.8\end{array}\right|=0.72-0.08=0.64 \neq 0$
$\therefore \mathrm{T}^{-1}$ exists
$\mathrm{T}_{11}=$ Cofactor of $0.9=0.8, \quad \mathrm{~T}_{12}=-(-0.2)=0.2$,
$\mathrm{T}_{21}=-(-0.4)=0.4$,

$$
\mathrm{T}_{22}=0.9
$$

\therefore Matrix of cofactors $=\left(\begin{array}{ll}T_{11} & T_{12} \\ T_{21} & T_{22}\end{array}\right)=\left(\begin{array}{ll}0.8 & 0.2 \\ 0.4 & 0.9\end{array}\right)$
Adjoint of $T=\left(\begin{array}{ll}0.8 & 0.4 \\ 0.2 & 0.9\end{array}\right)$
i.e. Adj. $T=\left(\begin{array}{ll}0.8 & 0.4 \\ 0.2 & 0.9\end{array}\right)$
$\mathrm{T}^{-1}=\frac{\text { Adj. T }}{|\mathrm{T}|}=\frac{\left(\begin{array}{ll}0.8 & 0.4 \\ 0.2 & 0.9\end{array}\right)}{0.64}$
$=\frac{1}{0.64}\left(\begin{array}{ll}0.8 & 0.4 \\ 0.2 & 0.9\end{array}\right)$
Let $X=\binom{x_{1}}{x_{2}}$ where, x_{1} and x_{2} be the two outputs.
Then, $X=T^{-1} D$
$=\frac{1}{0.64}\left(\begin{array}{ll}0.8 & 0.4 \\ 0.2 & 0.9\end{array}\right)\binom{560}{320}$
$=\frac{1}{0.64}\binom{448+128}{112+288}$
$=\frac{1}{0.64}\binom{576}{400}$
$\binom{x_{1}}{x_{2}}=\binom{900}{625}$
$\therefore \mathrm{x}_{1}=900$ and $\mathrm{x}_{2}=625$
\therefore The required total outputs to meet the future demands of the consumers are 900 units and 625 units.
6. A factory makes two goods, grommets and widgets. To make $\$ 1$ worth of grommets requires $\$ 0.2$ worth grommets and $\$ 0.1$ worth ofwidgets, and to make $\$ 1$ worth of widgets requires $\$ 0.05$ worth of grommets and $\$ 0.1$ worth of widgets. There is a market demand for $\$ 750$ worth of grommets and $\$ 500$ worth of widgets. What should the total production ofeach be to meet the market demand?

Solution:

Given, consumption input coefficient matrix be $\left.\left|\begin{array}{l|c}0.2 \\ 0.1\end{array}\right| \begin{gathered}0.05 \\ 0.1\end{gathered} \right\rvert\,$
i.e. $A=\left(\begin{array}{cc}0.2 & 0.05 \\ 0.1 & 0.1\end{array}\right)$

Also given market demand vector $D=\left[\begin{array}{l}750 \\ 500\end{array}\right]$
Now, technolny matrix $\mathrm{T}=\mathrm{I}-\mathrm{A}=\left[\begin{array}{ll}0.8 & 0.6 \\ 0.5 & 0.9\end{array}\right]$
$\mathrm{T}^{-1}=\frac{\operatorname{Adj}(\mathrm{T})}{|\mathrm{T}|}$
$|T|=\left|\begin{array}{ll}0.8 & 0.6 \\ 0.5 & 0.9\end{array}\right|=0.72-0.005=0.715$
$\mathrm{T}^{-1}=\frac{1}{|\mathrm{~T}|}\left[\begin{array}{cc}0.9 & 0.05 \\ 0.1 & 0.8\end{array}\right]=\frac{1}{0.715}\left[\begin{array}{cc}0.9 & 0.05 \\ 0.1 & 0.8\end{array}\right]$
Using $\mathrm{x}=\mathrm{T}^{-1} \mathrm{D}=\frac{1}{0.715}\left[\begin{array}{cc}0.9 & 0.05 \\ 0.1 & 0.8\end{array}\right]\left[\begin{array}{l}750 \\ 500\end{array}\right]$
$\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}979.02 \\ 664.34\end{array}\right]$
$\therefore \mathrm{x}_{1}=$ Rs. $979.02, \mathrm{x}_{2}=$ Rs. 664.34
7. Suppose that for the production of Rs. 1 worth of C_{1}, we require Rs. 0.1 worth
of C_{1}, Rs. 0.2 worth of C_{2}, Rs. 0.3 worth of C_{3}. For the production of Rs. 1 worth of C_{2}, we require Rs. 0 u. 2 worth of C_{1}, Rs. 0.1 worth of C_{2}, Rs. 0.4 worth of C_{3}. For the production of Rs. 1 worth of C_{3}, we require Rs. 0.5 worth of C_{1}, Rs. 0.2 worth of C_{2}, Rs. 0.2 worth of C_{3}. Find the production level to meet the external demand worth Rs. 35 from C_{1}, Rs. 100 from C_{3}, and no demand from C_{2}.

Solution:

Given,

$$
A=\left[\begin{array}{lll}
0.1 & 0.2 & 0.5 \\
0.2 & 0.1 & 0.2 \\
0.3 & 0.4 & 0.2
\end{array}\right] \quad D=\left[\begin{array}{c}
35 \\
0 \\
100
\end{array}\right]
$$

