
Government of Nepal
Ministry of Education, Science and Technology
Curriculum Development Centre

Sanothimi, Bhaktapur
Phone : 5639122/6634373/6635046/6630088

Website : www.moecdc.gov.np

Computer Engineering

Fundamentals of Digital System

9

Technical and Vocational Stream
Learning Resource Material

Fundamentals of Digital System
(Grade 9)

Secondary Level
Computer Engineering

Government of Nepal

Ministry of Education, Science and Technology

Curriculum Development Centre
Sanothimi, Bhaktapur

Feedback Copy

Publisher : Government of Nepal

 Ministry of Education, Science and Technology

 Curriculum Development Centre
 Sanothimi, Bhaktapur

© Publisher

Layout by Khados Sunuwar

All rights reserved. No part of this publication may be reproduced, stored in a

retrieval system or transmitted, in any other form or by any means for commercial

purpose without the prior permission in writing of Curriculum Development

Centre.

Preface

The curriculum and curricular materials have been developed and revised on a regular basis

with the aim of making education objective-oriented, practical, relevant and job oriented. It

is necessary to instill the feelings of nationalism, national integrity and democratic spirit in

students and equip them with morality, discipline and self-reliance, creativity and

thoughtfulness. It is essential to develop in them the linguistic and mathematical skills,

knowledge of science, information and communication technology, environment, health and

population and life skills. it is also necessary to bring in them the feeling of preserving and

promoting arts and aesthetics, humanistic norms, values and ideals. It has become the need

of the present time to make them aware of respect for ethnicity, gender, disabilities,

languages, religions, cultures, regional diversity, human rights and social values so as to

make them capable of playing the role of responsible citizens with applied technical and

vocational knowledge and skills. This Learning Resource Material for Computer

Engineering has been developed in line with the Secondary Level Computer Engineering

Curriculum with an aim to facilitate the students in their study and learning on the subject

by incorporating the recommendations and feedback obtained from various schools,

workshops and seminars, interaction programs attended by teachers, students and parents.

In bringing out the learning resource material in this form, the contribution of the
Director General of CDC Dr. Lekhnath Poudel, Pro, Dr. Subarna Shakya, Bibha
Sthapit, Anil Barma, Bhuwan Panta, Arun Roka, Lina Maharjan, Trimandir Prajapati
is highly acknowledged. The book is written by Sankar Kumar Yadav, Bishnuraj
Bhandari, Satyaram Suwal and Bimal Thapa and the subject matter of the book was
edited by Badrinath Timalsina and Khilanath Dhamala. CDC extends sincere thanks
to all those who have contributed in developing this book in this form.

This book is a supplimentary learning resource material for students and teachrs. In

addition they have to make use of other relevnt materials to ensure all the learning

outcomes set in the curriculum. The teachers, students and all other stakeholders are

expected to make constructive comments and suggestions to make it a more useful

learning resource material.

2076 BS Ministry of Education, Science and Technology
 Curriculum Development Centre

Table of content

UNIT-1 .. 1
NUMBER SYSTEM .. 1

Objectives: ... 1

Introduction .. 1

Decimal Number System, (base 10) ... 2

Binary Number System (base 2) ... 3

Octal Number System (base 8) ... 4

Hexadecimal Number System (base 16)... 4

The System Radix ... 7

Binary Arithmetic ... 21

Binary Subtraction ... 22

Subtraction Exercise .. 23

Signed Binary ... 24

UNIT-2 .. 29

BINARY ARITHMETIC OPERATIONS ... 29

Objectives: ... 29

Two's Complement Subtraction ... 34

Overflow Problems. ... 41

Multiplication and Division ... 42

Binary Coded Decimal (BCD) ... 43

UNIT-3 .. 47

LOGIC GATE CONCEPTS .. 47

Learning Outcomes .. 47

Introduction .. 47

Practical on Digital Logic gates .. 66

UNIT 4 ... 70

BOOLEAN ALGEBRA AND KARNAUGH MAP .. 70

Learning Outcomes .. 70

Introduction .. 70

Venn Diagram .. 70

Boolean Relationship on Venn Diagram ... 71

Sum of Products (SOP) .. 76

Algebraic Simplification .. 81

The Concept of K-Maps ... 85

Karnaugh Maps - Rules of Simplification .. 90

UNIT- 5 ... 98

BINARY ARITHMETIC LOGIC ... 98

Learning Outcomes .. 98

Introduction .. 98

Half Substractor ... 106

Full Substractor ... 107

UNIT-6 .. 110

COMBINATIONAL LOGIC CIRCUIT ... 110

Objectives ... 110

Introduction .. 110

Applications of Demultiplexer ... 125

UNIT:- 7 .. 150

SEQUENTIAL LOGIC .. 150

Introduction:- ... 150

Clock Pulse Transition ... 153

 Flip Flop ... 156

Truth Table ... 164

Fundamentals of Digital System : Grade 9 1

UNIT-1
Number System

Objectives:
At the end of this unit, you will able to

1. to obtain formalism of logic enabling you to analyse logical processes

2. implement simple logical operations using combinational logic circuits

3. understand common forms of number representation in digital electronic

circuits and to convert between different representations

4. understand the logical operation of simple arithmetic and other MSI circuits

(Medium Scale Integrated Circuits)

5. develop concepts of sequential circuits enabling you to analyse sequential

systems in terms of state machines

6. implement synchronous state machines using flip-flops.

Introduction
Number Systems
In a positional number system, there are only a few symbols, called digits, and these

symbols represent different values depending on the position they occupy in the

number. Data are stored in a binary format, which cannot be easily read by human

beings. This is the reason why input and output (I/O) interfaces are required. Every

computer stores numbers, character letters, and other special characters in coded form.

The value of each digit in such number is determined by

7. The digit itself

8. The position of the digit in the number and

9. The base of the number system where base is defined as the total number of

digits available in the number system.

The number system which we are using in our day-to-day life is called the decimal

number system. The Number systems follow the same pattern, the values can be

written with single character and then a new column is used to count the highest value

in the counting system. The Numerical value is called the base of the system like

2 Fundamentals of Digital System : Grade 9

Binary has base 2, Octal has 8, Decimal has 10, and Hexadecimal has decimal plus

alphabet up to F letters.

For example:

The binary system has 2 numerical characters and so has a base of 2:

0 1

Similarly, the Decimal system has 10 numerical characters and so has a base of 10:

0 1 2 3 4 5 6 7 8 9

For writing numbers greater than 9 a second column is added to the left, and this

column has 10 times the value of the column immediately to its right.

Decimal Number System, (base 10)
Decimal has ten values 0 1 2 3 4 5 6 7 8 9. If we need larger values than 9, we have

to add extra columns. The columns are derived taking first digit 0 and put the single

digit 0 1 2 3 4 5 6 7 8 9 in back like 00 01 02 03 04 05 06 07 08 09 which is also equal

to single digit 0 1 2 3 4 5 6 7 8 9and then turn of next column 1 and put the single

digit 0 1 2 3 4 5 6 7 8 9 in back similar way 10 11 12 13 14 15 16 17 18 19 when

completing of maximum value of that base value then start with the derive number as

it is like 10 0, 10 1 … 10 9 is same of 100, 101……. 109 and so on. Each column

value is ten times the value of the column to its right. You know that in the decimal

system, the successive positions to the left of the decimal point represent units, tens,

hundreds, thousands, etc. However, you may not have given much attention to the fact

that each position represents a specific power of the base (10).

For example:

The decimal number 4389 (written as 438910) consists of the digit 9 in the unit

position, 8 in the tens position, 3 in the hundreds position, 4 in the thousands position

and its value can be shown as:

(4ൈ103) + (3ൈ102) + (8ൈ101) + (9ൈ100)

= (4 ൈ 1000ሻ ൅ ሺ3 ൈ 100ሻ ൅ ሺ8 ൈ 10ሻ ൅ ሺ9 ൈ 1ሻ

= 4000+300+80+9

= 4389

Fundamentals of Digital System : Grade 9 3

It may also be observed that the same digit signifies different values, depending on

the position it occupies in the number.

For example:

In 438910 the digit 9 signifies 9 ൈ 10଴ ൌ 9

In 438910 the digit 9 signifies 9 ൈ 10ଵ ൌ 90

In 438910 the digit 9 signifies 9 ൈ 10ଶ ൌ 900

In 438910 the digit 9 signifies 9 ൈ 10ଷ ൌ 9000

Hence, any number can be represented by using the available digits and arranging

them in various positions.

The principles which apply to the decimal number system also apply to any other

positional number system. It is important only to keep track of the base of the number

system, in which we are working.

1. The value of the base determines the total number of different symbols or digits
available in the number system. The first of these choices is always zero. i.e. 0

2. The maximum value of a single digit is always equal to one less than the value
of the base. E.g. Base 10 has single digit 9.

Binary Number System (base 2)
The binary number system is exactly like the decimal number system, except that it

has base 2, instead of 10. Now we can deduce that Binary number system has only

two values 0 and 1. If we need larger values than 1, add extra columns. The columns

are derived taking first digit 0 and put the single digit 1

For example:

The Binary number 1101 (written as 11012) consists of the digit 1 in the unit position,

0 in the tens position, 1 in the hundreds position, 1 in the thousands position and its

value can be shown as:

(1×23) + (1×22) + (0×21) + (1×20)

= (1 ൈ 8ሻ ൅ ሺ1 ൈ 4ሻ ൅ ሺ0 ൈ 2ሻ ൅ ሺ1 ൈ 1ሻ

= 8+4+0+1

= 13

For example the decimal value thirteen is written 1101 in binary.

4 Fundamentals of Digital System : Grade 9

Octal Number System (base 8)
Octal Number System has eight values 0 1 2 3 4 5 6 7. If we need larger values than

7, add extra columns. The columns are derived taking first digit 0 and put the single

digit from (0 1 2 3 4 5 6 7) in back like 00 01 02 03 04 05 06 07 is also equal to

single digit 0 1 2 3 4 5 6 7 and then turn of next column 1 and put the single digit 0 1

2 3 4 5 6 7 in back similar way 10 11 12 13 14 15 16 17 when completing of maximum

value of that base value then start with the derive number as it is like 10 0, 10 1

………… 10 7 is same of 100, 101 ………. 107 and so on. Each column value is eight

times the value of the column to its right.

For example:

The octal number 437 (written as 4378) consists of the digit 7 in the unit position, 3

in the tens position, 4 in the hundreds position and its value can be shown as:

(4×82) + (3×81) + (7×80)

= (4 ൈ 64ሻ ൅ ሺ3 ൈ 8ሻ ൅ ሺ7 ൈ 1ሻ

= 256+24+7

= 287

It may also be observed that the same digit signifies different values, depending on

the position it occupies in the number.

For example the decimal value twenty-seven is written 33 in octal (3 eights + 3 ones).

Hexadecimal Number System (base 16)
Hexadecimal Number System has sixteen character 0 1 2 3 4 5 6 7 8 9 A B C D E F.

If you need larger values than F, add extra columns. The columns are derived taking

first digit 0 and putting the single digit 0 1 2 3 4 5 6 7 8 9 A B C D E F in back like

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F is also equal to single digit 0 1 2

3 4 5 6 7 8 9 A B C D E F and then turn of next column 1 and put the single digit 0 1

2 3 4 5 6 7 8 9 A B C D E F in back similar way 10 11 12 13 14 15 16 17 18 19 1A

1B 1C 1D 1E 1F when completing of maximum value of that base value then start

with the derive number as it is like 10 0, 10 1 ………… 10 F is same of 100, 101

………. 10F and so on. Each column value is ten times the value of the column to its

right.

Fundamentals of Digital System : Grade 9 5

For example:

The decimal number 438A (written as 438A 16) consists of the digit A in the unit

position, 8 in the tens position, 3 in the hundreds position, 4 in the thousands position

and its value can be shown as:

(4×163) + (3×162) + (8×161) + (A×160)

= (4 ൈ 4096ሻ ൅ ሺ3 ൈ 256ሻ ൅ ሺ8 ൈ 16ሻ ൅ ሺ10 ൈ 1ሻ

= 16384+768+128+10

=17290

It may also be observed that the same digit signifies different values, depending on

the position it occupies in the number.

For example the decimal value sixty-eight is written as 44 in hexadecimal (4 sixteen

+ 4 ones).

Table 1.1
Some column values of different number system

Decimal 1000 100 10 1

Binary 8 4 2 1

Octal 512 64 8 1

Hexadecimal 4096 256 16 1

Each of these different number systems works in the same way, it is just that each
system has a different base, and the column values in each system increase by
multiples of the base number as columns are added to the left.

Because this module describes several different number systems, it is important to
know which system is being described. Therefore, if there is some doubt which system
a number is in, the base of the system, written as a subscript immediately after the
value, is used to identify the number system.

For example:
1010 represents the decimal value ten. (1 ten + 0 units)

102 represent the binary value two. (1 two + 0 units)

108 represent the octal value eight. (1 eight + 0 units)

1016 represents the hexadecimal value sixteen. (1 sixteen + 0 units)

6 Fundamentals of Digital System : Grade 9

Table 1.2
Decimal Binary Octal Hexadecimal

Radix (Base) 10 Radix (Base) 2 Radix (Base) 8 Radix (Base) 16

0 0 0 0

1 1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8

9 9

 A

 B

 C

 D

 E

 F

Example: Convert 2222 in Hexadecimal number.

Fundamentals of Digital System : Grade 9 7

The System Radix
The base of a system, more properly called the RADIX, is the number of different

values that can be expressed using a single digit. Therefore the decimal system has a

radix of 10, the binary system has a radix of 2, the octal system has a radix of 8, and

hexadecimal has a radix of 16. The range of number values in different number

systems is shown in Table 1.2; Notice that because the hexadecimal system must

express 16 values using only one column, it uses the letters A B C D E & F to represent

the numbers 10 to 15.

The Radix Point
When writing a number, the digits used give its value, but the number is ‘scaled’ by

its radix point.

For example, 618.510 are ten times bigger than 61.8510although the digits are the

same.

also notice that when using multiple number systems, the term ‘Radix Point’ is used

instead of ‘Decimal Point’. When using decimal numbers, a decimal point is used, but

if a different system is used, it would be wrong to call the point a decimal point, it

would need to be called "Binary point" or "Octal point" etc. The simplest way around

this is to refer to the point in any system (which will of course have its value labelled

with its radix) as the Radix Point.

Exponents
A decimal number such as 618.510 can be considered as the sum of the values of its

individual digits, where each digit has a value dependent on its position within the

number (the value of the column):

= 618.510

Table 1.3

Column 2 Column 1 Column 0 Column -1

6 hundreds +1 tens +8 units +5 tenths

(6×102) (1×101) (8×100) (5×10-1)

600 +10 8 +0.5

8 Fundamentals of Digital System : Grade 9

Each digit in the number is multiplied by the system radix raised to a power depending

on its position relative to the radix point. This is called the Exponent. The immediate

digit to the left of the radix point has the exponent 0 applied to its radix, and for each

place to the left, the exponent increases by one. The first place to the right of the radix

point has the exponent -1 and so on, positive exponents to the left of the radix point

and negative exponents to the right.

This method of writing numbers is widely used in electronics with decimal numbers,

but can be used with any number system. Only the radix is different.

Hexadecimal exponents 79.216 = (7 x 161) + (9 x 160) + (2 x 16-1)

Octal exponents 97.68 = (9 x 81) + (7 x 80) + (6 x 8-1)

Binary Exponents 18.12 = (1 x 21) + (8 x 20) + (1 x 2-1) = 10.5

Use the calculator for answer.

Floating Point Notation
If electronic calculator hasn't radix points other than in decimal, this could be a

problem. The radix exponent can also be used to eliminate the radix point, without

altering the value of the number.

For example

It is all done by changing the radix exponent.

902.610 = 902.6 x 100 = 90.26 x 101 = 9.026 x 102 = .9026 x 103

The radix point is moved one place to the left by increasing the exponent by one.

It is also possible to move the radix point to the right by decreasing the exponent. In

this way the radix point can be positioned wherever it is required, in any number

system, simply by changing the exponent. This is called floating point notation and

then calculate by calculator or yourself.

Normalised Form
Putting the radix point at the front of the number, and keeping it there by changing the

exponent we can make, calculations easier for any radix.