Technolny matrix $\mathrm{T}=\mathrm{I}-\mathrm{A}$
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]-\left[\begin{array}{lll}0.1 & 0.2 & 0.5 \\ 0.2 & 0.1 & 0.2 \\ 0.3 & 0.4 & 0.2\end{array}\right]$
$\mathrm{T}=\left[\begin{array}{ccc}0.9 & -0.2 & -0.5 \\ -0.2 & 0.9 & -0.2 \\ -0.3 & -0.4 & 0.8\end{array}\right]$
$|\mathrm{T}|=\left|\begin{array}{ccc}0.9 & -0.2 & -0.5 \\ -0.2 & 0.9 & -0.2 \\ -0.3 & -0.4 & 0.8\end{array}\right|=0.9\left|\begin{array}{cc}0.9 & -0.2 \\ -0.4 & 0.8\end{array}\right|+0.2\left|\begin{array}{cc}-0.2 & -0.2 \\ -0.3 & 0.8\end{array}\right|-$
$0.5\left|\begin{array}{cc}-0.2 & 0.9 \\ -0.3 & -0.4\end{array}\right|$
$=0.9(0.72-0.08)+0.2(-0.16-0.06)-0.5(0.08+0.27)$
$=0.576-0.044-0.175=0.357$
Let $\left[\begin{array}{lll}T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} & T_{23} \\ T_{31} & T_{32} & T_{33}\end{array}\right]$ be a cofactor matrix of T
Then
$\mathrm{T}_{11}=$ cofactor of $0.9=\left|\begin{array}{cc}0.9 & -0.2 \\ -0.4 & 0.8\end{array}\right|=0.64$
$\mathrm{T}_{12}=$ Cofactor of $-0.2=-\left|\begin{array}{cc}-0.2 & -0.2 \\ -0.3 & 0.8\end{array}\right|=0.22$
$\mathrm{T}_{13}=$ Cofactor of $-0.5=\left|\begin{array}{cc}-0.2 & 0.9 \\ -0.3 & -0-.4\end{array}\right|=0.35$
$\mathrm{T}_{21}=$ Cofactor of $-0.2=-\left|\begin{array}{cc}-0.2 & -0.5 \\ -0.4 & 0.8\end{array}\right|=0.36$
$\mathrm{T}_{22}=$ Cofactor $0.9=\left|\begin{array}{cc}0.9 & -0.5 \\ -0.3 & 0.8\end{array}\right|=0.57$
$T_{23}=$ Cofactor of $-0.2=-\left|\begin{array}{cc}0.9 & -0.2 \\ -0.3 & -0.4\end{array}\right|=0.42$
$\mathrm{T}_{31}=$ Cofactor of $-0.3=\left|\begin{array}{ll}0.2 & -0.5 \\ 0.9 & -0.2\end{array}\right|=0.49$
$\mathrm{T}_{32}=$ Cofactor of $-0.4=-\left|\begin{array}{cc}0.9 & -0.5 \\ -0.2 & -0.2\end{array}\right|=0.28$
$\mathrm{T}_{33}=$ Cofactor of $0.8=\left|\begin{array}{cc}0.9 & -0.2 \\ -0.2 & 0.9\end{array}\right|=0.77$
\therefore Cofactor matrix is $\left[\begin{array}{ccc}0.64 & 0.22 & 0.35 \\ 0.36 & 0.57 & 0.42 \\ 0.49 & 0.28 & 0.77\end{array}\right]$
Adj $(T)=\left[\begin{array}{lll}0.64 & 0.36 & 0.49 \\ 0.22 & 0.57 & 0.28 \\ 0.35 & 0.42 & 0.77\end{array}\right]$
$\mathrm{T}^{-1}=\frac{1}{0.357}\left[\begin{array}{lll}0.64 & 0.36 & 0.49 \\ 0.22 & 0.57 & 0.28 \\ 0.35 & 0.42 & 0.77\end{array}\right]$
Using $x=T^{-1} D=\frac{1}{0.357}\left[\begin{array}{c}35 \\ 0 \\ 100\end{array}\right]$
$\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}200 \\ 100 \\ 250\end{array}\right]$
$\therefore \mathrm{X}_{1}=200, \mathrm{X}_{2}=100, \mathrm{X}_{3}=250$

EXERCISE 22.3

1. Find the consumer's surplus for the demand functions given by:
a. $\mathrm{P}=100-\mathrm{Q}^{2}$ at $\mathrm{Q}=8$
b. $\mathrm{P}=\frac{80}{3}$ at $\mathrm{Q}=64$
$\sqrt[3]{Q}$
c. $\mathrm{Q}=\frac{10-\mathrm{P}}{2 \mathrm{P}}$ at $\mathrm{P}=2$
d. $\mathrm{P}=\frac{2 \mathrm{Q}}{\mathrm{Q}^{2}+1}$ at $\mathrm{Q}=10$

Solution:

a. Given, Demand function $p=100-Q^{2}$
at $Q=8, p=100-64=36$
Consumer's surplus (C.S.) $=\int_{0}^{8}\left(100-Q^{2}\right) d Q-36 \times 8$

$$
=\left[100 \mathrm{Q}-\frac{\mathrm{Q}^{3}}{3}\right]_{0}^{8}-288=341.33
$$

b. Given demand function
$p=\frac{80}{\sqrt[3]{Q}}$
$p=80 Q^{-1 / 3}$
When $Q=64$ then $p=80(64)_{Q}^{-1 / 3}=20$
Consumers' surplus (c.s.) $=\int_{0}^{\mathrm{Q}} \mathrm{pdQ}-\mathrm{p} \times \mathrm{Q}$
C.S. $=\int_{0}^{64} 80 \mathrm{Q}^{-1 / 3} \mathrm{dQ}-20 \times 64$

$$
=80 \frac{3}{2}\left[Q \frac{2}{3}\right]_{0}^{64}-1280=120 \times 16-1280=640
$$

c. $Q=\frac{10-p}{2 p}$ at $p=2$
$\mathrm{Q}=\frac{5}{\mathrm{p}}-\frac{1}{2} \Rightarrow \mathrm{p}=\frac{10}{2 \mathrm{Q}+1}$
When $p=2$ then $Q=2$
Consumer's demand (C.S.) $=\int_{0}^{\mathrm{Q}} \mathrm{pdQ}-\mathrm{p} \times \mathrm{Q}=\int_{0}^{2} \frac{10}{2 \mathrm{Q}+1} \mathrm{dQ}-2 \times 2$

$$
=\frac{10}{2}[\ln (2 Q+1)]_{0}^{Q}-4=5 \ln 5-4
$$

d. Given, $p=\frac{2 \mathrm{Q}}{\mathrm{Q}^{2}+1}$

When $Q=10$, then $p=\frac{20}{101}$
Consumer's surplus (C.S.) $=\int_{0}^{10} p d Q-p \times Q$

$$
\begin{aligned}
& =\int_{0}^{10} \frac{2 Q}{Q^{2}+1} d Q-\frac{20}{101} \times 10\left[\ln \left(Q^{2}+1\right)\right]_{0}^{10}-\frac{200}{101} \\
& =\ln 101-\frac{200}{101}=2.63
\end{aligned}
$$

2. Find the producer's surplus for the supply functions given by:
a. $\mathrm{P}=12+2 \mathrm{Q}$ at $\mathrm{Q}=5$
b. $P=20 \sqrt{Q}+15$ at $Q=25$

Solution:

a. Given, supply sunction $p=12+2 Q$

When $Q=5$ then $p=22$
Producer surplus (P.S.) $=P \times Q-\int_{0}^{Q} p d Q=22 \times 5-\int_{0}^{5}(121+2 Q) d Q$

$$
=110-\left[12 Q+Q^{2}\right]_{0}^{5}=110-85=25
$$

b. Given,
$P=20 \sqrt{Q}+15$ at $Q=25$
When $Q=25$ then $p=115$
Then P.S. $=P \times Q-\int_{0}^{Q} p d Q=115 \times 25-\int_{0}^{25}(20 \sqrt{Q}+15) d Q$

$$
\begin{aligned}
& =2875-\left[20 \frac{\mathrm{Q}^{3 / 2}}{3 / 2}+15 \mathrm{Q}\right]_{0}^{25}=2675-\left(\frac{40}{3} \times 125+375\right) \\
& =2875-2041.67=833.33
\end{aligned}
$$