Fundamentals of Digital System : Grade 9 9

4 Bit Binary Representation
Table 1.4

Decimal

MSB 4 Bit Binary LSB

23=8 22=4 21=2 20=1

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

When a number is stored in an electronic system, it is stored in a memory location

having a fixed number of binary bits. Some of these memory locations are used for

general storage while others, having some special function, are called registers.

Wherever a number is stored, it will be held in some form of binary, and must always

have a set number of bits. Therefore a decimal number such as 13, which can be

expressed in four binary bits as 11012 becomes 000011012 when stored in an eight-

10 Fundamentals of Digital System : Grade 9

bit register. This is achieved by adding four Non Significant Zeros to the left of the

most significant ‘1’ digit.

Using this system, a binary register that is n bits wide can hold 2n values.

Therefore an 8 bit register can hold 28 values = 256 values (0 to 255)

A 4 bit register can hold 24 values = 16 values (0 to 15)

Bottom of Form
Filling the register with non-significant zeros is fine - if the number is smaller than

the maximum value the register will hold, but how about larger numbers? These must

be dealt with by dividing the binary number into groups of 8 bits, each of which can

be stored in a one-byte location, and using several locations to hold the different parts

of the total value.

Converting Between Number Systems
It is often necessary to convert values written in one number system to another. The

purpose of this module is to explain just that, and to get you to carry out some simple

conversions so that you can not only convert between number systems, but also

understand how the conversion process works. There are various ways to tackle

conversions without a calculator; once the conversion methods are learned, the only

skills needed are the ability to multiply and divide, and to add together a few numbers.

Conversion from any system to decimal
The number of values that can be expressed by a single digit in any number system is
called the system radix and any value can be expressed in terms of its system radix.

Octal to Decimal
For example the system radix of octal is 8, since any of the 8 values from 0 to 7 can
be written as a single digit.

Convert 758 to decimal.

Using the values of each column, (which in an octal integer are powers of 8) the octal
value 208 can also be written as:

 (2x81) + (0 x 80)

As (81 = 8) and (80 =1),

 This gives a multiplier value for each column.

Fundamentals of Digital System : Grade 9 11

Multiply the digit in each column by the column multiplier value for that column to

give:

2x8 =16 0x1 = 0

Then simply add these results to give the decimal value.

16 + 0 = 1610

Therefore, 208 = 1610

Convert 1268 to decimal.

Using the values of each column, (which in an octal integer are powers of 8) the octal

value 1268 can also be written as:

(1x82) + (2x81) + (6 x 80)

As (82 = 64), (81 = 8) and (80 =1),

This gives a multiplier value for each column.

Multiply the digit in each column by the column multiplier value for that column

to give:

1x64 = 64 2x8 =16 6x1 = 6

Then simply add these results to give the decimal value.

64 + 16 + 6 = 8610

Therefore, 1268 = 8610

Convert 758 to decimal.

Using the values of each column, (which in an octal integer are powers of 8) the octal

value 758 can also be written as:

 (7x81) + (5 x 80)

As (81 = 8) and (80 =1),

 This gives a multiplier value for each column.

Multiply the digit in each column by the column multiplier value for that column to

give:

7x8 =56 5x1 = 5

Then simply add these results to give the decimal value.

56 + 5 = 6110

Therefore, 758 = 6110

12 Fundamentals of Digital System : Grade 9

Convert 1268 to decimal.

Using the values of each column, (which in an octal integer are powers of 8) the octal

value 10278 can also be written as:

(1x83) + (0x82) + (2 x 81) + (7x80)

As (83 = 512), (82 = 64), (81 = 8) and (80 =1),

 This gives a multiplier value for each column.

Multiply the digit in each column by the column multiplier value for that column to

give:

1x512 = 512 0x64 =0 2x8 = 16 7x1=7

Then simply add these results to give the decimal value.

512+0+16+7 = 53510

Therefore, 10278 = 53510

Binary to Decimal

Convert 10012 to decimal.

The same method can be used to convert binary number to decimal:

= (1x23) + (0x22) + (0x21) + (1x20)

= 8 + 0 +0 +1

= 910

Therefore, 10012 = 910

Convert 1112 to decimal.
The same method can be used to convert binary number to decimal:

= (1x22) + (1x21) + (1x20)

= 4+ 2 +1

= 710

Therefore, 1112 = 710

Fundamentals of Digital System : Grade 9 13

Hexadecimal to Decimal

Convert B2D16 to decimal.

Using the same method to convert hexadecimal to decimal

= (Bx162) + (2x161) + (Dx160)

= (11x162) + (2x161) + (13x160)

= 2816 + 32 +13

= 286110

Therefore B2D16 = 286110.

Convert CD16 to decimal.
Using the same method to convert hexadecimal to decimal

= (Cx161) + (Dx160)

= (12x161) + (13x160)

= 196 +13

= 20910

Therefore CD16 = 20910.

The same method (multiplying each digit by its column value) can be applied to

convert any system to decimal.

Now the convert Decimal to any radix form.

To convert a decimal integer number (a decimal number in which any fractional part

is ignored) to any other radix, all that is needed is to continually divide the number by

its radix, and with each division, write down the remainder. When read from bottom

to top, the remainder will be the converted result.

Decimal to Octal

14 Fundamentals of Digital System : Grade 9

Example: Decimal to Octal Conversion

For example, to convert the decimal number 8610 to octal; divide 8610 by the

system radix, which when converting to octal is 8. This gives the answer 10,

with a remainder of 6.

Continue dividing the answer by 8 and writing down the remainder until the

answer = 0

Now simply write out the remainders, starting from the bottom, to give 1268.

Therefore 8610 = 1268

Decimal to Binary

Example: Decimal to Binary Conversion

This process also works to convert decimal to binary, but this time the system

radix is 2:

For example, to convert the decimal number 1310 to binary:

 Therefore 1310 = 11012

Decimal to Hexadecimal

Fundamentals of Digital System : Grade 9 15

Example : Decimal to Hexadecimal Conversion

It also works to convert decimal to hexadecimal, but now the radix is 16:

When remainders may be greater than 9 replace with the alphabetical value, it

easier to use decimal for the remainders, and then convert them to hexadecimal.

Therefore 286110 = B2D16

Numbers with Fractions

It is very common in the decimal system to use fractions; that is any decimal

number that contains a decimal point, but how can decimal numbers, such as

34.62510 be converted to binary fractions?

However, for the sake of completeness, here is a method for converting decimal

fractions to binary fractions.

Converting the Decimal Integer to Binary

Example: Converting the Decimal Integer to Binary

The radix point splits the number into two parts; the part to the left of the radix point

is called the Integer. The part to the right of the radix point is the Fraction. A number

such as 34.62510 is therefore split into 3410 (the integer), and .62510 (the fraction).

To convert such a fractional decimal number to any other radix, the method described

above is used to convert the integer.

So 3410 = 1000102

16 Fundamentals of Digital System : Grade 9

Converting the Decimal Fraction to Binary

Example: Converting the Fraction to Binary

To convert the fraction, this must be multiplied by the radix (in this case 2 to convert

to binary). Notice that with each multiplication a carry is generated from the third

column. The carry will be either 1 or 0 and these are written down at the left hand side

of the result. However when each result is multiplied the carry is ignored (don’t

multiply the carry). Each result is multiplied in this way until the result (ignoring the

carry) is 000. Conversion is now complete.

For the converted value just read the carry column from top to bottom

So 0.62510 = .1012

Therefore the complete conversion shows that 34.62510 = 100010.1012

However, with binary, there is a problem in using this method, .625 converted easily

but many fractions will not. For example if you try to convert .626 using this method

you would find that the binary fraction produced goes on to many, many places

without a result of exactly 000 being reached.

Quick Conversions
The most commonly encountered number systems are binary and hexadecimal, and a

quick method for converting to decimal is to use a simple table showing the column

weights, as shown in tables.

Fundamentals of Digital System : Grade 9 17

Converting Binary to Decimal

Table

Bit 27 26 25 24 23 22 21 20

Value of each bit 128 64 32 16 8 4 2 1

8 bit Binary 0 1 0 0 0 0 1 1

To convert from binary to decimal, write down the binary number giving each bit its

correct ‘weighting’ i.e. the value of the columns, starting with a value of one for the

right hand (least significant) bit. Giving each bit twice the value of the previous bit as

you move left.

Example:

To convert the binary number 010000112 to decimal, write down the binary number

and assign a ‘weighting’ to each bit as in Table

Now simply add up the values of each column containing a 1 bit, ignoring any

columns containing 0.

Applying the appropriate weighting to 01000011 gives 64 + 2 + 1 = 67

Therefore: 010000112 = 6710

Converting Hexadecimal to Decimal

Table

Column 163 162 161 160

Value of each column 4096 256 16 1

Hex value 2 5 C B

A similar method can be used to quickly convert hexadecimal to decimal, using Table:

 The hexadecimal digits are entered in the bottom row and then multiplied by the

weighting value for that column.

18 Fundamentals of Digital System : Grade 9

Adding the values for each column gives the decimal value.

Therefore: 25CB16 = 967510

Practice yourself: Conversion

110100112 to decimal

101110112 to decimal

34F216 to decimal

FFFF16 to decimal

Binary to Hexadecimal
Converting between binary and hexadecimal is a much simpler process; hexadecimal

is really just a system for displaying binary in a more readable form.

Binary is normally divided into Bytes (of 8 bits) it is convenient for machines but

quite difficult for humans to read accurately. Hexadecimal groups each 8-bit byte into

two 4-bit nibbles, and assigns a value of between 0 and 15 to each nibble. Therefore

each hexadecimal digit (also worth 0 to 15) can directly represent one binary nibble.

This reduces the eight bits of binary to just two hexadecimal characters.

Table

Binary Hexadecimal

0000 0

0001 1

0010 2

0011 3

Fundamentals of Digital System : Grade 9 19

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

For example:
111010012 is split into 4 bits from the LSB (least significant bits) and if there

wouldn't have 4 bits on MSB (most significant bits) you can add zero in front

of MSB for making 4 bits group.

Otherwise, 111010012 is split into 2 nibbles 11102 and 10012 then each nibble

is assigned a hexadecimal value between 0 and F.

The bits in the most significant nibble (11102) add up to 8+4+2+0 = 1410 = E16

The bits in the least significant nibble (10012) add up to 8+0+0+1 = 910 = 916

Therefore 111010012 = E916

Converting hexadecimal to binary of course simply reverses this process.

For example: BAD16 to binary

Here, Binary value of B (11) = 10112

Binary value of A (10) = 10102

Binary value of D (13) = 11012

Then concatenate the nibble value as like B A D has 1011 1010 11012

Therefore, BAD16= 1011101011012

20 Fundamentals of Digital System : Grade 9

Binary to Octal conversion
Table

Binary Octal

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

For example:
111010012 is split into 3 bits from the LSB (least significant bits) and if there

wouldn't have 3 bits on MSB (most significant bits) you can add zero in front

of MSB for making 3 bits group as 112 1012 0012 is equal to 0112 1012

0012 then each group is assigned a octal value between 0 and 7.

The bits in the most significant 3 bits group (0112) add up to 0+2+1 = 310 and

next 3 bits group (1012) add up to 4+0+1 = 510

The bits in the least significant nibble (0012) add up to 0+0+1 = 110

Therefore 111010012 = 3518

Converting hexadecimal to binary of course simply reverses this process.

For example: 7018to binary

Here, Binary value of 7 in octal = 1112

Binary value of 0in octal = 0002

Binary value of 1in octal = 0012

Then concatenate the 3 bit group value as like 7 0 1 has 111 000 0012

Therefore, 7018= 1110000012

Fundamentals of Digital System : Grade 9 21

Binary Arithmetic
Binary Addition Rules
Arithmetic rules for binary numbers are quite straightforward, and similar to those

used in decimal arithmetic. The rules for addition of binary numbers

Fig. 2.1 Rules for Binary Addition

Notice that in Fig. 2.1, 1+1 = (1)0 requires a ‘carry’ of 1 to the next column.

Remember that binary 102 = 210 decimal

Example:

Fig. 2.2 Simple Binary Addition

Binary addition is carried out just like decimal, by adding up the columns, starting at

the right and working column by column towards the left.

Fig. 2.2 Binary Addition with Carry

Just as in decimal addition, it is sometimes necessary to use a ‘carry’, and the carry is

added to the next column. For example, in Fig. 2.2 when two ones in the right-most

column are added, the result is 210 or 102, the least significant bit of the answer is

therefore 0 and the 1 becomes the carry bit to be added to the 1 in the next column.

22 Fundamentals of Digital System : Grade 9

Binary Subtraction
The rules for subtraction of binary numbers are again similar to decimal. When a large

digit is to be subtracted from a smaller one, a ‘borrow’ is taken from the next column

to the left. In decimal subtractions the digit ‘borrowed in’ is worth ten, but in binary

subtractions the ‘borrowed in’ digit must be worth 210 or binary 102.

Fig. 2.3 Rules for Binary Addition

Binary Subtraction Rules
The rules for binary subtraction are quite straightforward except that when 1 is

subtracted from 0, a borrow must be created from the next most significant column.

This borrow is then worth 210 or 102 because a 1 bit in the next column to the left is

always worth twice the value of the column on its right.

Fig 2.3 shows how binary subtraction works by subtracting 510 from 1110 in both

decimal and binary. Notice that in the third column from the right (22), a borrow from

the (23) column is made and then paid back in the MSB (23) column.

Fig. 2.3 Binary Subtraction

Fundamentals of Digital System : Grade 9 23

Subtraction Exercise
Give some question here:

Fig. 2.4 Limits of 4 Bit Arithmetic

Limitations of Binary Arithmetic
Now back to ADDITION to illustrate a problem with binary arithmetic. In Fig. 2.4

notice how the carry goes right up to the most significant bit.

This is not a problem with this example as the answer 10102 (1010) still fits within 4

bits, but what would happen if the total was greater than 1510?

Fig. 2.5 The Overflow Problem

As shown in Fig 2.5 there are cases where a carry bit is created that will not fit into

the 4-bit binary word. When arithmetic is carried out by electronic circuits, storage

locations called registers are used that can hold only a definite number of bits. If the

register can only hold four bits, then this example would raise a problem. The final

carry bit is lost because it cannot be accommodated in the 4-bit register; therefore the

answer will be wrong.

24 Fundamentals of Digital System : Grade 9

To handle larger numbers more bits must be used, but no matter how many bits are

used, sooner or later there must be a limit. How numbers are held in a computer system

depends largely on the size of the registers available and the method of storing data in

them; however any electronic system will have a way of overcoming this ‘overflow’

problem, but will also have some limit to the accuracy of its arithmetic.

Signed Binary
Signed Binary Notation
There are a number of ways in which binary numbers can represent both positive and

negative values, 8 bit systems for example normally use one bit of the byte to represent

either + or − and the remaining 7 bits to give the value. One of the simplest of these

systems is SIGNED BINARY, also often called ‘Sign and Magnitude’, which exists

in several similar versions, but is commonly an 8 bit system that uses the most

significant bit (MSB) to indicate a positive or a negative value. By convention, a 0 in

this position indicates that the number given by the remaining 7 bits is positive, and a

most significant bit of 1 indicates that the number is negative.

For example:
+4510 in signed binary is (0)01011012

-4510 in signed binary is (1)01011012

Table 2.3.1

Binary Decimal Signed Binary

11111111 255 -127

11111110 254 -126

11111101 253 -125

10000010 130 -2

10000001 129 -1

10000000 128 -0

01111111 127 +127

Fundamentals of Digital System : Grade 9 25

01111110 126 +126

00000011 3 +3

00000010 2 +2

00000001 1 +1

00000000 0 +0

Note:
The brackets around the MSB (the sign bit) are included here for clarity but

brackets are not normally used. Because only 7 bits are used for the actual

number, the values the system can represent range from are −12710 or

111111112, to +12710.

A comparison between signed binary, pure binary and decimal numbers is

shown in Table2.3.1 Notice that in the signed binary representation of positive

numbers between +010 and +12710, all the positive values are just the same as in

pure binary. However the pure binary values equivalents of +12810 to +25510 are

now considered to represent negative values −0 to −127.

This also means that 010 can be represented by 000000002 (which is also 0 in

pure binary and in decimal) and by 100000002 (which is equivalent to 128 in

pure binary and in decimal).

Fig. 2.3.2 Adding Positive Numbers in Signed Binary

Signed Binary Arithmetic
Because the signed binary system now contains both positive and negative values,

calculation performed with signed binary arithmetic should be more flexible.

26 Fundamentals of Digital System : Grade 9

Fig. 2.3.3 Adding Positive & Negative Numbers in Signed Binary

In Fig. 2.3.1 two positive (MSB = 0) numbers are added and the correct answer is

obtained. This is really not different to adding two numbers in pure binary as described

Number Systems above.

In Fig. 2.3.3 however, the negative number −5 is added to +7, the same action in fact

as SUBTRACTING 5 from 7, which means that subtraction should be possible by

merely adding a negative number to a positive number. Although this principle works

in the decimal version the result using signed binary is 100011002 or −1210 which of

course is wrong, the result of 7 − 5 should be +2.

Although signed binary can represent positive and negative numbers, if it is used for

calculations, some special action would need to be taken, depending on the sign of the

numbers used, and how the two values for 0 are handled, to obtain the correct result.

Whilst signed binary does solve the problem of representing positive and negative

numbers in binary, and to some extent carrying out binary arithmetic, there are better

sign and magnitude systems for performing binary arithmetic.

Summary:
 Electronic systems may use a variety of different number systems, (e.g. Decimal,

Hexadecimal, Octal, and Binary).

 The number system in use can be identified by its radix (10, 16, 8, 2).

 The individual digits of a number are scaled by the Radix Point.

 The Exponent is the system radix raised to a power dependent on the column

value of a particular digit in the number.

 In Floating Point Notation the radix point can be moved to a new position without

changing the value of the number if the Exponent of the number is also changed.

Fundamentals of Digital System : Grade 9 27

 In Normalized form, the radix point is always placed to the left of the most

significant digit.

 When numbers are stored electronically they are stored in a register holding a

finite number of digits; if the number stored has less digits than the register, non-

significant zeros are added to fill spaces to the left of the stored number. Numbers

containing more digits than the register can hold are broken up into register sized

groups and stored in multiple locations

 Number systems are basically of two types: non-positional and positional.

 In a non – positional system, each symbol represents same value, regardless of its

position in the number, and the symbols are simply added to find out the value of

a particular number. It is very difficult to perform arithmetic with such a number

system.

 In a positional number system, there are only few symbols called digits, and these

symbols represent different values, depending on the position, they occupy in the

number. The value of each digit in such a number is determined by three

considerations:

 The digit itself
 The position of the digit in the number, and
 The base of the number system.

 The number system that we use in our day-to –day life is called decimal number

system. In this system, the base is equal to 10, because there are altogether ten

symbols or digits(0,1,2,3,4,5,6,7,8,9).

 Some of the positional numbers system, which are used in the computer

professionals, are binary (for which base is 2), octal (for which base is 8), and

hexadecimal (for which base is 16).

 Students must know the techniques for the following types of conversions to

convert numbers from one base to another.

 Converting to decimal from another base.
 Converting from decimal to another base.
 Converting from a base other than 10, to a base other than 10.
 Shortcut method for binary to octal conversion.
 Shortcut method for octal to binary conversion.
 Shortcut method for binary to hexadecimal conversion.

28 Fundamentals of Digital System : Grade 9

 Shortcut method to hexadecimal to binary conversion.

Self evaluation:
(Short Answer Questions)

1. What is the difference between positional and non-positional number systems?

Give examples of both types of numbers systems.

2. What is meant by the base of number system? Give examples to illustrate the role

of base in positional numbers system.

3. What is the value of the base for decimal, hexadecimal, binary and octal number

systems?

4. Why are octal and /or hexadecimal number systems used as shortcut notations?

5. Find out the decimal equivalent of the following binary numbers:

1101011 b) 11011101

11101101 d) 1000

10110001100 f) 110001

10110001100 h) 111

6. Find out the octal equivalent of the binary numbers of the question 5.

7. Find out the hexadecimal equivalent of the binary number of question 5.

8. Convert the following numbers to decimal numbers:

1101102 b) 25736 c) 2A3B16 d) 12349

9. Convert the following decimal numbers to binary numbers.

34510 b) 169410 c) 3210 d) 13510

10. Convert the decimal number of question 9 to octal numbers.

11. Convert the decimal numbers of question 9 to hexadecimal numbers.

12. Carry out the following conversions:
1256 =?4 b) 249 =?3 c) ABC16 =?8

13. Convert the following numbers to their binary equivalent:

2AC16 b) FAB16 c) 26148 d) 5628

14. Find the decimal equivalent of the following numbers:

111.012 b) 1001.0112 c) 247.658 d) A2B.D416

Fundamentals of Digital System : Grade 9 29

UNIT-2
Binary Arithmetic Operations

Objectives:
After competitions of this unit students will be able to

1. Understand the concept of One's complement and two's complements.

2. Perform addition and subtraction processor using One's complement and Two's

Complements.

3. Perform the multiplication, division and memory overflow problem.

4. To operate the Binary Decimal Code.

One's and Two's Complement
One's Complement
The complement (or opposite) of +5 is −5. When representing positive and negative

numbers in 8-bit ones complement binary form, the positive numbers are the same as

in signed binary notation described in number systems i.e. the numbers 0 to +127 are

represented as 000000002 to 011111112. However, the complement of these

numbers, that is their negative counterparts from −128 to −1, are represented by

‘complementing’ each 1 bit of the positive binary number to 0 and each 0 to 1.

For example:

+510 is 000001012

−510 is 111110102

Notice in the above example, that the most significant bit (MSB) in the negative

number −510 is 1, just as in signed binary. The remaining 7 bits of the negative

number however are not the same as in signed binary notation. They are just the

complement of the remaining 7 bits, and these give the value or magnitude of the

number.

The problem with signed the binary arithmetic described in number system was that

it gave the wrong answer when adding positive and negative numbers. Does ones

complement notation give better results with negative numbers than signed binary?

30 Fundamentals of Digital System : Grade 9

Figure. Adding Positive & Negative Numbers in Ones Complement

Figure. 1.5.1 shows the result of adding −4 to +6, using ones complement, (this is the

same as subtracting +4 from +6, and so it is crucial to arithmetic).

The result, 000000012 is 110 instead of 210.

This is better than subtraction in signed binary, but it is still not correct. The result

should be +210 but the result is +1 (notice that there has also been a carry into the

none existent 9th bit).

Figure. shows another example, this time adding two negative numbers −4 and −3.

Because both numbers are negative, they are first converted to ones complement

notation.

+410 is 00000100 in pure 8 bit binary, so complementing gives 11111011.

Figure. Adding Positive & Negative Numbers in Ones Complement

This is −410 in ones complement notation.

+310 is 00000011 in pure 8 bit binary, so complementing gives 11111100.

This is −310 in ones complement notation.

Fundamentals of Digital System : Grade 9 31

The result of 111101112 is in its complemented form so the 7 bits after the sign bit

(1110111), should be re-complemented and read as 0001000, which gives the value

810. As the most significant bit (MSB) of the result is 1 the result must be negative,

which is correct, but the remaining seven bits give the value of −8. This is still wrong

by 1, it should be −7.

End around Carry
There is a way to correct this however. Whenever the ones complement system

handles negative numbers, the result is 1 less than it should be, e.g. 1 instead of 2 and

−8 instead of −7, but another thing that happens in negative number ones complement

calculations is that a carry is ‘left over’ after the most significant bits are added.

Instead of just disregarding this carry bit, it can be added to the least significant bit of

the result to correct the value. This process is called ‘end around carry’ and corrects

for the result -1 effect of the ones complement system.

However, there are still problems with both ones complement and signed binary

notation. The ones complement system still has two ways of writing

010 (000000002 = +010 and 111111112 = −010); additionally there is a problem with

the way positive and negative numbers are written. In any number system, the positive

and negative versions of the same number should add to produce zero. As can be seen

from Table, adding +45 and −45 in decimal produces a result of zero, but this is not

the case in either signed binary or ones complement.

Table

 Decimal Signed Binary 1's complement

 +45 00101101 00101101

 -45 10101101 11010010

Binary sum 11011010 11111111

Decimal 010 -9010 -12710

This is not good enough, however there is a system that overcomes this difficulty and

allows correct operation using both positive and negative numbers. This is the Twos

Complement system.

32 Fundamentals of Digital System : Grade 9

Two's Complement Notation
Twos complement notation solves the problem of the relationship between positive

and negative numbers, and achieves accurate results in subtractions.

To perform binary subtraction, the twos complement system uses the technique of

complementing the number to be subtracted. In the ones complement system this

produced a result that was 1 less than the correct answer, but this could be corrected

by using the ‘end around carry’ system. This still left the problem that positive and

negative versions of the same number did not produce zero when added together.

The two's complement system overcomes both of these problems by simply adding

one to the ones complement version of the number before addition takes place. The

process of producing a negative number in Two's Complement Notation is illustrated

in Table

Table

Producing a Two's complement Negative Number

+5 in 8 bit binary (or 8-bit signed Binary) is 00000101

Complementing to produce the One's complement 11111010

With 1 added 1

So -5 in two's complement is 11111011

Figure. Adding a Number to its Two's Complement Produces Zero

Fundamentals of Digital System : Grade 9 33

This version of −5 now, not only gives the correct answer when used in subtractions

but is also the additive inverse of +5 i.e. when added to +5 produces the correct result

of 0, as shown in Figure.

Note that in two's complement the (1) carry from the most significant bit is discarded

as there is no need for the ‘end around carry’ fix.

With numbers electronically stored in their two's complement form, subtractions can

be carried out more easily (and faster) as the microprocessor has simply to add two

numbers together using nearly the same circuitry as is used for addition.

6 − 2 = 4 is the same as (+6) + (−2) = 4

Two's Complement Examples
Note: When working with two's complement it is important to write numbers in

their full 8 bit form, since complementing will change any leading 0 bits into 1

bits, which will be included in any calculation. Also during addition, carry bits

can extend into leading 0 bits or sign bits, and this can affect the answer in

unexpected ways.

Figure. Adding Positive Numbers in Two's Complement

Two's Complement Addition
Fig shows an example of addition using 8 bit twos complement notation. When adding

two positive numbers, there the sign bits (msb) will both be 0, so the numbers are

written and added as a pure 8-bit binary addition.

34 Fundamentals of Digital System : Grade 9

Two's Complement Subtraction

 Subtracting a Positive Number from a Larger Positive Number
Figure. shows the simplest case of twos complement subtraction where one positive

number (the subtrahend) is subtracted from a larger positive number (the minuend).

In this case the minuend is 1710 and the subtrahend is 1010.

Because the minuend is a positive number its sign bit (MSB) is 0 and so it can be

written as a pure 8 bit binary number.

The subtrahend is to be subtracted from the minuend and so needs to be complemented

(simple ones complement) and 1 added to the least significant bit (1SB) to complete

the twos complement and turn +10 into −10.

When these three lines of digits and any carry 1 bits are added, remembering that in

twos complement, any carry from the most significant bit is discarded. The answer

(the difference between 17 and 10) is 000001112 = 710 which is correct. Therefore

the twos complement method has provided correct subtraction by using only addition

and complementing, both operations that can be simply accomplished by digital

electronic circuits.

Fundamentals of Digital System : Grade 9 35

Subtraction with a negative result

 Subtraction Producing a Negative Result
Some subtractions will of course produce an answer with a negative value. In Figure.

1.5.6 the result of subtracting 17 from 10 should be −710 but the twos complement

answer of 111110012 certainly doesn’t look like −7. However the sign bit is indicating

correctly that the answer is negative, so in this case the 7 bits indicating the value of

the negative answer need to be 'twos complemented' once more to see the answer in a

recognisable form.

When the 7 value bits are complemented and 1 is added to the least significant bit

however, like magic, the answer of 100001112 appears, which confirms that the

original answer was in fact −7 in 8 bit twos complement form.

It seems then, that two's complement will get the right answer in every situation?

Well guess what − it doesn’t! There are some cases where even twos complement will

give a wrong answer. In fact there are four conditions where a wrong answer may crop

up:

1. When adding large positive numbers.

2. When adding large negative numbers.

3. When subtracting a large negative number from a large positive number.

4. When subtracting a large positive number from a large negative number.

36 Fundamentals of Digital System : Grade 9

The problem seems to be with the word ‘large’. What is large depends on the size of

the digital word the microprocessor uses for calculation. As shown in Table, if the

microprocessor uses an 8−bit word, the largest positive number that can appear in the

problem OR THE RESULT is +12710 and the largest negative number will be

−12810. The range of positive values appears to be 1 less than the negative range

because 0 is a positive number in twos complement and has only one occurrence

(000000002) in the whole range of 25610 values.

With a 16-bit word length the largest positive and negative numbers will be

+3276710 and -3276810, but there is still a limit to the largest number that can appear

in a single calculation.

Table

2's complement (8 bits) Decimal values

01111111 +127

01111110 +126

011111101 +125

00000010 +2

00000001 +1

00000000 0

11111111 -1

11111110 -2

1000010 -126

1000001 -127

1000000 -128

Fundamentals of Digital System : Grade 9 37

Example-1: Perform 2’s complement subtraction of (7)10 − (11)10.

Solution:

2’s Complements Subtraction of (7)10 – (11)10
First convert the decimal numbers 7 and 11 to its binary equivalents.
(7)10 = (0111)2
(11)10 = (1011)2 in 4-bit system
Then find out the 2’s complement for 1011 i.e,
1’s Complement of 1011 is 0100
2’s Complement of 1011 is 0101
So, (7)10 – (11)10 =
 0111
0101

11002

Example-2: Perform the following subtractions using 2’s complement of binary
method.

i. 01000 – 01001
ii. (ii) 01100 – 00011

iii. (iii) 0011.1001 – 0001.1110

Solution:
i) Subtraction of 01000-01001: 1’s complement of 01001 is 10110 and 2’s

Complement is

10110+ 1 =10111.
 Hence
01000 = 01000
- 01001 = +10111 (2's complement)

11111 (Summation)

Since the MSB of the sum is 1, which means the result is negative and it is in
2's
Complement form. So, 2's complement of 1111 =00001= (1)10. Therefore, the
result is – 1.

38 Fundamentals of Digital System : Grade 9

ii) Subtraction of 01100-00011: 1’s complement of 00011 is 11100 and 2’s

complement is

 11100 + 1 = 11101. Hence

01100 = 01100

– 00011 = + 11101 (2's complement)

--

1 01001 = + 9

Ignore

--

If a final carry is generated discard the carry and the answer is given by the

remaining bits

Which is positive i.e., (1001)2 = (+ 9)10

Subtraction of 0011.1001 – 0001.1110: 1’s complement of 0001.1110 is

1110.0001

And

 Its 2’s complement is 1110.0010.

0011.1001 = 0011.1001

- 0001.1110 = + 1110.1011 (2’s complement)

1 0001.101I = + 1 .68625

Ignore

If a final carry is generated discard the carry and the answer is given by the

remaining

Bits which is positive i.e., (0001.1011)2 = (+ 1.68625)10

Example-3 Perform the following additions using 2’s complement.

-20 to +26

 (ii) +25 to -15

Fundamentals of Digital System : Grade 9 39

Solution:

 (i) First convert the two numbers 20 and 26 into its 8-bit binary equivalent and

find out the

2’s complement of 20, then add -20 to +26.

20 = 0 0 0 1 0 1 0 0 (8-bit binary equivalent of 20)

20 = 1 1 1 0 1 0 1 1 (1’s complement)

+1

20 = -20 = 1 1 1 0 1 1 0 0 (2’s complement of 20)

+26 = 0 0 0 1 1 0 1 0 (8-bit binary equivalent of 26)

Addition of -20 to +26

= +6 = 0 0 0 0 0 1 1 0

Hence -20 to +26 = (6)10 = (0110)2.

(ii) First convert the two numbers 25 and 15 into its 8-bit binary equivalent and

find out

the 2’s complement of 15, then add +25 to -15.