3. Find the consumer's surplus and producer's surplus at the equilibrium
a. Supply equation: $P=Q+50$, demand equation: $P=\frac{4000}{Q+20}$
b. $\mathrm{P}=74-\mathrm{Q}_{\mathrm{D}}^{2}, \mathrm{P}=\mathrm{Q}_{\mathrm{S}}^{2}+2$
c. Demand equation: $\mathrm{P}=100 \mathrm{e}^{-\mathrm{Q} / 5}$, Supply equation: $\mathrm{P}=20 \mathrm{e}^{2 \mathrm{Q} / 5}$

Solution:

a. Given, Demand function $p=\frac{4000}{Q+20}$

Supply function $\mathrm{p}=\mathrm{Q}+50$
For equilibrium
Supply = demand
i.e. $(Q+50)(Q+20)=4000$
$Q^{2}+70 Q-3000=0 \Rightarrow Q=30,-100$

332 Kriti's Principles of Mathematics-XII

Since output cannot be negative so $Q=30$
When $Q=30$ then $p=80$
Now, consumer's surplus $=\int_{0}^{Q}$ demand function $-P \times Q$

$$
=\int_{0}^{30} \frac{4000}{Q+20} d Q-80 \times 30
$$

$=4000[\ln (Q+20)]_{0}^{30}-2400=400 \ln \left(\frac{50}{20}\right)-2400=1265.16$
Producer's surplus (P.S.) $=\mathrm{P} \times \mathrm{Q}-\int$ supply function

$$
\begin{aligned}
& =80 \times 30-\int_{0}^{30}(Q+50) d Q \\
& =2400-\left[\frac{Q^{2}}{2}+50 Q\right]_{0}^{30} \\
& =2400-(450+1500)=450
\end{aligned}
$$

b. Given, $p_{d}=74-Q^{2}{ }_{d}$
$p_{s}=Q^{2}{ }_{s}+2$
For equilibrium, $p_{d}=p_{s}=p$
$Q_{d}=Q_{s}=Q$
$Q^{2}+Q=74-Q^{2}$
$2 Q^{2}=72$
Q = 6
When $Q=6$ then $p=38$
Consumer's surplus (C.S.) $=\int_{0}^{6} p_{d} d Q-p \times Q$
$\int_{0}^{6}\left(74-Q^{2}{ }_{d}\right) d Q-38 \times 6$
$\left[74 \mathrm{Q}-\frac{\mathrm{Q}^{3}}{3}\right]_{0}^{6}-228=144$
And, P.S. $=P \times Q-\int_{0}^{Q} p_{s} d Q$

$$
=228-\int_{0}^{6}\left(Q^{2}+2\right) d Q
$$

$$
=228-\left[\frac{\mathrm{Q}^{3}}{3}+\mathrm{Q}\right]_{0}^{6}=144
$$

c. Given, demand function $p=100 e^{-Q / 5}$

Supply function $p=20 e^{2 Q / 5}$
For market equilibrium,
Supply function = Demand function
i.e. $20 \mathrm{e}^{2 \mathrm{Q} / 5}=100 \mathrm{e}^{-\mathrm{Q} / 5}$
$\mathrm{e}^{3 \mathrm{Q} / 5}=5$
$\frac{3 Q}{5}=\ln 5$
$Q=2.68$
When $Q=2.68$ then $p=20 e^{1.073}=58.48$

Now, consumer surplus (C.S.) $=\int_{0}^{6} 100 \mathrm{e}^{-Q / 5} \mathrm{dQ}-58.48 \times 2.68$

$$
\begin{aligned}
& =100\left[\frac{\mathrm{e}^{-Q / 5}}{-1 / 5}\right]^{2.68}-156.73 \\
& =-500\left(\mathrm{e}^{-2.68 / 5}-\mathrm{e}^{0}\right)-156.73=50.73
\end{aligned}
$$

Producer surplus (P.S.) $=P \times Q-\int_{0}^{Q} 20 e^{2 Q / 5} d Q$

$$
\begin{aligned}
& =156.73-\int_{0}^{2.68} 20 \mathrm{e}^{2 Q / 5} \mathrm{dQ} \\
& =156.73-20 \times \frac{5}{2}\left[\mathrm{e}^{2 Q / 5}\right]_{0}^{2.68} \\
& =156.73-50\left(\mathrm{e}^{0.4 \times 2.68}-\mathrm{e}^{0}\right)=60.7
\end{aligned}
$$

4. For the supply function given by $P=3+4 \mathrm{Q}$, the producer's surplus at $\mathrm{Q}=\alpha$ is known to be 72. Find the value of α.

Solution:

Given, Supply function $p=3+4 Q$
Producer's surplus at $Q=\propto$ is 72
When $Q=\propto$ then $p=4 \propto 3$
Now, using

$$
\begin{aligned}
& \text { P.S. }=p \times Q-\int_{0}^{Q}(3+4 Q) d Q \\
& 72=(4 \alpha+3) \alpha-\left[3 Q+2 Q^{2}\right]_{0}^{\alpha} \\
& 72=\left(4 \alpha^{2}+3 \alpha\right)-\left(3 \alpha+2 \alpha^{2}\right) \\
& 72=4 \alpha+3 \alpha-2 \alpha 2 \\
& 2 \alpha^{2}=72 \\
& \therefore \alpha=6
\end{aligned}
$$

5. The demand function of a certain good is given by $P=80-6 \sqrt{Q}$. Find the change in consumer's surplus due to decrease in price from $P=62$ to $P=56$.

Solution:

Given, Demand $p=80-6 \sqrt{Q}$
when $p=62$ then $62=80-6 \sqrt{Q}$
$6 \sqrt{Q}=18$
$\therefore Q=9$
C.S. $=\int_{0}^{9}(80-6 \sqrt{Q}) d Q-P \times Q$

$$
\begin{aligned}
& =\left[80 Q-\frac{6 Q^{3 / 2}}{3 / 2}\right]_{0}^{9}-62 \times 9 \\
& =(720-4 \times 27)-558=54
\end{aligned}
$$

Again,
when $p=56$ then $56=80-6 \sqrt{Q}$
$6 r \sqrt{Q}=24$
$\therefore Q=16$
C.S. $=\int_{0}^{16}(80-6 \sqrt{Q}) d Q-56 \times 16$

$$
\begin{aligned}
& =\left[80 Q-4 Q^{3 / 2}\right]_{0}^{16}-896 \\
& =(1280-256)-896=128
\end{aligned}
$$

Change in C.S. is $128-54=74$

EXERCISE 22.4

1. The demand and supply functions of a new product in a competitive market are $Q_{d}=120-2 P$ and $Q_{s}=3 P-40$ respectively. At the time of unequilibrium condition, the rate of price adjustment is $\frac{d p}{d t}=0.25\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{\mathrm{s}}\right)$. Derive and solve the differential equation given that $P(0)=20$
a. Find the price when $t=4$
b. Is $\mathrm{P}(4)$ close to the equilibrium condition?
c. Examine the state of stability in the long run.