15 = 0 0 0 0 1 1 1 1 (8-bit binary equivalent of 15)

15 = 1 1 1 1 0 0 0 0 (1’s complement)

+1

15 = -15 = 1 1 1 1 0 0 0 1 (2’s complement of 15)

+25 = 0 0 0 1 1 0 0 1 (8-bit binary equivalent of 25)

Addition of -15 to +25

= +10 = 0 0 0 0 1 0 1 0

Hence -15 to +25 = (10)10 = (1010)2.

40 Fundamentals of Digital System : Grade 9

Example-4 Perform following subtraction

 (i) 11001-10110 using 1’s complement

(ii) 11011-11001 using 2’s complement

Solution:

 (i) 11001 - 10110

1's Complement of 10110 = 01001

1 1 0 0 1

+ 0 1 0 0 1

1 0 0 0 1 0

Add 1 and ignore carry.

Ans is 00011 = 3.

(ii) 11011 – 11001 = A – B

2's complement of B = 00111

1 1 0 1 1

+ 0 0 1 1 1

1 0 0 0 1 0

Ignore carry to get answer as 00010 = 2.

Example-5 Perform the following operations using the 2’s complement

method:

(i) 23 – 48

 (ii) – 48 – 23

Solution:

 (i) 23 – 48 add them

23 0 1 0 1 1 1

- (- 48) + 0 1 0 0 0 0

71 1 0 0 1 1 1

Fundamentals of Digital System : Grade 9 41

– 48 - 23 = - 48 + (-23)

-48 = 1 1 0 1 0 0 0 0

-23 = 1 1 1 0 1 0 0 1

1 1 0 1 1 1 0 0 1 = -71

Carry is discarded

Overflow Problems.
Steps can be taken to accommodate large numbers, by breaking a long binary word

down into byte sized sections and carrying out several separate calculations before

assembling the final answer. However this doesn’t solve all the cases where errors can

occur.

A typical overflow problem that can happen even with single byte numbers is

illustrated in Figure.

Figure. Carry Overflows into Sign Bit
In this example, the two numbers to be added (11510 and 9110) should give a sum of

20610 and at first glance 110011102 looks like the correct answer of 20610, but

remember that in the 8 bit twos complement system the most significant bit is the sign

of the number, therefore the answer appears to be a negative value and reading just

the lower 7 bits gives 10011102 or -7810. Although twos complement negative

42 Fundamentals of Digital System : Grade 9

answers are not easy to read, this is clearly wrong as the result of adding two positive

numbers must give a positive answer.

According to the information in Fig 1.5.6, as the answer is negative, complementing

the lower 7 bits of 110011102 and adding 1 should reveal the value of the correct

answer, but carrying out the complement+1 on these bits and leaving the msb

unchanged gives 101100102which is -5010. This is nothing like the correct answer of

20610 so what has happened?

The 8 bit twos complement notation has not worked here because adding 115 + 91

gives a total greater than +127, the largest value that can be held in 8-bit two's

complement notation.

What has happened is that an overflow has occurred, due to a 1 being carried from bit

6 to bit 7 (the most significant bit, which is of course the sign bit), this changes the

sign of the answer. Additionally it changes the value of the answer by 12810 because

that would be the value of the msb in pure binary. So the original answer of 7810 has

‘lost’ 12810 to the sign bit. The addition would have been correct if the sign bit had

been part of the value, however the calculation was done in twos complement notation

and the sign bit is not part of the value.

Of course in real electronic calculations, a single byte overflow situation does not

usually cause a problem; computers and calculators can fortunately deal with larger

numbers than 12710. They achieve this because the microprocessors used are

programmed to carry out the calculation in a number of steps, and although each step

must still be carried out in a register having a set word length, e.g. 8 bits or 16 bits,

corrective action can also be taken if an overflow situation is detected at any stage.

Multiplication and Division
While addition and subtraction can be achieved by adding positive and negative

numbers as described above, this does not include the other basic forms of

mathematics, multiplication and division. Multiplication in its simplest form can

however be achieved by adding a number to itself a number of times, for example,

starting with a total of 0, if 5 is added to the total three times the new total will be

fifteen (or 5 x 3). Division can also be accomplished by repeatedly subtracting (using

Fundamentals of Digital System : Grade 9 43

add) the divisor from the number to be divided until the remainder is zero, or less than

the divisor. Counting the number of subtractions then gives the result, for example if

3 (the divisor) is repeatedly subtracted from 15, after 5 subtractions the remainder will

be zero and the count will be 5, indicating that 15 divided by 3 is exactly 5.

 Need the example.

Binary Coded Decimal (BCD)
Representing Decimal Numbers
 A binary number with its bits representing values of 1, 2, 4, 8, 16 etc. presents

problems. It would be better if a particular number of binary bits could represent the

numbers 0 to 9, but this doesn’t happen in pure binary, a 3 bit binary number

represents the values 0 to 7 and 4 bit represents 0 to 15. What is needed is a system

where a group of binary digits can represent the decimal numbers 0-9, and the next

group 10-90 etc.

To make this possible, binary codes are used that have ten values, but where each

value is represented by the 1s and 0s of a binary code. These special ‘half way’ codes

are called Binary Coded Decimal or BCD. There are several different BCD codes, but

they have a basic similarity. Each of the ten decimal digits 0 to 9 is represented by a

group of 4 binary bits, but in codes the binary equivalents of the 10 decimal numbers

do not necessarily need to be in a consecutive order.

There can be advantages in some specialist applications in using some particular

variation of BCD. For example it may be useful to have a BCD code that can be used

for calculations, which means having positive and negative values, similar to the twos

complement system, but BCD codes are most often used for the display of decimal

digits. The most commonly encountered version of BCD binary code is the

BCD8421 code. In this version the numbers 0 to 9 are represented by their pure binary

equivalents, 4 bits per decimal number, in consecutive order.

BCD Codes
The BCD8421 code is so called because each of the four bits is given a ‘weighting’

according to its column value in the binary system. The least significant bit (lsb) has

44 Fundamentals of Digital System : Grade 9

the weight or value 1, the next bit, going left, the value 2. The next bit has the value

4, and the most significant bit (msb) the value 8, as shown in following Table.

Table

 MSB BCD8421 LSB

Decimal 8 4 2 1

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

So the 8421BCD code for the decimal number 610 is 01108421. Check this from

Table.

For numbers greater than 9 the system is extended by using a second block of 4 bits

to represent tens and a third block to represent hundreds etc.

2410 in 8 bit binary would be 00011000 but in BCD8421 is 0010 0100.

99210 in 16 bit binary would be 00000011111000002 but in BCD8421 is 1001 1001

0010.

Therefore BCD acts as a half way stage between binary and true decimal

representation, often preparing the result of a pure binary calculation for display on a

decimal numerical display. Although BCD can be used in calculation, the values are

not the same as pure binary and must be treated differently if correct results are to be

obtained. The facility to make calculations in BCD is included in some

microprocessors.

Fundamentals of Digital System : Grade 9 45

One of the main drawbacks of BCD is that, because sixteen values are available from

four bits, but only ten are used, there are several redundant values whichever BCD

system is used. This is wasteful in terms of circuitry, as the fourth bit (the 8s column)

is under used.

Summary:
 The one's complement of a binary number is defined as the value obtained by

inverting all the bits in the binary representation of the number (swapping 0s for

1s and vice versa). The ones' complement of the number then behaves like the

negative of the original number in some arithmetic operations.

 Two's complement is a mathematical operation on binary numbers, as well as a

binary signed number representation based on this operation. Its wide use in

computing makes it the most important example of a radix complement.

 The two's complement of an N-bit number is defined as the complement with

respect to 2N; This is also equivalent to taking the ones' complement and then

adding one

 Two’s complement is found by first finding 1’s complement and then adding 0001

b.

 Two’s complement gives negative of a given number

 Adding a number with its two’s complement gives all bits = 0s

 In subtraction by 1’s complement we subtract two binary numbers using carried

by 1’s complement.

The steps to be followed in subtraction by 1’s complement are:

 To write down 1’s complement of the subtrahend.

 To add this with the minuend.

 If the result of addition has a carryover then it is dropped and an 1 is added in the

last bit.

 If there is no carry over, then 1’s complement of the result of addition is obtained

to get the final result and it is negative.

 With the help of subtraction by 2’s complement method we can easily subtract

two binary numbers.

46 Fundamentals of Digital System : Grade 9

The operation is carried out by means of the following steps:

 At first, 2’s complement of the subtrahend is found.

 Then it is added to the minuend.

 If the final carryover of the sum is 1, it is dropped and the result is positive.

 If there is no carry over, the two’s complement of the sum will be the result and it

is negative.

Self-Evaluation:
(Short Answer Questions)

 Add the binary numbers 1011 and 101 in both decimal and binary forms.

 Add the binary numbers 1010110 and 1011010.

 Add the binary numbers 10111 and 1011.

 Find the complements of the following numbers:

49510 b)2910 c) 48 d)c16 e) 25 324

 Find the complements of the following binary numbers:

a) 10 b) 101 c)101101 d) 011100

e) 10110001 f) 001101001110

 Subtract 01101112 from 11011102.

 Subtract 0110112 from 100002.

 Subtract 2510 from 5010 using complementary method.

 Subtract 23410 from 58810 using complementary method.

 Subtract 010102 from 100002 using complementary method.

 Multiply the binary numbers 1100 and 1010.

 Multiply the binary numbers 101111 and 111.

 Divide 110012 by 1012.

 Divide 01101112 by 01112.

 What are the primary advantages of performing subtraction by the complementary

method in digital computers?

Fundamentals of Digital System : Grade 9 47

UNIT-3
Logic Gate Concepts

Learning Outcomes
After completion of this units students will be able to

 Demonstrate the concept of basics of different types of logic gates.

 Explain Clear Concept of De Morgan's Theorems.

Introduction
Digital Logic Gates
The Digital Logic Gate is the basic building block from which all digital

electronic circuits and microprocessor based systems are constructed from. Basic

digital logic gates perform logical operations of AND, OR and NOT on binary

numbers.

In digital logic design only two voltage levels or states are allowed and these states

are generally referred to as Logic “1” and Logic “0”, High and Low,

or True and False. These two states are represented in Boolean Algebra and standard

truth tables by the binary digits of “1” and “0” respectively.

A good example of a digital state is a simple light switch as it is either “ON” or “OFF”

but not both at the same time. Then we can summarize the relationship between these

various digital states as being:

Boolean Algebra Boolean Logic Voltage State

Logic “1” True (T) High (H)

Logic “0” False (F) Low (L)

table 1

Most digital logic gates and digital logic systems use “Positive logic”, in which a logic

level “0” or “LOW” is represented by a zero voltage, 0v or ground and a logic level

“1” or “HIGH” is represented by a higher voltage such as +5 volts, with the switching

48 Fundamentals of Digital System : Grade 9

from one voltage level to the other, from either a logic level “0” to a “1” or a “1” to a

“0” .

There are 7 different gates, they are :-

i) OR ii) AND iii) NOT iv) NOR v) NAND

vi) XOR vii) XNOR

 NOR and XNOR gates are Known as universal gates.

Truth Table

Truth table is the representation of inputs and outputs of Boolean variables and

calculation by using Boolean operators in tabular format. It simply takes possible

combination of inputs (in T and F or 1 and 0 formats) and generates only one

corresponding output by using Boolean operators. For example:

A B O=A.B

F F F

F T F

T F F

T T T

Table 2

Where A and B are inputs variables which only has one of the two possible values T

or F(1 or 0) and only one output 0.

Notations

Gates are identified by their function: AND, OR, NOT, NAND, NOR, X-OR and X-

NOR. Capital letters are normally used to make it clear that the term refers to a logic

gate. The above said logic gates can be classified into following categories:

1. Basic Logic Gates

a. AND Gate

b. OR Gate

c. NOT Gate

Fundamentals of Digital System : Grade 9 49

2. Universal Gates

a. NAND Gate

b. NOR Gate

3. Combinational Gates

a. X-OR Gate

b. X-NOR Gate

Inverter (NOT gate)
NOT gate / Inverter

NOT gate is also called inverter. Operation of NOT gate takes place like this: if input

is high output is low; and if input is low, output is high. In other words output is always

inverse or toggle of input. So it is called inverter. Hence, a NOT gate always has a

single input. Fig 1 also shows that two NOT gates connected in series to give an output

equal to the input.

Circuit diagram of inverter is given below

Mathematical representation

x=𝑨ഥ

NOT gates connected in series

Here input is A output is x=A'
Fig 2

Fig 1

50 Fundamentals of Digital System : Grade 9

Truth table of NOT gate:

A B'

0 1

1 0

Table 2

Electric diagram of NOT gate

Venn Diagram of NOT Gate

AND Gate
AND gate is the physical realization of logical multiplication. It is an electronic circuit

that generates an output signal of 1, only if all input signals are also 1. Two or more

switches connected in series behave as an AND gate.

Fig 3

Fig 4

Fundamentals of Digital System : Grade 9 51

Mathematically it is denoted as

A.B=C
Where. represent AND gate
Logical Diagram

Truth Table

Electrical Circuit Design of AND Gate

fig. Electrical Circuit Design

52 Fundamentals of Digital System : Grade 9

Ven diagram of AND gate

fig. Ven diagram of AND gate.

OR Gate:
An OR gate is the physical realization of logical addition. It is an electronic circuit

that generates an output signal of 1, if any of the input signals is also 1.

Two or more switches connected in parallel behave as an OR gate. Observe from

Figure that the input current will reach the output point when any one or both switches

(A and B) are in ON(1) state . There will be no output only when both the switches

are in OFF (0) state.

Mathematically it is denoted as

A+B= C
Where + denote as OR Gate

fig: logical circuit Design

Fundamentals of Digital System : Grade 9 53

Truth Table of OR gate:

Electrical Circuit Design of OR Gate

fig: Electrical Circuit Design of OR Gate

Venn diagram of OR gate

Fig. Venn diagram of OR gate

NAND Gate

NAND Gate is constructed by attaching NOT gate at the output of AND Gate, hence
NAND Gate is called NOT-AND Gate. NAND Gate has two or more inputs and only
one output. The output of NAND Gate is 0 (False) only when both or all inputs are
1(True) otherwise output are 1(True) .

54 Fundamentals of Digital System : Grade 9

Mathematically it is denoted as

𝑨. 𝑩തതതതത=C
Logical Diagram of NAND

Truth Table of NAND

Electrical Circuit Design of NAND Gate

fig: Electrical Circuit Design of NAND

Ven Diagram of NAND

Fig. Ven Diagram of NAND

NOR Gate

NOR Gate is the combination of NOT gate at the output of OR Gate, hence NOR Gate
is a type of NOT - OR Gate. NOR Gate has two or more input and only one output.

Fundamentals of Digital System : Grade 9 55

The output of NOR Gate is 1 (True) only when both or all inputs are 0 (False)
otherwise outputs are 0 (False).

Mathematically it is denoted as

𝑨 ൅ 𝑩തതതതതതതത=C
Logical diagram

Fig: Logical diagram

Truth Table

Truth Table

Ven Diagram of NOR

Fig. Ven Diagram of NOR

XOR Gate

56 Fundamentals of Digital System : Grade 9

It stands for exclusive OR Gate. XOR Gate has two inputs and only one output. The
output of XOR Gate is 1 (true) only when both inputs are different otherwise output
is 0 (false). XOR Gate is represented by

Mathematically it is represented as

A B =C

Logical Diagram

Fig: Logical Diagram of XOR

Truth Table

Truth Table of EX-OR

Fundamentals of Digital System : Grade 9 57

Ven Diagram of XOR Gate

Fig. Ven Diagram of XOR

XNOR Gate

XNOR stands for exclusive NOR Gate. XNOR Gate may have two or more outputs
but gives only one output. The output of XNOR Gate is 1 (True) only when both
inputs are same otherwise outputs are 0 (False).

Mathematically it is denoted as

𝑨 𝑩തതതതതതത=C

Logical Diagram

Truth Table

fig: Truth Table

58 Fundamentals of Digital System : Grade 9

Ven Diagram of XNOR Gate

Fig. Ven Diagram of XNOR

Universal Gate
A universal gate is a gate which can implement any Boolean function without using
any other gate type. The NAND and NOR gates are universal gates. In practice, this
is advantageous since NAND and NOR gates are economical and easier to fabricate
and are the basic gates used in all IC digital logic families. In fact, an AND gate is
typically implemented as a NAND gate followed by an inverter not the other way
around Likewise, an OR gate is typically implemented as a NOR gate followed by an
inverter not the other way around!!