Solution:

$Q_{d}=120-2 P$

$$
Q_{s}=3 P-40
$$

$Q_{d}-Q_{s}=120-2 P-3 P+40=160-5 P$
and $\frac{d p}{d t}=0.25\left(Q_{d}-Q_{s}\right)=0.25(160-5 P)$
$\Rightarrow \frac{\mathrm{dp}}{\mathrm{dt}}=40-1.25 \mathrm{P}$
$\Rightarrow \frac{\mathrm{dp}}{\mathrm{dt}}+1.25 \mathrm{P}=40$
Here, $a=1.25, b=40, P=y, t=5$
\therefore The complete solution is $y=C . e^{-a t}+\frac{b}{a}$
$\Rightarrow P=C . e^{-1.25 t}+\frac{40}{1.25}$
$\Rightarrow P=C . \mathrm{e}^{-1.25 t}+32$
When $t=0, P=20$
$20=C .1+32$
$\therefore P=-12 e^{-1.25 t}+32$
When $t=4$
$P=-12 e^{-1.25 \times 4}+32=31.92$
When $t \rightarrow \infty$, $\mathrm{e}^{-1.25 t} \rightarrow 0$ and hence the first term tends to zero, so the price in the long run approaches to 32 and hence stable.
2. In a competitive, the demand and the supply functions are given by the equations $Q_{d}=240-3 P$ and $Q_{s}=5 P-150$. Also the rate of change of price adjustment proportional to the process of demand is given by $\frac{d P}{d t}=0.05\left(Q_{d}-Q_{s}\right)$. Solve the differential equation for the time path of $\mathrm{P}(\mathrm{t})$, the initial price level P_{0} being 50 .
a. Predict the price level for the time period 4 .
b. In how many time periods would its price level dropped by Rs. 6 than the initial price.

Solution:

$Q_{d}=240-3 P$,

$$
Q_{s}=6 P-150
$$

$Q_{d}-Q_{s}=240-3 P-6 P+150=390-9 P$
and $\frac{d p}{d t}=0.05\left(Q_{d}-Q_{s}\right)=0.05(390-9 P)$
$\Rightarrow \frac{\mathrm{dp}}{\mathrm{dt}}=19.5-0.45 \mathrm{P}$
$\Rightarrow \frac{\mathrm{dp}}{\mathrm{dt}}+0.45 \mathrm{P}=19.5$
Here, $a=0.45, b=19.5, y=P, t=t$
Now the complete solution is
$y=C . e^{-a t}+\frac{b}{a}$
$\Rightarrow P=C . e^{-0.45 t}+\frac{19.5}{0.45}$
$\Rightarrow P=$ C. $\mathrm{e}^{-0.45 \mathrm{t}}+\frac{130}{3}$
When $t=0, P=50$
$50=\mathrm{C} .1+\frac{130}{3} \therefore \mathrm{C}=\frac{20}{3}$
\therefore The solution is $P=\frac{20}{3} e^{-0.45 t}+\frac{130}{3}$
When $\mathrm{t}=4$
$P=\frac{20}{3} e^{-0.45 t}+\frac{130}{3}$
$=\frac{20}{3} \times \mathrm{e}^{-1.8}+\frac{130}{3}$
$=\frac{20}{3} \times 0.1653+\frac{130}{3}=44.43$
When $\mathrm{P}=50-6=44$
$40=\frac{20}{3} e^{-0.45 t}+\frac{130}{3}$
$\Rightarrow \frac{2}{3}=\frac{20}{3} \times \mathrm{e}^{-0.45 \mathrm{t}}$
$\Rightarrow 0.1=\mathrm{e}^{-0.45 \mathrm{t}}$
$\Rightarrow-0.45 t=\log 0.1=-2.3026$
$\therefore \mathrm{t}=\frac{-2.304}{-0.45}=5$ periods
3. If demand and supply function in a competitive market are $Q_{d}=32-0.5 P$ and $Q_{s}=$ $-8+0.3 \mathrm{P}$ and the rate of adjustment of price when the market is out of equilibrium is $\frac{d P}{d t}=0.2\left(Q_{d}-Q_{s}\right)$. Derive and solve the obtained differential equation to get a function for P in terms of t given that price is 12 in the time period 0 . Comment on this market.

Solution:

Here,
$Q_{d}=32-0.5 P$
$Q_{s}=-8+0.3 P$
Now, $\frac{d p}{d t}=0.2\left(Q_{d}-Q_{s}\right)$
or, $\frac{\mathrm{dp}}{\mathrm{dt}}=0.2(32-0.5 \mathrm{P})-(-8+0.3 P)$

336 Kriti's Principles of Mathematics-XII

or, $\frac{d p}{d t}=0.2(32-0.5 P+8-0.3 P)$
or, $\frac{\mathrm{dp}}{\mathrm{dt}}=0.2(40-0.8 \mathrm{P})$
or, $\frac{d p}{d t}=8-0.16 \mathrm{P}$
or, $\frac{\mathrm{dp}}{\mathrm{dt}}=-0.16(P-50)$
or, $\frac{d p}{P-50}=-0.16 \mathrm{dt}$
Integrating both side, we get
$\ln (P-50)=-0.16 t+\ln C$
or, $\ln (P-50)-\ln C=-0.16 t$
or, $\ln \left(\frac{P-50}{C}\right)=-0.16 t$
or, $P-50=C . e^{-0.16 t}$
or, $P=50+C . e^{-0.16 t}$
By question, when $t=0, P=12$
The form (i), we get
$12=50+$ C. $\mathrm{e}^{-0.16} \times 0$
or, $12-50=C$
$\therefore \mathrm{C}=-38$
Substituting the value of C in (i), we get
$P=50-38 . e^{-0.16 t}$
which is required solution.
Here, $m=-0.16<0$. So, the market is stable.
4. The demand and supply functions in a competitive market are $Q_{d}=500-5 P, Q_{s}=-40$ +20 P respectively. The initial part P_{0} is Rs. 100. Derive a function for time path P and use it to predict price in time period 5 given that price adjust proportion to excess demand at the rate $\frac{\mathrm{dP}}{\mathrm{dt}}=0.02\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{\mathrm{s}}\right)$. How many time periods would you like to wait for the price to drop by Rs. 40 ?

Solution:

We have,
$\frac{d p}{d t}=0.02\left(Q_{d}-Q_{s}\right)$
or, $\frac{\mathrm{dp}}{\mathrm{dt}}=0.02(500-5 \mathrm{P}-(-40-20 \mathrm{P})$
or, $\frac{\mathrm{dp}}{\mathrm{dt}}=0.02(500-5 \mathrm{P}+40-20 \mathrm{P})$
or, $\frac{d p}{d t}=10.8-0.5 \mathrm{P}$
or, $\frac{\mathrm{dp}}{\mathrm{dt}}=-0.5(P-21.6)$
or, $\frac{d p}{P-21.6}=-0.5 \mathrm{dt}$
Integrating both side, we get
$\ln (P-21.6)=-0.5 t+\ln C$
or, $\ln (P-21.6)-\ln C=-0.5 t$
or, $\ln \left(\frac{P-21.6}{C}\right)=-0.5 t$
or, $P-21.6=C . e^{-0.5 t}$
or, $P=21.6+C . e^{-0.5 t} \ldots$. (i)
By question, when $t=0, P(0)=100$
The form (i), we get
$100=21.6+$ C. $\mathrm{e}^{-0.5 \times 0}$
or, $100-21.6=C$
$\therefore \mathrm{C}=78.4$
From equation (i), we get
$\mathrm{P}=21.6+78.4 \mathrm{e}^{-0.5 \mathrm{t}} \ldots .$. (ii)
When $P=40$, from equation (ii)
$40-21.6+78.4 \mathrm{e}^{-0.5 t}$
or, $40-21.6=78.4 \mathrm{e}^{-0.5 t}$
or, $\frac{17.4}{78.4}=\mathrm{e}^{-0.5 t}$
or, $\mathrm{e}^{-0.5 t}=\frac{23}{98}$
Taking In on both sides, we get
$-0.5 t=\ln 23-\ln 98$
or, $-0.5 \mathrm{t}=-1.45$
or, $t=\frac{1.45}{0.5}=2.9$
$\therefore \mathrm{t}=2.9$ time period.
5. If the demand and supply functions in a competitive market are $Q_{d}=35-0.5 P, Q_{s}=$ $-4+0.8 \mathrm{P}$ and the rate of adjustment of price when market is out of equilibrium is $\frac{d P}{d t}=0.25\left(Q_{d}-Q_{s}\right)$. Derive and then solve the relevant differential equation to get a function for p in terms of t given that price is 37 in time period zero. Comment on the stability of this market.

Solution:

We have $Q_{d}=35-0.5 P$
$Q_{s}=-4+0.8 P \ldots .$. (ii)
and $\frac{d p}{d t}=0.85\left(Q_{d}-Q_{s}\right)$
Substituting the value of Q_{d} and Q_{s} from (i) and (ii) in (iii), we get
$\frac{d P}{d t}=0.25(35-0.5 P+4-0.8 P)$
$\Rightarrow \frac{\mathrm{dP}}{\mathrm{dt}}=0.25(39-1.3 \mathrm{P})$
$\Rightarrow \frac{\mathrm{dP}}{\mathrm{dt}}=0.25 \times 1.3(30-\mathrm{P})$
$\Rightarrow \frac{\mathrm{dp}}{30-\mathrm{p}}=0.325 \mathrm{dt}$

338 Kriti's Principles of Mathematics-XII

$\therefore \frac{\mathrm{dp}}{\mathrm{p}-30}=-0.325 \mathrm{dt}$
Now integrating on both sides, we get
$\int \frac{d p}{p-30}=\int-0.325 d t+C$
$\Rightarrow \ln (\mathrm{p}-30)=-0.325 \mathrm{t}+\mathrm{C}$
$\Rightarrow \mathrm{p}-30=\mathrm{e}^{-0.325 \mathrm{t}+\mathrm{C}}$
$\Rightarrow \mathrm{p}-30=A \mathrm{e}^{-0.325 t}$; where $\mathrm{A}=\mathrm{e}^{\mathrm{c}}$
$\therefore p=30+A e^{-0.325 t} \ldots$. (iv) is a function of p in terms of t.
For the second part of the question
When $t=0, p(0)=37$ then from (iv)
$\mathrm{p}(0)=30+\mathrm{A}^{\circ}$
$\Rightarrow 37=30+A \Rightarrow A=7$
\therefore Equation (iv) becomes
$p=30+7 e^{-0.325 t}$ is the particular solution
For the third part of the question
As $t \rightarrow \infty, \mathrm{e}^{-0.325} \rightarrow 0$
$\therefore P=30+7 \times 0=30$ is a finite value
Therefore, the market is stable.
The demand and supply function of a product are given by
$Q_{d}=122-4 p+6 \frac{d p}{d t}, Q_{s}=-40+5 p+60 \frac{d p}{d t}$
6. If initial price is Rs. 45 per unit, find the time path of price for dynamic equilibrium. What will be price after 5 months?

Solution:

We have, $Q_{d}=122-4 p+6 \frac{d p}{d t}, Q_{s}=-40+5 p+60 \frac{d p}{d t}$
At the market equilibrium $Q_{d}=Q_{s}$

$$
\begin{align*}
& \Rightarrow 122-4 p+6 \frac{d p}{d t}=-40+5 p+60 \frac{d p}{d t} \\
& \Rightarrow-54 \frac{d p}{d t}-9 P=-162 \\
& \Rightarrow \frac{d p}{d t}+\frac{1}{6} p=3 \ldots . \text { (i) } \tag{i}\\
& \Rightarrow \frac{d p}{d t}=3-\frac{p}{6}=\frac{18-p}{6} \\
& \Rightarrow \frac{d p}{p-18}=-\frac{d t}{6}
\end{align*}
$$

Now, integrating on the both sides, we get

$$
\begin{aligned}
& \int \frac{d p}{p-18}=-\frac{1}{6} \int d t \\
& \Rightarrow \ln (p-18)=-\frac{1}{6} t+L_{n} C \\
& \Rightarrow \ln \left(\frac{p-18}{c}\right)=-\frac{t}{6}
\end{aligned}
$$

$\Rightarrow \frac{\mathrm{p}-18}{\mathrm{c}}=\mathrm{e}^{-\mathrm{t} / 6}$
$\Rightarrow p=18+\mathrm{ce}^{-1 / 6} \ldots .$. (i) is the general solution
For the second part of the question
When $t=0, p(0)=45$ then from (i)
$45=18+\mathrm{ce}^{\circ}$
$\Rightarrow c=27$
\therefore From (i), $\mathrm{p}=27 \mathrm{e}^{-1 / 6+18}$ is the particular solution
For the third part of the question
When $t=5$ then $p=27 e^{-5 / 6}+18=29.378$ which is finite. So, the market is stable.