NAND Gate is a Universal Gate:
To prove that any Boolean function can be implemented using only NAND gates, we
will show that the AND, OR, and NOT operations can be performed using only these
gates.

Fundamentals of Digital System : Grade 9 59

NOR Gate is a Universal Gate.
To prove that any Boolean function can be implemented using only NOR gates, we
will show that the AND, OR, and NOT operations can be performed using only these
gates.

Implementing an Inverter Using only NOR Gate
The figure shows two ways in which a NOR gate can be used as an inverter (NOT
gate).

60 Fundamentals of Digital System : Grade 9

De Morgan's Theorems Concept

De Morgan has suggested two theorems which are extremely useful in Boolean

Algebra. The two theorems are discussed below.

Theorem 1
The complements of the sum of the Boolean variables are equal to the product of their

individual complements. i.e.

 The left hand side (LHS) of this theorem represents a NAND gate with inputs A

and B, whereas the right hand side (RHS) of the theorem represents an OR gate

with inverted inputs.

 This OR gate is called as Bubbled OR.

Fundamentals of Digital System : Grade 9 61

Table showing verification of the De Morgan's first theorem −

Table: verification of the De Morgan's

since the values in the 𝐴. 𝐵തതതതത and �̅�+ 𝐵ത are the same for all input combination, we can

conclude that the two expression are logically equivalent. Hence 𝐴. 𝐵തതതതത = �̅�+ 𝐵ത ,

theorem 1 is proved.

Theorem 2
The complements of the product of the Boolean variables are equal to the sum of their individual

complements

i.e

 The LHS of this theorem represents a NOR gate with inputs A and B, whereas the

RHS represents an AND gate with inverted inputs.

 This AND gate is called as Bubbled AND.

62 Fundamentals of Digital System : Grade 9

Table showing verification of the De Morgan's second theorem −

Table: verification of the De Morgan's

Since the values in the 𝐴 ൅ 𝐵തതതതതതതത and �̅�. 𝐵ത are the same for all input combination .We

can conclude that the two expressions are logically equivalent. Hence 𝐴 ൅ 𝐵തതതതതതതത = �̅�. 𝐵ത

Summary
 In logic gates 'OR' operator used for logical addition is represented by the symbol

'+' ;

 AND operator used for logical multiplication is represented by the symbol '.'

 NOT operator used for complement is represented by the symbol " - ".

 NOR operator is the combine form of OR and NOT Gates.

Fundamentals of Digital System : Grade 9 63

 NAND operator is the combine form of AND and NOT Gates.

 XOR operator is the exclusive Gate and represented by symbol .

 XNOR operator is combine form of XOR and NOT Gates.

 NAND and NOR Gates are known as Universal Gates.

Self-Evaluation
Very short question
what will be the output of NOT gate when input is 1 ?

1. If a 3-input NOR gate has eight input possibilities, how many of those

possibilities will result in a HIGH output?

A. 1

B. 2

C. 7

D. 8

2. If a signal passing through a gate is inhibited by sending a LOW into one of the

inputs, and the output is HIGH, the gate is a(n):

A. AND

B. NAND

C. NOR

D. OR

The output of an AND gate with three inputs, A, B, and C, is HIGH when ________.

A. A = 1, B = 1, C = 0

B. A = 0, B = 0, C = 0

C. A = 1, B = 1, C = 1

D. A = 1, B = 0, C = 1

64 Fundamentals of Digital System : Grade 9

3. This question is about NOT and AND logic gates.

 Complete the truth tables for the two gates.

input output inputs output

P X P Q X

0

0 0

1

0 1

1 0

1 1
Short questions

1. Define logic gates .

2. What is truth table?

3. Draw the logical diagram of XOR Gate.

4. Construct the truth table of NAND Gate.

5. List the Universal Gates.

6. State De Morgan's first theorem.

7. State De Morgan's second theorem.

Long Questions

1. Explain OR Gate with its truth table.

2. Describe the AND Gate with its electrical diagram.

3. Explain the statement "NOT Gate is inverter".

4. Define Truth table, operators and operands with examples.

5. Construct truth table, logic diagram, Venn diagram and use of AND, OR and

NOT gates.

6. State and prove the De-Morgan's theorems.

Web Resources

There are a number of resources available on the Internet and the Websites that

support this book and help readers keep up with developments in this field.

https://www.tutorialspoint.com/computer_logical_organization/logic_gates.htm

Fundamentals of Digital System : Grade 9 65

 For students, this Website includes a list of relevant links, organized by chapter, and

an extra list for the book. For instructors, this Website provides links to course pages

by professors teaching from this book and one can get pdf file of the course.

References

Computer Fundeamentals- sixth Edition

Pradeep Kr. Sinha

Priti Sinha

http://www.tutorialspoint.com

http://www.allaboutcircuits.com/textbook/digital/chpt-3/digital-signals-gates/

Glossary
 Digital =It is a signal or data expressed as series of the digits 0 and 1, typically

represented by values of a physical quantity such as voltage or magnetic

polarization.

 Boolean Algebra = A division of mathematics which deals with operations on

logical values. Boolean algebra traces its origins to an 1854 book by

mathematician George Boole.

 Digital Logic= It is the representation of signals and sequences of a digital circuit

through numbers

 electronic circuit= It is a complete course of conductors through which current can

travel. Circuits provide a path for current to flow.

66 Fundamentals of Digital System : Grade 9

Practical on Digital Logic gates
Verification and interpretation of truth tables for AND, OR, NOT, NAND, NOR

Exclusive OR (EX-OR), Exclusive NOR (EX-NOR) Gates.

Apparatus: Logic trainer kit, logic gates / ICs, wires.

Theory: Logic gates are electronic circuits which perform logical functions on one or

more inputs to produce one output. There are seven logic gates. When all the input

combinations of a logic gate are written in a series and their corresponding outputs

written along them, then this input/ output combination is called Truth Table. Various

gates and their working is explained here.

AND Gate
AND gate produces an output as 1, when all its inputs are 1; otherwise the output is

0. This gate can have minimum 2 inputs but output is always one. Its output is 0 when

any input is 0.

IC 7408

Fundamentals of Digital System : Grade 9 67

OR Gate
OR gate produces an output as 1, when any or all its inputs are 1; otherwise the output

is 0. This gate can have minimum 2 inputs but output is always one. Its output is 0

when all input are 0.

IC 7432

NOT Gate

NOT gate produces the complement of its input. This gate is also called an
INVERTER. It always has one input and one output. Its output is 0 when input is 1
and output is 1 when input is 0.

IC 7404

68 Fundamentals of Digital System : Grade 9

NAND Gate

NAND gate is actually a series of AND gate with NOT gate. If we connect the output
of an AND gate to the input of a NOT gate, this combination will work as NOT-AND
or NAND gate. Its output is 1 when any or all inputs are 0, otherwise output is 1.

IC 7400

NOR Gate

NOR gate is actually a series of OR gate with NOT gate. If we connect the output of
an OR gate to the input of a NOT gate, this combination will work as NOT-OR or
NOR gate. Its output is 0 when any or all inputs are 1, otherwise output is 1.

IC 7402

Fundamentals of Digital System : Grade 9 69

Exclusive OR (X-OR) Gate
X-OR gate produces an output as 1, when number of 1’s at its inputs is odd, otherwise
output is 0. It has two inputs and one output.

IC 7486

Exclusive NOR (X-NOR) Gate
X-NOR gate produces an output as 1, when number of 1’s at its inputs is not odd,
otherwise output is 0. It has two inputs and one output.

Procedure:

1. Connect the trainer kit to ac power supply.
2. Connect the inputs of any one logic gate to the logic sources and its output to

the logic indicator.
3. Apply various input combinations and observe output for each one.
4. Verify the truth table for each input/ output combination.
5. Repeat the process for all other logic gates.
6. Switch off the ac power supply.

70 Fundamentals of Digital System : Grade 9

UNIT 4
Boolean Algebra and Karnaugh Map

Learning Outcomes
After completion of this unit students will be able to

 Define boolean expressions and their simplification.

 Define Karnaugh and establish the correspondence between Karnaugh maps and

truth tables and logical expressions.

 Demonstrate how to use Karnaugh maps to derive minimal sumof- products and

product-of-sums expressions.

 Introduce the concept of "don't care" entries

Introduction
Boolean Algebra, which was invented by George Boole in 1854 is used to analyze

and simplify the digital (logic) circuits. It uses only the binary numbers i.e. 0 and 1. It

is also called as Binary Algebra or logical Algebra. The Karnaugh map provides a

simple and straight forward method of minimizing Boolean expressions. With the

Karnaugh map Boolean expressions having up to four and even six variables can be

simplified.

Venn Diagram
A Venn diagram is a representation of a Boolean operation using shaded overlapping

regions. There is one region for each variable, all circular in the examples here. The

interior and exterior of region x corresponds respectively to the values 1 (true) and 0

(false) for variable x. The shading indicates the value of the operation for each

combination of regions, with dark denoting 1 and light 0. We will adopt the terms OR

and AND instead of union and intersection since that is the terminology used in digital

electronics.

Fundamentals of Digital System : Grade 9 71

Boolean Relationship on Venn Diagram
The Venn diagram bridges the Boolean algebra to the Karnaugh Map. We will relate

what you already know about Boolean algebra to Venn diagrams, then transition to

Karnaugh maps.

A set is a collection of objects out of a universe as shown below. The members of the

set are the objects contained within the set. The members of the set usually have

something in common; though, this is not a requirement. Out of the universe of real

numbers, for example, the set of all positive integers {1,2,3…} is a set. The set {3,4,5}

is an example of a smaller set, or subset of the set of all positive integers. Another

example is the set of all males out of the universe of college students. Can you think

of some more examples of sets?

Above left, we have a Venn diagram showing the set A in the circle within the

universe U, the rectangular area. If everything inside the circle is A, anything outside

of the circle is not A. Thus, above center, we label the rectangular area outside of the

circle A as A-not instead of U. We show B and B-not in a similar manner.

What happens if both A and B are contained within the same universe? We show four

possibilities.

Let’s take a closer look at each of the four possibilities as shown above.

72 Fundamentals of Digital System : Grade 9

The first example shows that set A and set B have nothing in common according to

the Venn diagram. There is no overlap between the A and B circular hatched regions.

For example, suppose that sets A and B contain the following members:

set A = {1,2,3,4}

set B = {5,6,7,8}

None of the members of set A are contained within set B, nor are any of the members

of B contained within A. Thus, there is no overlap of the circles.

In the second example in the above Venn diagram, set A is totally contained within

set B How can we explain this situation? Suppose that sets A and B contain the

following members:

set A = {1,2} set B = {1,2,3,4,5,6,7,8}

All members of set A are also members of set B. Therefore, set A is a subset of Set B.

Since all members of set A are members of set B, set A is drawn fully within the

boundary of set B.

There is a fifth case, not shown, with the four examples. Hint: it is similar to the last

(fourth) example. Draw a Venn diagram for this fifth case.

Fundamentals of Digital System : Grade 9 73

The third example above shows perfect overlap between set A and set B. It looks like

both sets contain the same identical members. Suppose that sets A and B contain the

following:

set A = {1,2,3,4} set B = {1,2,3,4}

Therefore,

Set A = Set B

Sets A and B are equal because they both have the same identical members. The A

and B regions within the corresponding Venn diagram above overlap completely. If

there is any doubt about what the above patterns represent, refer to any figure above

or below to be sure of what the circular regions looked like before they were

overlapped.

The fourth example above shows that there is something in common between set A

and set B in the overlapping region. For example, we arbitrarily select the following

sets to illustrate our point:

74 Fundamentals of Digital System : Grade 9

set A = {1,2,3,4}

set B = {3,4,5,6}

Set A and Set B both have the elements 3 and 4 in common. These elements are the

reason for the overlap in the center common to A and B. We need to take a closer look

at this situation.

The fourth example has A partially overlapping B. Though, we will first look at the

whole of all hatched area below, then later only the overlapping region. Let’s assign

some Boolean expressions to the regions above as shown below. Below left there is a

red horizontal hatched area for A. There is a blue vertical hatched area for B.

If we look at the whole area of both, regardless of the hatch style, the sum total of all

hatched areas, we get the illustration above right which corresponds to the

inclusive OR function of A, B. The Boolean expression is A+B. This is shown by the

45o hatched area. Anything outside of the hatched area corresponds to (A+B)-not as

shown above. Let’s move on to next part of the fourth example.

The other way of looking at a Venn diagram with overlapping circles is to look at just

at the part common to both A and B, the double hatched area below left. The Boolean

expression for this common area corresponding to the AND function is AB as shown

below right. Note that everything outside of double hatched AB is AB-not.

Fundamentals of Digital System : Grade 9 75

Note that some of the members of A, above, are members of (AB)’. Some of the

members of B are members of (AB)’. But, none of the members of (AB)’ are within

the doubly hatched area AB.

We have repeated the second example above left. Your fifth example, which you

previously sketched, is provided above right for comparison. Later we will find the

occasional element, or group of elements, totally contained within another group in a

Karnaugh Map.

Next, we show the development of a Boolean expression involving a complemented

variable below.

76 Fundamentals of Digital System : Grade 9

Simplification

 Canonical Forms

For a Boolean expression there are two kinds of canonical forms −

 The sum of minterms (SOM) OR Sum of Product (SOP) form

 The product of maxterms (POM) OR Product of Sum (POS) form

(Note : the product term in a canonical SOP expression is called a minterm)

A Boolean expression consisting entirely either of minterm or maxterm is called

canonical expression.

Example :
If we have two variables X and Y then,

Following is a canonical expression consisting of minterms XY + X’Y’ and

Following is a canonical expression consisting of maxterm (X+Y) . (X’ + Y’)

Sum of Products (SOP)
A boolean expression consisting purely of Minterms (product terms) is said to be in

canonical sum of products form.

Fundamentals of Digital System : Grade 9 77

Example:
suppose, we have a boolean function F defined on two variables A and B. So, A

and B are the inputs for F and lets say, output of F is true i.e., F = 1 when any

one of the input is true or 1. Now we draw the truth table for F.

Now we will create a column for the minterm using the variables A and B. If input is

0 we take the complement of the variable and if input is 1 we take the variable as it is.

To get the desired canonical SOP expression we will add the minterms (product

terms) for which the output is 1.

F = A’B + AB’ + AB

78 Fundamentals of Digital System : Grade 9

Converting Sum of Products (SOP) to Shorthand Notation
From the previous example we have

F = A’B + AB’ + AB

Now, lets say we want to express the SOP using shorthand notation.

we have F = A’B + AB’ + AB

First we need to denote the minterms in shorthand notation.

A’B = (01)2 = m1

AB’ = (10)2 = m2

AB = (11)2 = m3

We saw the conversion of SOP to shorthand notation. Lets check the conversion of

shorthand notation to SOP.

Converting Shorthand Notation to Sum of Products (SOP)
Suppose, we have a Boolean function F defined on two variables A and B. So, A and

B are the inputs for F and lets say, the minterms are expressed as shorthand notation

given below.

F = ∑(1, 2, 3) our task is to get the SOP.

F has two input variables A and B and output of F = 1 for m1, m2 and m3 i.e., 2nd,

3rd and 4th combination.

We have,

F = ∑(1, 2, 3)

= m1 + m2 + m3

= 01 + 10 + 11

To convert from shorthand notation to SOP we follow the given rules. If the variable

is 1 then it is taken "as is" and if the variable is 0 then we take its "complement".

F = ∑(1, 2, 3)

= A’B + AB’ + AB

And we have the required SOP.

Fundamentals of Digital System : Grade 9 79

Product of Sums (POS)
A boolean expression consisting purely of Maxterms (sum terms) is said to be in

canonical product of sums form.

Example

Suppose, we have a boolean function F defined on two variables A and B. So,

A and B are the inputs for F and lets say, output of F is true i.e., F = 1 when only

one of the input is true or 1.

Now we draw the truth table for F.

Now we will create a column for the maxterm using the variables A and B. If input is

1, we take the complement of the variable and if input is 0, we take the variable as is.

To get the desired canonical POS expression we will multiply the maxterms (sum
terms) for which the output is 0.

F = (A+B) . (A’+B’)

80 Fundamentals of Digital System : Grade 9

Converting Product of Sums (POS) to Shorthand Notation
From the previous example we have

F = (A+B) . (A’+B’)

Now, lets say we want to express the POS using shorthand notation.

we have F = (A+B) . (A’+B’)

First we need to denote the maxterms in shorthand notation.

A+B = (00)2 = M0

A’+B’ = (11)2 = M3

Now we express F using shorthand notation.

F = M0 . M3

This can also be written as F = ∏(0, 3)

We saw the conversion of POS to shorthand notation. Lets check the conversion of
shorthand notation to POS.

Converting Shorthand Notation to Product of Sums (POS)
Lets say, we have a boolean function F defined on two variables A and B so, A and B

are the inputs for F and lets say, the maxterm are expressed as shorthand notation

given below.

F = ∏(1, 2, 3)

Our task is to get the POS.

F has two input variables A and B and output of F = 0 for M1, M2 and M3 i.e., 2nd,

3rd and 4th combination.

we have, F = ∏(1, 2, 3)

= M1 . M2 . M3

= 01 . 10 . 11

To convert from shorthand notation to POS we follow the given rules. If the variable

is 0 then it is taken as is and if the variable is 1 then we take its complement.

we have, F = ∏(1, 2, 3)

= (A+B’) . (A’+B) . (A’+B’) And we have the required POS.

Fundamentals of Digital System : Grade 9 81

Algebraic Simplification
Boolean algebra finds its most practical use in the simplification of logic circuits. If

we translate a logic circuit’s function into symbolic (Boolean) form, and apply certain

algebraic rules to the resulting equation to reduce the number of terms and/or

arithmetic operations, the simplified equation may be translated back into circuit form

for a logic circuit performing the same function with fewer components. If equivalent

function may be achieved with fewer components, the result will be increased

reliability and decreased cost of manufacture.

To this end, there are several rules of Boolean algebra presented in this section for use

in reducing expressions to their simplest forms. The identities and properties already

reviewed in this chapter are very useful in Boolean simplification, and for the most

part bear similarity to many identities and properties of “normal” algebra. However,

the rules shown in this section are all unique to Boolean mathematics.

This rule may be proven symbolically by factoring an “A” out of the two terms, then

applying the rules of A + 1 = 1 and 1A = A to achieve the final result:

82 Fundamentals of Digital System : Grade 9

Please note how the rule A + 1 = 1 was used to reduce the (B + 1) term to 1. When a

rule like “A + 1 = 1” is expressed using the letter “A”, it doesn’t mean it only applies

to expressions containing “A”. What the “A” stands for in a rule like A + 1 = 1

is any Boolean variable or collection of variables.

.For instance, the Boolean expression ABC + 1 also reduces to 1 by means of the “A

+ 1 = 1” identity. In this case, we recognize that the “A” term in the identity’s standard

form can represent the entire “ABC” term in the original expression.

The next rule looks similar to the first one shown in this section, but is actually quite

different and requires a more clever proof:

Fundamentals of Digital System : Grade 9 83

Note how the last rule (A + AB = A) is used to “un-simplify” the first “A” term in the

expression, changing the “A” into an “A + AB”. While this may seem like a backward

step, it certainly helped to reduce the expression to something simpler! Sometimes in

mathematics we must take “backward” steps to achieve the most elegant solution.

Knowing when to take such a step and when not to is part of the art-form of algebra,

just as a victory in a game of chess almost always requires calculated sacrifices.

Another rule involves the simplification of a product-of-sums expression:

And, the corresponding proof:

84 Fundamentals of Digital System : Grade 9

To summarize, here are the three new rules of Boolean simplification expounded in

this section:

Here are some examples of Boolean algebra simplifications. Each line gives a form

of the expression, and the rule or rules used to derive it from the previous one.

Generally, there are several ways to reach the result. Here is the list of simplification

rules.

 Simplify: C + BC:

Expression Rule(s) Used

C + BC Original Expression

C + (B + C) DeMorgan's Law

(C + C) + B Commutative, Associative Laws

T + B Complement Law

T Identity Law

 Simplify: AB(A + B)(B + B):

Expression Rule(s) Used

AB(A + B)(B + B) Original Expression

AB(A + B) Complement law, Identity law

(A + B)(A + B) DeMorgan's Law

A Complement, Identity

A + BB Distributive law. This step uses the fact that or

distributes over and. It can look a bit strange since

addition does not distribute over multiplication.

 Simplify: (A + C)(AD + AD) + AC + C:

Expression Rule(s) Used

Fundamentals of Digital System : Grade 9 85

(A + C)(AD + AD) + AC + C Original Expression

(A + C)A(D + D) + AC + C Distributive

(A + C)A + AC + C Complement, Identity

A((A + C) + C) + C Commutative, Distributive

A(A + C) + C Associative, Idempotent

AA + AC + C Distributive

A + (A + T)C Idempotent, Identity, Distributive

A + C Identity, twice
 You can also use distribution of or over and starting from A(A+C)+C to reach the

same result by another route.

 Simplify: A(A + B) + (B + AA)(A + B):

Expression Rule(s) Used

A(A + B) + (B + AA)(A + B) Original Expression

AA + AB + (B + A)A + (B + A)B
Idempotent (AA to A), then
Distributive, used twice

AB + (B + A)A + (B + A)B

Complement, then Identity.
(Strictly speaking, we also used the
Commutative Law for each of these
applications.)

AB + BA + AA + BB + AB Distributive, two places

AB + BA + A + AB

Idempotent (for the A's), then
Complement and Identity to remove
BB

AB + AB + AT + AB
Commutative, Identity; setting up
for the next step

AB + A(B + T + B) Distributive

AB + A
Identity, twice (depending how you
count it).

A + AB Commutative

(A + A)(A + B) Distributive

A + B Complement, Identity

The Concept of K-Maps
The Karnaugh map (KM or K-map) is a method of simplifying Boolean

algebra expressions. Maurice Karnaugh introduced it in 1953 as a refinement

86 Fundamentals of Digital System : Grade 9

of Edward Veitch's 1952 Veitch chart. A Karnaugh map (K-map) is a pictorial method

used to minimize Boolean expressions without having to use Boolean algebra

theorems and equation manipulations. A K-map can be thought of as a special version

of a truth table .

The Karnaugh map reduces the need for extensive calculations by taking advantage

of humans' pattern-recognition capability. It also permits the rapid identification and

elimination of potential race conditions.

This is all well and good for something simple like the 2-input multiplexer. But using

Boolean algebra to reduce circuits can be difficult. Thus, we would like a method or

procedure that is easier. Therefore, we use Karnaugh maps.The Karnaugh map (or K-

map) is a visual way of detecting redundancy in the SSoP.

The K-map can be easily used for circuits with 2, 3, or 4 inputs.

It consists of an array of cells, each representing a possible combination of inputs.

 The cells are arranged so that each cell’s input combination differs from adjacent

cells by only a single bit.

 This is called Gray code ordering – it ensures that physical neighbours in the array

are logical neighbours as well. (In other words, neighbouring bit patterns are

nearly the same, differing by only 1 bit).

Consider the following arrangements of cells:

2-input

a’. b’ a’. b

00 01

a .b’ a . b

10 11

The cells are arranged as above, but we write them empty, like this:

Fundamentals of Digital System : Grade 9 87

The no. of boxes in the table = 2n, where n = no. of variables.

Note: The numbers are not in binary order, but are arranged so that only a single bit

changes between neighbours.

This one-bit change applies at the edges, too.

So cells in the same row on the left and right edges of the array also only differ by one

bit.

Note: The value of a particular cell is found by combining the numbers at the edges

of the row and column.

Also, in general, it is easier to order the inputs to a K-map so that they can be read

like a binary number.

(Show example.)

So, we have this grid. What do we do with it?

 We put 1's in all the cells that represent minterms in the SSoP .

 (In other words, we find the 1's in the truth table output, and put 1's in the cells

corresponding to the same inputs.)

Let’s do this in relation to the 2-input multiplexer example:

S A B Y

88 Fundamentals of Digital System : Grade 9

If there are two neighboring 1's in the grid, it means that the input bit change between

the two cells has no effect on the output, and thus there is redundancy. This leads to a

basic strategy.

Basic Strategy:

Group adjacent 1's together in square or rectangular groups of 2, 4, 8, or 16, such that

the total number of groups and isolated 1's is minimized, while using as large groups

as possible. Groups may overlap, so that a particular cell may be included in more

than one group.

(Recall that adjacency wraps around edges of grid.)

Applying this to the multiplexer example:

So, considering the best option above (i), notice the following:

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Fundamentals of Digital System : Grade 9 89

 B changes but the output doesn’t, so B is redundant in this group (See comment
1, below).

 A changes but the output doesn’t, so A is redundant in this group (See comment
2, below).

So, we write out Boolean expressions for each group, leaving out the redundant

elements. That is, for each group, we write out the inputs that don’t change. The

multiplexer example, with two groups, gives us two terms, Y = S.B + S’.A

which is the same as what we achieved through using Boolean algebra to reduce the

circuit. So, we can summarize this process into a basic set of rules:

Rules for K-Maps

1) Each cell with a 1 must be included in at least one group.

2) Try to form the largest possible groups.

3) Try to end up with as few groups as possible.

4) Groups may be in sizes that are powers of 2: 2 0 = 1, 21 = 2, 22 = 4, 23 = 8,

24 = 16, ...

5) Groups may be square or rectangular only (including wrap-around at the grid

edges). No diagonals or zigzags can be used to form a group.

6) The larger a group is, the more redundant inputs there are:

 A group of 1 has no redundant inputs.

 A group of 2 has 1 redundant input.

 A group of 4 has 2 redundant inputs.

 A group of 8 has 3 redundant inputs.

 A group of 16 has 4 redundant inputs.

The following simple examples illustrate rule 6 above.

Examples

(1) (2)

90 Fundamentals of Digital System : Grade 9

2-input Example

Direct from truth table: Y = A’B’ + A’B + AB’

Karnaugh Maps - Rules of Simplification
The Karnaugh map uses the following rules for the simplification of expressions

by grouping together adjacent cells containing ones

 Groups may not include any cell containing a zero

A B Y

0 0 1

1

0 1

0

1 1

1

1 0

Fundamentals of Digital System : Grade 9 91

 Groups may be horizontal or vertical, but not diagonal.

 Groups must contain 1, 2, 4, 8, or in general 2n cells.

That is if n = 1, a group will contain two 1's since 21 = 2.
 If n = 2, a group will contain four 1's since 22 = 4.

 Each group should be as large as possible.

92 Fundamentals of Digital System : Grade 9

 Each cell containing a 1 must be in at least one group.

 Groups may overlap.

Fundamentals of Digital System : Grade 9 93

 Groups may wrap around the table. The leftmost cell in a row may be grouped

with the rightmost cell and the top cell in a column may be grouped with the

bottom cell.

 There should be as few groups as possible, as long as this does not contradict any

of the previous rules.

Summary for Rules of Simplification

1. No zeros allowed.

2. No diagonals.

3. Only power of 2 number of cells in each group.

4. Groups should be as large as possible.

5. Everyone must be in at least one group.

6. Overlapping allowed.

7. Wrap around allowed.

8. Fewest number of groups possible.

94 Fundamentals of Digital System : Grade 9

Don't Care Condition
Situations can arise where a circuit has N input signals, but not all 2N combinations

of inputs are possible. Or, if all 2N combinations of inputs are possible, some

combinations might be irrelevant. For example, consider a television remote control

unit that can switch between control of a television, VCR, or DVD. Some remotes

might have operational modes where buttons like “fast forward” are physically

switched out of the circuit; other remotes may use modes where such buttons are left

in the circuit, but their functions are irrelevant. In either case, some combinations of

input signals are completely inconsequential to the proper operation of the circuit. It

is possible to take advantage of these situations to further minimize logic circuits.

Figure 1. Truth table and K-Maps with Don't Care.

Input combinations that cannot possibly effect the proper operation of a logic system

can be allowed to drive circuit outputs high or low—literally. The designer doesn't

care what the circuit response is to these impossible or irrelevant inputs. This

information is encoded by using a special “don't care” symbol in truth tables and K-

maps to indicate that the signal can be a '1' or a '0' without effecting circuit operation.

Some sources use an 'X' to indicate a don't care, but this can be confused with a signal

named 'X'. It is perhaps a better practice to use a symbol that is not normally associated

with signal names—here, we choose the 'Φ' symbol. The “don't care” can be used on

the map to provide simplification of the function.

Fundamentals of Digital System : Grade 9 95

The truth table above shows two output functions (F and G) for the same three inputs.

Both outputs have two rows where the output is a don't care. This same information

is also shown in the associated K-maps. Clearly, looping cell 7 as a '1' and cell 2 as a

'0' results in a more minimal logic circuit. In this case, both an SOP and POS looping

would result in identical circuits.

In the 'G' K-map, the don't cares in cells 1 and 3 can be looped as either a '1' or a '0'.

In an SOP looping, both don't cares would be looped as 1's, giving a logic function

of G=A¯+B¯⋅C¯G=A¯+B¯⋅C¯. In a POS looping, however, cells 1 and 3 would be

looped as 0's, giving the logic function G=C¯⋅(A¯+B¯)G=C¯⋅(A¯+B¯). A little

Boolean algebra reveals these two equations are not algebraically equal. Often, the

SOP and POS forms of equations looped from K-maps that contain don't cares are not

algebraically equal (although they would perform identically in the circuit). The

following examples in Fig. 2 illustrate the use of don't cares in K-maps.

Figure 2. Looping K-Maps with Don't Care.

If all combination of 2N inputs are possible, some combinations may be irrelevant.

Some combinations of input signals can be completely inconsequential to the

operation of the circuit. It is possible to take advantage of the situations where input

96 Fundamentals of Digital System : Grade 9

combinations are not required for the function of the circuit to further minimize the

logic circuit. Information for the irrelevant inputs are noted by the 'Φ' symbol and are

known as “Don't Cares”.

Summary
SOP and POS –useful forms of Boolean equations

Design of a comb. Logic circuit

 construct its truth table, (2) convert it to a SOP, (3)

 simplify using Boolean algebra or K mapping, (4)

 SOP and POS –useful forms of Boolean equations

 Design of a comb. Logic circuit

 (1) construct its truth table, (2) convert it to a SOP, (3)

 simplify using Boolean algebra or K mapping, (4)

 Implement

 K map: a graphical method for representing a circuit’s

 truth table and generating a simplified expression

 “Don’t cares” entries in K map can take on values of 1

 or 0. Therefore can be exploited to help simplification

Self Evaluation

Very short question

Q.1 Define Venn diagram.
Q.2 Draw venn diagram of A'
Q.3 List out different canonical forms.
Q.4 What do you mean by sum of product
Q.5 Define minterms.
Q.6 What is maxterms mean ?
Q.7 Complete following boolean expression

A+AB=

A+A'B=

(A+B)(A+C)=

Q.8 Define K-maps in short.

Fundamentals of Digital System : Grade 9 97

Short Question

Q.1 What is boolean algebra ? Give example
Q.2 Explain Product of sum in detail
Q.3 Prove boolean expression A+AB=A
Q.4 Simplify the expression AB(A+B)(B+B)
Q.5 Explain karnauf Map with table.
Q.6 List out the rules to use in K-maps.
Q.7 Explain Don't care condition with example.

Long question

Q.1 Explain Sum of Product in detail
Q.2 Express the Boolean function F=A+B'.C in sum-of -minterms(products)

form.
Q.3 Explain Product of Sum in detail with example
Q.4 Explain Karnaugh Maps rules of simplification with example.

Glossary

 Boolean Expression:- a Boolean expression is an expression in

a programming language that produces a Boolean value when evaluated, i.e.

one of true or false. A Boolean expression may be composed of a

combination of the Boolean constants true or false.

 Gray code:- a numerical code used in computing in which consecutive

integers are represented by binary numbers differing in only one digit.