EXERCISE 22.5

1. Form the difference equations from
a. $y_{t}=8\left(4^{\mathrm{t}}\right)-7$
b. $\mathrm{y}_{\mathrm{t}}=\mathrm{A}\left(4^{\mathrm{t}}\right)+\mathrm{B}\left(7^{\mathrm{t}}\right)$

Solution:

Form the difference equations from
a. $Y_{t}=8\left(4^{t}\right)-7 \Rightarrow Y^{t}+7=8(4)^{t}$

Replacing T by $\mathrm{T}+1$

$$
\begin{aligned}
\mathrm{Y}_{\mathrm{T}+1} & =8\left(4^{t+1}\right)-7=84^{\mathrm{t}} .4-7 \\
& =4\left(\mathrm{Y}^{\mathrm{t}}+7\right)-7=4 \mathrm{Y}_{\mathrm{t}}+28-7=4 \mathrm{Y}_{\mathrm{t}}+21
\end{aligned}
$$

Hence, the required difference equation is,
$Y_{t}+=4 Y_{t}+21$
Equivalent $Y_{t}=4 Y_{t+1}+21$
$\left.\therefore \quad Y_{T}=4 Y_{t+1}+21\right)$
b. $Y_{t}=A 4^{t}+B \cdot 7^{t}$

We have,
$Y_{t}=A\left(4^{t}\right)+B\left(7^{t}\right)$
Replacing t by $\mathrm{t}+1$

$$
\begin{aligned}
Y_{t+1} & =A\left(4^{t+1}\right)+B\left(7^{t+1}\right) \\
& =A 4^{t} \cdot(4)+B 7^{t} \cdot(7)
\end{aligned}
$$

From the given equation $\left(Y_{t}-A 4^{t}\right)=B 7^{t}$ so
$Y_{t+1}=4 A 4^{t}+7\left(Y_{t}-A 4^{t}\right)$

$$
=4 A 4^{t}+7 Y_{t}-7 A 4^{t}
$$

$$
Y_{t+1}=7 Y_{t}-3 A 4^{t} \Rightarrow 3 A 4^{t}=7 Y_{t}-y_{t+1}
$$

again,
Replacing t by $\mathrm{t}+1$
$\mathrm{Y}_{\mathrm{t}+2}=7 \mathrm{Y}_{\mathrm{t}+1}-3 \mathrm{~A}\left(4^{\mathrm{t}+1}\right)$
From the given equation $\left.\left(7 Y_{t}-Y_{t+1}\right)=4 A 4^{t+1}\right)$

$$
\begin{aligned}
& =7 \mathrm{Y}_{\mathrm{t}+1}-3\left(7 \mathrm{Y}_{\mathrm{t}}-\mathrm{Y}_{\mathrm{t}+1}\right) \\
& =7 \mathrm{Y}_{\mathrm{t}+1}-21 \mathrm{Y}_{\mathrm{t}}+3 \mathrm{Y}_{\mathrm{t}+1} \\
& =10 \mathrm{Y}_{\mathrm{t}+1}-21 \mathrm{Y}_{\mathrm{t}}
\end{aligned}
$$

so required difference equation is
$\therefore \mathrm{Y}_{\mathrm{t}+2}-10 \mathrm{Y}_{\mathrm{t}+1}-21 \mathrm{Y}_{\mathrm{t}}=0$
2. Solve the following difference equations.
a. $y_{t}=y_{t-1}+2, y_{0}=0$
b. $y_{t+1}=-y_{t}+6, y_{0}=4$
c. $4 y_{\mathrm{t}}=\mathrm{y}_{\mathrm{t}-1}+24$
d. $y_{t}=-0.5 y_{t-1}+1$

340 Kriti's Principles of Mathematics-XII

Solution:

a. $Y_{T}=Y_{T-1}+2, Y_{0}=2$

Comparing the equation with $\mathrm{Y}_{\mathrm{T}}=a \mathrm{Y}_{\mathrm{T}-1}+\mathrm{b}$, we have
$a=1$
$b=2$
Since $a \neq 1$
Another method,
The complementary function (c.f.) $=A a^{\top}=A(1)^{\top}$
Let $\mathrm{Y}_{\mathrm{T}}=\mathrm{KT}$ be a particulars solution
Then $\mathrm{Y}_{\mathrm{T}-1}=\mathrm{K} .(\mathrm{T}-1)$
Substituting the value Y_{T} and $\mathrm{Y}_{\mathrm{T}-1}$
$\mathrm{K}_{\mathrm{T}}=\mathrm{K}(\mathrm{T}-1)+2$
$K_{T}-K(T-1)=2$
$\mathrm{K}_{\mathrm{T}}-\mathrm{K}_{\mathrm{T}}+\mathrm{K}=2$
$\therefore \mathrm{K}=2$
So, PS = 2
The required general solution is
$Y_{T}=C F+P S$
$=A(1)^{\top}+2 \Rightarrow Y_{T}=A(1)^{\top}+2$
As given, $Y_{0}=2$, then
$2=A+2$
A $=0$
Now, $\left(\mathrm{Y}_{\mathrm{T}}=(1)^{\top}+2\right)$
b. $\quad Y_{T+1}=-Y_{T}+6, Y_{0}=4$
$Y_{T}=-Y_{T+1}+6$
Comparing the equation with $\mathrm{Y}_{\mathrm{T}}=a \mathrm{Y}_{\mathrm{T}+1}+\mathrm{b}$, we have
$a=-1$,
$b=6$
Since $a \neq 1$, the required solution is
$Y_{T}=A a^{\top}+\frac{b}{1-a}$, where A is constant.
Substituting the value of a, b
$Y_{T}=A(-1)^{T}+\frac{6}{1+1}$
$Y_{T}=A(-1)^{\top}+3$
Putting,
Given $\mathrm{Y}_{0}=4, \mathrm{~T}=0$
Then,
$4=\mathrm{A}(-1)^{0}+3$
$4-3=A$
$A=1$,
Now,
$Y_{T}=1(-1)^{\top}+3$, is the required solution,
c. $4 Y_{T}=Y_{T-1}+24$
$Y_{T}=\frac{1}{4} Y_{T-1}+6$
Comparing the equation with $\mathrm{Y}_{\mathrm{T}}=\mathrm{a} \mathrm{Y}_{\mathrm{T}+1}+\mathrm{b}$, we have
$a=\frac{1}{4}, b=6$
Since $a \neq 1$, the required solution is
$Y_{T}=A 4^{\top}+\frac{b}{1-a}$ where A is constant.
Substituting the values of a and b
$Y_{T}=A\left(\frac{1}{4}\right)^{\top}+\frac{6}{1-\frac{1}{4}}$
$Y_{T}=A\left(\frac{1}{4}\right)^{T}+8=A(0.25)^{t}+8$
d. $Y_{T}=-0.5 Y_{T-1}+1$

Comparing with the equation $\mathrm{Y}_{\mathrm{T}}=a \mathrm{Y}_{\mathrm{T}+1}+\mathrm{b}$, we have
$a=-0.5$
$b=1$
Since $a \neq 1$ the required
Solution is
$Y_{T}=A a^{\top}+\frac{b}{1-a}$, where A is constant.
Substituting the value of a and b
$Y_{T}=A(-0.5)^{\top}+\frac{1}{1+0.5}$
$Y_{T}=A(-0.5)^{\top}+0.66$
3. Consider the difference equation $y_{t}=3 y_{t-1}+7$ with initial condition $y_{0}=2$.
a. Find the value of y_{1}, y_{2}, y_{3} without solving the difference equation.
b. Solve the difference equation to find y_{t} as a function of t. Find y_{1}, y_{2}, y_{3} using this solution.