 Multiplexer:- a multiplexer (or mux) is a device that selects one of several

analog or digital input signals and forwards the selected input into a single

line. A multiplexer of 2n inputs has n select lines, which are used to select

which input line to send to the output.

Resources

 1 www.wikipedia.com

 Computer Fundeamentals- sixth Edition

 Pradeep Kr. Sinha Priti Sinha

 http://www.tutorialspoint.com

 http://www.allaboutcircuits.com/textbook/digital/chpt-3/digital-signals-gates/

98 Fundamentals of Digital System : Grade 9

UNIT- 5
Binary Arithmetic Logic

Learning Outcomes
After completion of this unit you will be able to

 To explain/describe the formalism of binary arithmetic logic

 To explain/describe binary adder, half adders, full adders, half subtractors, full

subtractors.

 Introduction
Binary arithmetic is essential part of all the digital computers and many other digital

systems. Binary logic deals with variables that assume discrete values and with

operators that assume logical meaning.

While each logical element or condition must always have a logical value of either

"0" or "1", we also need to have ways to combine different logical signals or

conditions to provide a logical result.

For example, consider the logical statement: "If I move the switch on the wall up, the

light will turn on." At first glance, this seems to be a correct statement. However, if

we look at a few other factors, we realize that there's more to it than this. In this

example, a more complete statement would be: "If I move the switch on the wall up

and the light bulb is good and the power is on, the light will turn on."

 If we look at these two statements as logical expressions and use logical terminology,

we can reduce the first statement to:

Light = Switch

This means nothing more than that the light will follow the action of the switch, so

that when the switch is up/on/true/1 the light will also be on/true/1. Conversely, if the

switch is down/off/false/0 the light will also be off/false/0.

Looking at the second version of the statement, we have a slightly more complex

expression:

Fundamentals of Digital System : Grade 9 99

Light = Switch and Bulb and Power

When we deal with logical circuits (as in computers), we not only need to deal with

logical functions; we also need some special symbols to denote these functions in a

logical diagram. There are three fundamental logical operations, from which all other

functions, no matter how complex, can be derived. These functions are named and,

or, and not. Each of these has a specific symbol and a clearly-defined behaviour.

In binary number system there are only 2 digits 0 and 1, and any number can be

represented by these two digits. The arithmetic of binary numbers means the operation

of addition, subtraction, multiplication and division.

In this unit you will study about adder, half adder, full adder,binary adder, half

subtractor and full subtrator.

Adder
An adder is a digital circuit that performs addition of numbers. In

many computers and other kinds of processors adders are used in the arithmetic logic

units. They are also utilized in other parts of the processor, where they are used to

calculate addresses, table indices, increment and decrement operators, and similar

operations.

 Half Adder
Before designing a binary adder, let us know some basic rules of binary addition. The

most basic binary addition is addition of two single bit binary numbers i.e. addition of

two binary digits.

i. 0 + 0 = 0

ii. 0 + 1 = 1

iii. 1 + 0 = 1

iv. 1 + 1 = 10

The binary digits are 0 and 1. Hence, there must be four possible combinations of

binary addition of two binary bits. In the above list, first three binary operations result

in one bit but fourth one results in two bits. In one bit binary addition, if augend

and addend are 1, the sum will have two digits. (Augend is the number to which

100 Fundamentals of Digital System : Grade 9

another is added. Addends is any of the numbers that are added together. Example: In

8 + 3 = 11, the 8 and the 3 are addends.) The higher significant bit (HSB) or Left side

bit is called carry and the list significant bit (LSB) or right side bit of the result is

called sum bit. The logical circuit that performs this one bit binary addition is called

half adder.

Design of Half Adder
For designing a half adder logic

circuit, we first have to draw the truth

table for two input variables i.e. the

augend and addend bits, two outputs

variables carry and sum bits. In first

three binary additions, there is no carry hence the carry in these cases are considered

as 0.

Truth Table for Half Adder
K-map for Half Adder

Now from this truth table we can draw K-map for carries and sums separately.

For above K-maps we get,

Hence, the logical design of Half Adder would be

Inputs Outputs
Augend(A) Addend(B) Carry(C) Sum(S)

0 0 0 0

0 1 0 1
1 1 0 1

1 1 1 0

Fundamentals of Digital System : Grade 9 101

Although from truth table it is clearly seen that carry (C) column signifies AND

operation and sum (S) column signifies XOR operation between input variables but

till we went through K-map as it is general practice to do so for more complex binary

logic operations.

Binary Adder:-The binary adder is one of the basic combinational logic circuits. The

outputs of a combinational logic circuit depend on the present input only. In other

words, outputs of combinational logic circuit do not depend upon any previously

applied inputs. It does not require any memory like component. Binary adder is one

of the basic combinational logical circuits as present state of input variables.

Binary Adder Block Diagram

Full Adder
The full adder is a conditional circuit which performs full binary addition. It means it

adds two bits and a carry and outputs a sum bit and a carry bit. Any bit of augend can

either be 1 or 0 and we can represent it with variable A, similarly any bit of addend

we represent with variable B. The carry after addition of same significant bit of augend

and addend can be represented by C. Hence truth table for all combinations of A, B

and C is as follows,

102 Fundamentals of Digital System : Grade 9

From the above table, we can draw K-map for sum (s) and final carry (Cout).

Hence, from K-maps,

Fundamentals of Digital System : Grade 9 103

Therefore, the equation for sum, carry for this circuit can be given as

Binary Parallel Adder

A full binary adder performs addition of any single bit of one binary number, same

significant or same position bit of another binary numbers, the carry comes from result

of addition of previous right side bits of both binary numbers. But a single full adder

cannot add more than one bits binary number instantly. This can be done only by

connecting as many full adders as the number of bits of the binary numbers whose

addition is to be performed. This parallel combination of full adders which performs

addition of specific bits binary numbers is called binary parallel adder. For adding two

4 bit binary numbers we have to connect 4 full adders to make 4 bit parallel adder.

The inter connection of 4 full adder in 4bit parallel adder is shown below:

104 Fundamentals of Digital System : Grade 9

Let us examine the justification of the above circuit by taking an example of addition

of two 4 bit binary numbers. Let us add 1011 with 1101.

As there is no previous carry

C0=0.

Therefore, final result of the addition would be
.There are 1 bit, 2 bits and 4 bits parallel Adders ICs commercially available in market.
For n bit parallel adder required number of such ICs are connected together. 4 bit
parallel adder IC is 4008. In n bit parallel adder, output carry terminal of one IC would
be connected with input carry terminal of next IC.

Binary Substractor

1) 0 – 0 = 0

2) 0 – 1 = 1

3) 1 – 0 = 1

4) 1 – 1 = 0

Fundamentals of Digital System : Grade 9 105

Before discussing about binary substractor, let us discuss about the method of

substracting two multi bit binary numbers. For above substraction we used general

rules which are, and borrow 1 which to be added to next higher significant bit of first

binary number. Then same positioned bit of second binary number would be

substracted from that. But there are other methods by which two binary numbers can

be substracted confidently. One of these is 2’s complement method of substraction.

Here, first binary number (from which another binary number to be substracted) is

kept as it is. Then each bit of second binary numbers (which to be substracted) is

complemented. Then 1 is added to LSB of complemented second binary number. This

results 2’s complement of second binary number. Now, Finally we add first binary

number with 2’s complement of the second binary number and we get the final result

of substraction.

Here in the previous example, first binary number was 110011 and second binary

number was 100101. Complement or 1's complement of 100101 is 011010. Now by

adding 1 with LSB of this 1's complement

number we get, Now by adding first number, 110011 and 2's complement of second

number i.e. 11011. We get, Hence, 4 bit substractor can be drawn like,

106 Fundamentals of Digital System : Grade 9

Here, A4, A3, A2, A1 is minuend and B4, B3, B2, B1 is subtrahend. S4, S3, S2, S1 is

result of substraction where C4 is final carry which is ignored.

Half Substractor
Half substractor is a combinational circuit which performs substraction of single bit

binary numbers. The substraction combinations of two single bit binary numbers can

be,

i. 0 - 0 = 0

ii. 0 - 1 = 1 with borrow 1

iii. 1 - 0 = 1

iv. 1 - 1 = 0

 Now if we draw a truth table for that, with all differences (D) and borrow (b), we get,

hence, from truth table it is found that, The above

equations can be represented using logic gates.

Fundamentals of Digital System : Grade 9 107

The above circuit is logical half substractor circuit.

Full Substractor
This is not practical to perform substraction only between two single bit binary

numbers. Instead binary numbers are always multi bits. The substraction of two binary

numbers is performed bit by bit from right (LSB) to left (MSB). During substraction

of same significant bit of minuend and subtrahend, there may be one borrow bit along

with difference bit. This borrow bit (either 0 or 1) is to be added to the next higher

significant bit of minuend and then next corresponding bit of subtrahend to be

subtracted from this. It will continue up to MSB. The combinational logic circuit

performs this operation is called full substractor. Hence, full substractor is similar to

half substractor but inputs in full substractor are three instead of two.

Two inputs are for the minuend and subtrahend bits and third input is for borrowed

which comes from previous bits substraction. The outputs of full adder are similar to

that of half adder, these are difference (D) and borrow (b). The combination of

minuend bit (A), subtrahend bit (B) and input borrow (bi) and their respective

differences (D) and output borrows (b) are represented in a truth table, as follow

108 Fundamentals of Digital System : Grade 9

Let us draw K-map for D and b.

Fundamentals of Digital System : Grade 9 109

SUMMARY

 Binary Arithmetic: Binary arithmetic is essential part of all the digital computers
and many other digital systems.Binary arithmetic is essential part of all the digital
computers and many other digital systems.In binary number system there are only
2 digits 0 and 1, and any number can be represented by these two digits.

 In addition, an augend and an addend are added to find a sum. In the following
equation, 6 is the augend, 3 is the addend, and 9 is the sum: 6 + 3 = 9. NOTE:
Sometimes both the augend and addend are called addends. Sometimes the sum is
called the total.

 Augend: the number to which another is added.
 Addends: Any of the numbers that are added together. Example: In 8 + 3 = 11, the

8 and the 3 are addends.
 Half Adder: The logical circuit that performs one bit binary addition is called half

adder.
 Binary Adder: The binary adder is one of the basic combinational logic circuits as

present state of input variables.
 Half Substractor:The half substractor is a combinational circuit which performs

substraction of single bit binary numbers.
 Full Adder: The full adder is a conditional circuit which performs full binary

addition. That means it adds two bits and a carry and outputs a sum bit and a carry
bit.

 Full Substractor: The full substractor is similar to half substractor but inputs in the
full substractor are three instead of two.

Self evaluation:
1. What is binary arithmetic logic?
2. What is half adder? How it design? Explain with truth table for half adder.
3. How many bits does a half adder add?
4. What is full adder? Explain with truth table.
5. What is the difference between half adder and full adder? Give examples of

both types of adder.
6. What is binary adder? Draw its block diagram.
7. What is binary parallel adder? Explain in brief.
8. What is binary subtractor? Explain in brief.
9. What is half subtractor? Describe with logic gates.
10. What is full subtractor? Explain with truth table.

https://www.youtube.com/watch?v=7NqUpsQru8o[Full Adder]
http://isweb.redwoods.edu/INSTRUCT/CalderwoodD/diglogic/srflip.htm
http://info.iet.unipi.it/~luigi/biomedica/sito/cosc205.pdf

110 Fundamentals of Digital System : Grade 9

UNIT-6
Combinational Logic Circuit

Objectives
After competitions of this unit students will be able to

1. Define and design the different types of combinational logic circuit.

2. Design BCD to Seven Segment Decoder circuit.

Introduction
The digital Logic circuit may be combinational or sequential. A combinational circuit

consists of logic gates whose output at any time is determined directly from the present

combinations of inputs without regard for previous inputs. A combinational circuit

consists of input variables, logic gates and output variables. The logic gates accept

signals from the input and generate signals to the outputs. This process transforms

binary information from the given input data to the required output data. Clearly, both

input and output data are represented by binary signals; i.e. they exist in two possible

values one representing logic-1 and the other logic-0.

Fundamentals of Digital System : Grade 9 111

Design Procedure of Combinational Circuit:
The design procedure involves the following steps.

1. The problem is stated.
2. The numbers of available input variables and required output variables are

determined.
3. Each input and output variable is assigned a letter symbol.
4. The truth table that defines the required relations between input and output is

derived.
5. The simplified Boolean function for each output is obtained.
6. The logic diagram is drawn.

Characteristics of Combinational Circuits:
1. The output of combinational circuit at any instant of time, depending only on

the level present at input terminal.
2. There is no memory in combinational circuit so the previous state of input does

not have any effect on the present state of the circuit.
3. A combinational circuit can have n numbers of inputs and m numbers of

outputs.
Under the combinational logic, we will study about different types of circuit such as
Multiplexer, Demultiplexer, encoder, decoder, and seven –segment- decoder

Multiplexers:

112 Fundamentals of Digital System : Grade 9

Multiplexing means transmitting a large numbers of information units over a smaller

number of channels or lines. A digital multiplexer is a combinational circuit which

has n – data inputs one output and m select inputs with n=2m. It is a digital circuit

which selects one of the n data inputs and routes it to the output. The selection of one

of the n inputs is done by the selected inputs. Depending on the digital code applied

at the selected inputs, one out of n data sources is selected and transmitted to the single

output Y. E is called the enable input which is useful for cascading. It is generally

active low terminal that means it will perform the required operation when it is low.

There are different types of multiplexer circuits. Some of them are as follows.

A 4-to- 1-line Multiplexer

This multiplexer has four input lines, two select lines and one output line. This

particular multiplexer consists of input lines I0 through I3, select lines S0 and S1 and

output line Y. the output depends on the value of selection lines S0 and S1 which is

control inputs. The control inputs determine which of the input line is transmitted to

the output line. For example, in the figure when S0S1=00, I0 appears at the output

line Y while all the other inputs are disabled. Similarly when S0S1=11 then bottom

AND gate is enabled and input I3 is transmitted to the output line Y and so on. An

example of 1-to-4 multiplexer is IC 74153 in which output is same as the input.

Another example of 4-to-1 line multiplexer is 45352 in which the output is the

complement of input. IC 74150 is a 16-to-1 multiplexer.

S1 S0 Y

0 0 I0
0 1 I1
1 0 I2
1 1 I3

Table 6.1.2
(b) Truth Table of 4:1 Multiplexer

Fundamentals of Digital System : Grade 9 113

Now we can obtain the Boolean expression from the relationship between input and

output as shown in the table 6.1.2(b) as follows.

Y= 1S . 0S . I0 + 1S . S0. I1+ S1. 0S .I2+S1.S0.I3

An 8-to- 1-line Multiplexer:
In this particular multiplexer, there are eight input lines I0 through I7, three selection

lines S2, S1 and S0 and one output line Y. the output depends only on the selection

lines S2, S1 and S0 which is control input. The control inputs determine which of the

input (I0 through I7) is transmitted to the output Y. For example, as shown in the

figure, if S2S1S0=000, I0 appears to the output line while all the other inputs are

disabled. Similarly, when S2S1S0=111, I7 appears to the output line Y and all the

other inputs are disabled and so on. The figure 6.1.3 (a) below shows the block

diagram of an 8-to-1 multiplexer with enable input that enable or disable the

multiplexer.

114 Fundamentals of Digital System : Grade 9

Logical Expression:

Y= 2S . 1S . 0S . I0 + 2S . 1S .S0 .I1+ 2S . S1. 0S .I2+ 2S .S1.S0.I3 + S2. 1S . 0S I4 +

S2 . 1S . S0 .I5 + S2.S1. 0S . I6 +S2.S1.S0.I7

We can draw the logic diagram of 8-to-1 multiplexer using the Boolean expression,
eight AND gates and three NOT gates in the figure 6.1.3 (c).