Solution:

Given, $\mathrm{Y}_{\mathrm{T}}=3 \mathrm{Y}_{\mathrm{T}-1}+7, \mathrm{Y}_{0}=2$
a. Find the value of Y_{1}, Y_{2}, Y_{3} without solving d.e. when, Y_{1} then, Y_{2} then,

We have,
$Y_{t}=3 y_{t-1}+7$
Put $\mathrm{t}=1$
$Y_{1}=3 Y_{0}+7$
Given,
$Y_{0}=2$
$Y_{1}=3 \times 2+7=13$
Put $\mathrm{t}=2$
$\mathrm{Y}_{2}=3 \mathrm{Y}_{1}+7$
$Y_{2}=3 \times 13+7=46$
Put $t=3$
$Y_{3}=3 Y_{2}+7$

342 Kriti's Principles of Mathematics-XII

$Y_{3}=3 \times 46+7=145$
b. Find Y_{1}, Y_{2}, Y_{3} using this solution.

Comparing with the equation $\mathrm{Y}_{\mathrm{T}}=\mathrm{a} \mathrm{Y}_{\mathrm{T}-1}+\mathrm{b}$, we have
$a=3$
b $=7$
Since, $a \neq 1$, the required solution is,
$Y_{T}=A a^{\top}+\frac{b}{1-a}$
Substituting the value and a, b
$Y_{T}=A(3)^{\top}+\frac{7}{1-3}$
$Y_{T}=A(3)^{\top}-3.5$
When, $Y_{0}=2$, then
$2=A(3)^{0}-3.5$
$2+3.5=A$
$\therefore A=5.5$
Now, $\mathrm{Y}_{\mathrm{T}}=5.5(3)^{\top}-3.5$
When, $Y_{1}, Y_{2}, Y_{3}, 300$

$\mathrm{Y}_{1}=5.5(3)^{1}-3.5$	$\mathrm{Y}_{2}=5.5(3)^{2}-3.5$	$\mathrm{Y}_{3}=5.5(3)^{3}-3.5$
$\mathrm{Y}_{1}=13$	$=46$	$=145$

$\therefore\left(\begin{array}{l}Y_{1}=13 \\ Y_{2}=46 \\ Y_{3}=145\end{array}\right)$
4. A person borrows Rs. $1,50,000$ from a bank at the interest rate of 9.6% per annum on the outstanding balance. The person wishes to pay Rs. 4,000 each month.
a. How much does the person owe after 1 year?
b. How long will it take to pay the loan?

Solution:

Given, $\mathrm{Y}_{\mathrm{T}}=0.3 \mathrm{Y}_{\mathrm{T}-1}+0.4 \mathrm{~T}+5$
a. $y_{t}=1.008 y_{t-1}-4,000$
$y_{c}=m=1.008$
$y_{c}=A(1.008)^{t}$
Particular integral
$\left(y_{p}\right)=$ let $y_{t}=k$ be
$y_{t-1}=k$
$k-1.008 k=-4,000$
$k=5,00,000$
$\therefore \quad y_{t}=A(1.008)^{t}+5,00,000$
$y_{0}=1,50,000$
$1,50,000=A+5,00,000$
$\mathrm{A}=-3,50,000$
$y_{t}=-3,50,000(1.008)^{t}+5,00,000$
$y_{12}=114881.46$
b. We have, $\mathrm{y}_{\mathrm{t}}=\mathrm{A}(1.008)^{\mathrm{t}}+5,00,000$

To pay the loan, $y_{t}=0$
$3,50,000(1.008)^{t}=5,00,000$
$(1.008)^{t}=1.43$
$t=\frac{\ln (1.43)}{\ln (1.008)}=45$ months .

EXERCISE 22.6

1. Consider the following cobweb model $Q_{s t}=P_{t-1}-8, Q_{D_{t}}=-2 P_{t}+22$

Find the expressions for P_{t}, Q_{t} when $P_{0}=11$. Also comment on the stability.

Solution:

Given,
$Q_{S T}=P_{t-1}-8$
$Q_{d T}=-2 P_{t}+22$
For equilibrium
$Q_{S T}=Q_{d t}$
So, $P_{t}-1-8=-2 P_{t}+22$
$\mathrm{P}_{\mathrm{t}-1}-8+2 \mathrm{P}_{\mathrm{t}}-22=0$
$2 P_{t}=-P_{t-1}+30$
$P_{T}=-\frac{1}{2} P_{t-1}+15$
Comparing with $\mathrm{P}_{\mathrm{t}}=\mathrm{aP} \mathrm{t}_{\mathrm{t}-1}+\mathrm{b}$
Now, $a=\frac{-1}{2}, b=13$
The general solution Rs. $P_{t}=A a T+\frac{b}{1-a}$
Where, A is constant.
Substituting the values,
$P_{T}=A\left(\frac{-1}{2}\right)^{t}+\frac{15}{1+\frac{1}{2}}$
$P_{T}=A\left(\frac{-1}{2}\right)^{t}+10$
When, $\mathrm{P}_{0}=11$,
Now, $11=A+10$

$$
11-10=A
$$

$\therefore \quad A=1$
Now, $P_{t}=1\left(1-\frac{1}{2}\right)^{t}+10$
Putting this expression in $Q_{d t}=-2_{p t}+22$
$=-2\left[1\left(\frac{-1}{2}\right)^{t}+10\right]+22=-2\left(1-\frac{1}{2}\right)^{t}+2$
Since, $|a|=\left|-\frac{1}{2}\right|=\frac{1}{2}>0$. So it is stable.

344 Kriti's Principles of Mathematics-XII

2. Given the demand and supply equations
$Q_{D_{t}}=-5 P_{t}+35, Q_{s t}=4 P_{t-1}-10$
find expressions for P_{t} and Q_{t} when $P_{0}=6$. Find the values of P and Q where the model converges.

Solution:

Given,
$Q_{2 t}=-5 P_{t}+35$
$Q_{\text {ST }}=4 \mathrm{P}_{\mathrm{t}-1}-10$
For equation
$Q_{\mathrm{dt}}=\mathrm{Q}_{\mathrm{St}}$
$4 P_{t-1}-10=-5 P_{t}+35$
$5 \mathrm{P}_{\mathrm{t}}=-4 \mathrm{P}_{\mathrm{t}-1}+45$
$P_{t}=\frac{-4}{5} P_{t-1}+9$
Comparing with $\mathrm{P}_{\mathrm{t}}=\mathrm{a} \mathrm{P}_{\mathrm{t}-1}+\mathrm{b}$,
so, $a=\frac{-4}{5}, b=9$
The general solution is $P_{t}=A a^{t} \neq \frac{A a}{1-a}$ (A is constants)
Substitution the values
$P_{t}=A\left(\frac{-4}{5}\right)^{t}+\frac{9}{1+\frac{4}{5}}=A\left(\frac{-4}{5}\right)^{t}+5$
When, $P_{o}=6$ then
$6=A+5$
$\therefore A=1$
$\therefore \quad P_{t}=1\left(\frac{-4}{5}\right)^{t}+5$
Putting this expression is $Q_{d t}=-5 P_{t}+35$

$$
\begin{aligned}
& =-5\left[1\left(\frac{-4}{5}\right)^{t}+3\right]+33=-5\left(\frac{-4}{5}\right)^{t}+10 \\
& \therefore \quad Q_{d t}=-5\left(\frac{-4}{5}\right)^{t}+10 \\
& \quad P_{t}=1\left(\frac{-4}{5}\right)^{t}+5=(-0.8)^{t}+5
\end{aligned}
$$

3. Consider the demand and supply equations
$\mathrm{Q}_{\mathrm{D}}=-4 \mathrm{P}+10$
$Q_{S}=6 P-10$.
Find the equilibrium price and quantity.

Solution:

Given,
$Q_{d}=-4 p+10$
$Q_{s}=6 p-10$
a. For equilibrium, $Q_{d} \neq Q_{s}$
$-4 p+10=6 p-10$
$-10 p=-20$
$p=2$
Substituting the value of $Q_{s}=6 p-10$
$6 \times 2-10$
$\therefore \quad Q=2$
$\therefore \quad\binom{p=2}{Q=2}$
4. Given the following model
$Y_{t}=C_{t}+I_{t}$
$\mathrm{C}_{\mathrm{t}}=0.75 \mathrm{Y}_{\mathrm{t}-1}+400$
$\mathrm{I}_{\mathrm{t}}=200$
$\mathrm{Y}_{0}=400$
Find the value of C_{2}.

Solution:

Given,
$y_{t}=c_{t}+l_{t}=0.75 y_{t-1}+400+200$
$\therefore \quad y_{t}=0.75 y_{t-1}+600$
If $t=1$,
$y_{1}=0.75 y_{0}+600=0.75 \times 400+600=900$
So, from $c_{t}=0.75 y_{t-1}+400$
$c_{2}=0.75 y_{1}+400=1075$
5. Consider the following model
$Y_{t}=C_{t}+I_{t}$
$\mathrm{C}_{\mathrm{t}}=0.7 \mathrm{Y}_{\mathrm{t}-1}+400$
$\mathrm{I}_{\mathrm{t}}=0.1 \mathrm{Y}_{\mathrm{t}-1}+100$
Given $Y_{0}=3000$, find an expression for Y_{t} and comment on the stability.

Solution:

We have,
$y_{t}=c_{t}+I_{t}$
$\mathrm{y}_{\mathrm{t}}=0.7 \mathrm{y}_{\mathrm{t}-1}+400+0.1 \mathrm{y}_{\mathrm{t}-1}+100$
or, $\mathrm{y}_{\mathrm{t}}=0.8 \mathrm{y}_{\mathrm{t}-1}+500$
$y_{t}-0.8 y_{t-1}=500$
Solution of (i) is $y_{t}=y_{c}+y_{p}$ where
$y_{c}=$ complementary function
$y_{p}=$ particular integral
For complementary function $\left(y_{c}\right)$: Reduce (i) into homogeneous form as
$y_{t}-0.8 y_{t-1}=0$
Let $y_{t}=A(m)^{t}$ be a trial solution.
Then $\mathrm{y}_{\mathrm{t}-1}=A \mathrm{~m}^{\mathrm{t}-1}$
from (ii)
$A m^{t}-0.8 A m^{t-1}=0$
$A m^{t}\left(1-0.8 m^{-1}\right)=0$
$m=0.8$ since $A m^{t} \neq 0$

346 Kriti's Principles of Mathematics-XII

$\therefore \quad y_{c}=\mathrm{A}(0.8)^{\mathrm{t}}$
For particular integral $\left(y_{p}\right)$:
Let $y_{t}=k$ be a trial solution of (i).
Then $y_{t-1}=k$
\therefore (i) becomes
$k-0.8 k=500$
$0.2 \mathrm{k}=500$
$\mathrm{k}=\frac{500}{0.2}=2500$
$\therefore \quad y_{p}=2500$
$\therefore \quad y_{t}=\mathrm{A}(0.8)^{t}+2500$ is general solution.
When $t=0$ then $y_{0}=A(0.8)^{0}+2500$
$300=A+2500$
$A=500$
$\therefore y_{t}=500(0.8)^{t}+2500$ is required particular solution for y_{t}.
6. A lagged-income model is given as
$\mathrm{Y}_{\mathrm{t}}=\mathrm{C}_{\mathrm{t}}+\mathrm{I}_{\mathrm{t}}$
$\mathrm{C}_{\mathrm{t}}=0.8 \mathrm{Y}_{\mathrm{t}-1}+200$
$\mathrm{I}_{\mathrm{t}}=1000$
where Y_{t}, C_{t} and I_{t} denote national income, consumption and investment in the period t. The initial value of income $Y_{0}=5000$.
a. Find out Y_{2} and C_{2} from the relations.
b. Construct the difference equation relating Y_{t} and $\mathrm{Y}_{\mathrm{t}-1}$
c. Solve difference equation so formed to find Y_{t} in terms of t.

Solution:

Given,
$y_{t}=c_{t}+l_{t}$
$y_{t}=\left(0.8 y_{t-1}+200\right)+1000$
$\mathrm{y}_{\mathrm{t}}=0.8 \mathrm{y}_{\mathrm{t}-1}+1200$
$y_{t}-0.8 y_{t-1}=1200$
a. When $t=1$ then
$\mathrm{y}_{1}-0.8 \mathrm{y}_{0}=1200$
$y_{1}-0.8 \times 5000=1200$
$y_{1}=5200$
When $\mathrm{t}=2$
Then $\mathrm{y}_{2}=0.8 \mathrm{y}_{1}=1200$
$y_{2}=1200+0.85200=5360$
We have,
$c_{t}=0.8 y_{t-1}+200$
When $t=2$
$c_{2}=0.8 \times y_{1}+200=0.8 \times 5200+200=4360$
b. The difference equation relating $y_{t}+y_{t-1}$ is $y_{t}-0.8 y_{t-1}=1200$
c. Its solution is $y_{t}=y_{c}+y_{p}$

For y_{c} :
$y_{t}-0.8 y_{t-1}=0$
$\mathrm{Am}^{t}\left(1-0.8 \mathrm{~m}^{-1}\right)=0$
$\therefore \mathrm{m}=0.8$ since $\mathrm{Am}^{\mathrm{t}} \neq 0$
$\mathrm{y}_{\mathrm{c}}=\mathrm{A}(0.8)^{\mathrm{t}}$

```
For \(y_{p}\) :
Let \(y_{t}=k\) be a solution
Then \(y_{t-1}=k\)
from (i)
\(0.2 \mathrm{k}=1200\)
\(k=6000\)
\(\therefore \quad y_{p}=6000\)
Hence \(y_{t}=A(0.8)^{t}+6000\)
When \(t=0\)
\(y_{0}=A+6,000\)
\(\therefore \quad A=-1,000\) since \(y_{0}=5,000\)
\(\therefore y_{t}=-1,000(0.8)^{t}+6,000\)
when \(t=2\)
\(y_{2}=-1,000(0.8)^{2}+6,000\)
```