S2 S1 S0 Y

0 0 0 I0

0 0 1 I1

0 1 0 I2

0 1 1 I3

1 0 0 I4

1 0 1 I5

1 1 0 I6

1 1 1 I7 Table 6.1.3
(b) Truth Table of 8:1 Multiplexer

Fundamentals of Digital System : Grade 9 115

 Example 1: Implementing F (A, B, C) =)6,5,3,1(with a multiplexer

Table 6.1.4 (b) Truth Table of implementations of 4:1 Mux

Minterms A B C F

0 0 0 0 0

1 0 0 1 1

2 0 1 0 0

3 0 1 1 1

4 1 0 0 0

5 1 0 1 1

6 1 1 0 1

7 1 1 1 0

116 Fundamentals of Digital System : Grade 9

The function F (A, B, C) = )6,5,3,1(can be implemented with a 4-to 1-line

multiplexer as shown in the figure 6.1.4 (a) above. The variables B and C are applied
to selection lines S1 and S0 respectively. The variable B is connected to the high-
order selection lines and C is connected to the next lower selection lines. Now
consider a variable A, this variable will be complemented in the first half of list of the
eight minterms. The second half of variable A will be uncomplemented. It means
variable A is complemented for minterms 0 to 3 and uncomplemented for the
minterms 4 to 7.

List the inputs of the multiplexer and under them list all the minterms in two rows.
The first row list all the minterms where A is complemented and the second row list
all the minterms where A is uncomplemented as shown in the implementation table
6.1.4(c). Circle all the minterms of the function.

Rules for Constructing Implementation Table

1. If the two minterms in the column are not circled, apply 0 to the corresponding
multiplexer input.

2. If the two minterms are circled, apply 1 to the corresponding multiplexer input.
3. If the bottom minterm is circled and the top is not circled, apply A to the

corresponding multiplexer input.

4. If the top minterm is circled and the bottom is not circled, apply A to the
corresponding multiplexer input.

Example 2: Implementing F (A, B, C) =)5,4,2,1(with a multiplexer

A B C F
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

Table 6.1.5

(b) Truth Table of implementations
of 4:1 Mux

Fundamentals of Digital System : Grade 9 117

In this example, variables A and B are connected to selection lines S1 and S0

respectively, and the variable C in the rightmost position is for the data inputs of the

multiplexer. The variable C is complemented for the minterms 0, 2, 4, and 6, and it is

uncomplemented for the minterms 1, 3, 5 and 7 in the implementation table 6.1.5 (c).

Circle the minterms of the given function by using the rules stated in the example1.We

will get the multiplexer input data. It is not always necessary to choose the leftmost

variable for the data input of the multiplexer as in example1. We can choose any one

of the variable for the inputs of the multiplexer.

Example 3: Implementing F (A, B, C) =

)15,9,8,4,3,1,0(
 with a multiplexer.

This is a four variable function so we need

three selection lines and eight inputs to the

multiplexer. The variables B, C and D are

connected to the selection lines S2, S1, S0

respectively. The implementation table is

shown below in figure 6.1.6 (b). The first half

of the minterms are associated with

complements of A and the second half of the minterms are associated with

uncomplemented A. Now we can apply the rules to find the value of multiplexer

inputs by circling the minterms of the function from the implementation table of 6.1.6

(a)

118 Fundamentals of Digital System : Grade 9

Example 4: Implement the following function using 4-to-1 multiplexer.

Y (A, B, C) =(2, 3, 5, 6)

Let us take B, C as the select bits and
A as input. To decide the input we
write.
Y = A’BC’+A’BC+AB’C+ABC’
= 0 if B=0, C=0
= A if B=0, C=1
= 1 if B=1, C=0
= A’ if B=1, C=1

Applications of Multiplexer

Multiplexer is used where multiple data can be transmitted using a single transmission

line. Following are some of the areas where multiplexer can be implemented.

1. Communication system.

2. Telephone network.

3. Computer memory

4. Transmission from computer system to the satellite

Demultiplexer

It is a combinational circuit which

performs the reverse operations of

the multiplexer i.e. it receives one

input and transmits it to over

several output lines. It has only

one input, n outputs and m select

input lines. At a time only one

output line is selected by the

select lines and the input is

transmitted to the selected output

line. In short it is also called as

DMUX. The enable input decides whether the circuits is operational or not, if this

enable is zero the circuit is not operational and we will have zero at all the output

Fundamentals of Digital System : Grade 9 119

terminals. If the enable input is high, the demultiplexer is operational and the data

input is transferred to any of the output line depending upon the select inputs. There

is a relationship between select line and output. If n is the number of output lines and

m is the number of select lines, then n=2m . Taking the log on both side then m=log2n.

so we can find the select lines depending upon the output lines. Let us suppose that

there is n=4 so, putting the value of n in m=log2n, we will get m=2 select lines. So we

can find the no of select lines depending upon the number of output lines. The figure

7.1 shows the common structure of demultiplexer.

There are different types of demultiplexer based on the output configuration such as

1:4, 1:8, and 1:16. These multiplexers are available in different ic packages and some

of the most commonly used demultiplexers IC includes 74139 (Dual 1:4 DEMUX),

73136(1:8 DEMUX), 74154(1:16 DEMUX), 74159(1:16 open controller type) etc.

120 Fundamentals of Digital System : Grade 9

1-to-2 Demultiplexer
This demultiplexerconsists of one input line, two output lines and one select line. The

outputs of the demultiplexer depend on the signals provided by the select line to one

of the two output lines. The figure 7.1.1(a) shows the block diagram of 1-to-2

demultiplexer with additional enable input.

The truth table of 1:2 Demultiplexer is shown in the table 7.1.1 (b), when E =0 and

S=0, demultiplexer is not operational so both the output Y0 and Y1 is 0. In the same

way, when E=0 and S=1, both outputs are zero. When E=1 and S=0, demultiplexer is

operational and data input is transferred to Y0. When E=1 and S=1, data input is

transferred to Y1.

Now we can find the Boolean expression from the above truth table 7.1.1 (b) as

follows.

Y0=E. S .I and Y1=E.S.I

Based on these two outputs Y0 and Y1 Boolean expression we can draw the logic

diagram of 1:2 demultiplexers using two AND gates and one NOT gate in the figure

7.1.1 (c) below.

Select Input Output

E S0 Y0 Y1

0 0 0 0

0 1 0 0

1 0 I 0

1 1 0 I

Table 7.1.1 (b) Truth Table of 1:2 DMUX

Fundamentals of Digital System : Grade 9 121

1:4 Demultiplexer

A1-to-4 has single input I, two selection lines S1 and S0 and four outputs Y0 to Y3.

The input data goes to any of the four output lines at a time for particular combinations

of selection lines. This is also called 2-to -4 line demultiplexer which means that two

select lines and four output lines.The block diagarm of 1-to-4 line demultiplexer is

shown in the figure 7.1.2 (a).

The truth table of 1:4 demultiplexer is shown in the table 7.1.2 (b) below. From the

truth table, it is clear that when S0=0 and S1=0 the data input is connected to output

Y0 and when S0=0 and S1=1 the data input is connected to Y1.

Inputs Outputs

E S1 S0 Y0 Y1 Y2 Y3

0 X X 0 0 0 0

1 0 0 I 0 0 0

1 0 1 0 I 0 0

1 1 0 0 0 I 0

1 1 1 0 0 0 I

Table 7.1.2 (b) Truth Table of 1:4 Dmultiplexer

122 Fundamentals of Digital System : Grade 9

From the truth table of 7.1.2 (b), the relation between input- outputs of the

demultiplexer can be expressed as minterms and are given below,

Y0=I 1S . 0S

Y1= 1S .S0.I

Y2=S1. 0S .I

Y3=S1.S0.I

Where" I" is the input data line S0 and S1 are the select lines and Y0 to Y3 are output

lines.

Now, we can draw the logic circuit of 1:4 demultiplexers using four AND gates and

two NOT gates in the figure 7.1.2 (c).

This type of demultiplexer is available in IC form and a typical IC 74139 is the most

commonly used dual 1:4 demultiplexer.

Fundamentals of Digital System : Grade 9 123

1:8 Demultiplexer

This type of demultiplexer consist of single input lineI and three selection lines S0,

S1 and S2, and eight output lines from Y0 to Y7.

It is also called 3-to-8 line demultiplexer due to three select input lines. It sends one

input line to one of 8 output lines depending on the combinations of three selection

lines. The figure 7.1.3 (a) shows the common block diagram of 1:8 demultiplexer.

The truth table of the 1:8 demultiplexer is shown in the table 7.1.3 (b).

Table 7.1.3(b) Truth Table of 1:8 Dmultiplexer

Input Select
inputs

Outputs

I S2 S1 S0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0
I 0 0 0 0 0 0 0 0 0 0 I
I 0 0 1 0 0 0 0 0 0 I 0
I 0 1 0 0 0 0 0 0 I 0 0
I 0 1 1 0 0 0 0 I 0 0 0
I 1 0 0 0 0 0 I 0 0 0 0
I 1 0 1 0 0 I 0 0 0 0 0
I 1 1 0 0 I 0 0 0 0 0 0
I 1 1 1 I 0 0 0 0 0 0 0

124 Fundamentals of Digital System : Grade 9

The input line I is connected to one of the eight output lines from Y0 to Y7depending

upon the selection lines S0, S1 and S2. If S2S1S0=000, then input I is connected to

Y0. Similarly, if S2S1S0=001, then the input I is connected to Y1 and so on.

From the truth table 7.1.3 (b) the Boolean expression can be written as follows.

1. Y0=I. 2S . 1S . 0S

2. Y1=I. 2S . 1S .S0

3. Y2=I. 2S .S1. 0S

4. Y3=I. 2S .S1.S0

5. Y4=I.S2. 1S . 0S

6. Y5=I.S2. 1S .S0

7. Y6=I.S2.S1. 0S
8. Y7=I.S2.S1.S0

On the basis of these Boolean expressions, we can clearly draw the logic circuit of 1:8
demultiplexer using eight AND gates and three NOT gates in the figure 7.1.3 (c)
below.

(c) Logic diagram of 1:8 Dmultiplexer

Fundamentals of Digital System : Grade 9 125

Applications of Demultiplexer
1. Demultiplexer is used to connect a single source to a multiple destinations.

The main applications of Demultiplexer are in the communication system

where multiplexers are used.

2. Communication system: The multiplexer is used to carry the audio, video,

image and other forms of data in a single transmission line so the

demultiplexer receives the output signal of the multiplexer and converts them

back to the original signal.

3. Arithmetic and Logic Unit (ALU): The Demultiplexer is used to store the

outputs of the ALU unit to register or storage units.

4. It is used in serial to parallel data converter circuit.

Code Converters

A code converter is a logic circuit that converts one form of digital code to another

form i.e. it converts BCD code to Binary code, HEX code to Binary etc.

Combinational circuit performs this transformation by means of logic gates.

Decoders

A decoder is a combinational circuit that converts binary information from n input

lines to a maximum of 2n unique output lines. If the n-bit decoded information has

unused or don’t care combinations, the decoder output will have fewer than 2noutputs.

The decoder presented here is called n-to–m line decoders, where m≤2n .Their

purpose is to generate the 2n or fewer minterms of n input variables. Consider the 3-

to-8line circuit of fig.(…). The three inputs are decoded into eight outputs, each

output representing one of the minterms of the 3-input variable. The three inverters

provide the complements of the inputs, and each one of the AND gates one of the

minterms. The application of this Decoder is to convert binary- to-octal. The input is

in the form of binary numbers, and the outputs will be represent eight digit octal

number system.

A decoderwith an enable input can function as a demultiplexer. A demultiplexer is a

circuit that receives information on a single line and transmits this information on one

of 2n output lines. The selection of a specific output line is controlled by the bit value

126 Fundamentals of Digital System : Grade 9

of the n selections lines. The decoder in fig.() can function as a demultiplexer if E is

taken as data input line and A and B lines are takes as the selections lines. This is

shown in the fig.(8.1). The input E has occurred to all outputs, but the input

information is directed to only one of the output lines with the binary value of the two

selections lines A and B. The input and output relation can be verified from the truth

table shown in the fig.(8.1). For example, if the selection lines AB=10, then output

D2 will be 0 and all other outputs are maintained at 1.

Binary Decoder

Abinary decoder is a combinational circuit that converts binary code of n input lines

to the one of the 2n output lines depending on the combinations of input lines. It is

used when there is needed to activate exactly one of 2n output lines based on the n

input values.

The Figure(8.2) shows the general structure of Binary Decoder in which encoded

information is accepted at n input lines and the output is produced at 2n possible

output lines.

Fundamentals of Digital System : Grade 9 127

Depending on the numbers of input lines, the binary input lines can be 2-bit, 3-bit and

4-bit code. Usually the number of bits in output code is more than the number of input

lines. The most common Decoders are 2-to-4 line, 3-to-8 line and 4-to-16 line ones.

2- to-4 binary Decoder

In a 2-to-4 binary decoder two inputs are decoded into four outputs so it is called 2-

to-4 line decoder. Only one output is activated at a time while the other outputs are

maintained at logic level 0 and the output which is high depends on the combinations

of the bit values of two inputs. The block diagram of 2-4 Binary Decoder is shown

in the figure 8.2 (a) and its truth table is in the Table 8.2 (b).

For the given input, the outputs D0 through D3 are active high if the enable input E=1.

When E=0 and X=Y=0, the decoder is on the off state. So we simply use don’t care

condition.

When E=1 and XY=00, the decoder output D0 is high while all the other outputs are

low. When X=0 and Y=1 then D1 is active. The relationship between inputs and

outputs are clearly shown in the truth table 8.2 (b).

128 Fundamentals of Digital System : Grade 9

Inputs Outputs

E X Y D0 D1 D2 D3

0 X X 0 0 0 0

1 0 0 1 0 0 0

1 0 1 0 1 0 0

1 1 0 0 0 1 0

1 1 1 0 0 0 1

Table 8.2 (b) Truth Table of 2:4 Decoders

From the above truth table we can obtain the Boolean expression as follows.

D0= X .Y

D1= X .Y

D2=X. Y
D3=X.Y

Now we can clearly draw the logic diagram of 2:4 decoders using the Boolean

expressions, four AND gates and two NOT gates that provides the complement inputs

in the figure 8.2 (c). A common enable input is connected to all the AND gates such

that when E=0 all outputs are 0 and E=1 depends on the input X and Y, outputs are

generated. Each output represents one of the minterms of the two input variables.

Fundamentals of Digital System : Grade 9 129

3-to-8 line Decoder:

In3-to-8 line decoder, three inputs are decoded into eight output lines. It has three

inputs as X, Y and Z and eight outputs through (D0 to D7). Based on the combinations

of the three inputs only one output is selected. The table 8.3 (a) shows the truth table

of 3-to-8 line Decoder. The enable input E is provided to activate the Decoded output

depends on the input combinations X, Y and Z. If X=Y=Z=1, then output D7=1 and

all the outputs remains at the logic low. From the truth table of 3-to-8 line Decoder,

we can express the Boolean equations as follows.

Table 8.3 (a) Truth Table of 3 to 8 Decoders

D0= X .Y Z

D1= X .Y .Z

D2= X .Y. Z

D3= X .Y.Z

D4=X. Y . Z

D5=X. Y .Z

D6=X.Y. Z
D7=X.Y.Z

Using the above minterms we can draw the logic diagram of 3-to-8 line decoder using

eight AND gates and there NOT gates in the figure 8.3 (b). Only one output is high at

a given time for particular combinations of inputs. A particular application of this

Inputs Outputs

X Y Z D0 D1 D2 D3 D4 D5 D6 D7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

130 Fundamentals of Digital System : Grade 9

Decoder is binary to octal conversion. The input variable may represents a binary

number, and the output will then represents the eight digits in the octal number system.

Fundamentals of Digital System : Grade 9 131

BCD to Decimal Decoder

In BCD to Decimal decoder, the elements of information are 10 decimal digits

represented by the BCD code. The functions of the decoder are to supply one output

for each decimal digit. Each output is equal to only one when the input variables

constitute bit combinations corresponding to the decimal digit as represented in BCD.

The table 8.4 (a) is a truth table which shows the input-output relations of the decoder.

Only the first 10 input combinations are valid code assignments, the last six are not

used due to don't care conditions. The table lists the output for six 'not used' ones.

Combinations of the BCD code, but these combinations clearly have no meaning in

this circuit. Decoders and encoders have many applications in digital systems.

Decoders are useful for displaying discrete elements of information stored in registers.

For example, a decimal digit represented in BCD and stored in four-cell register may

be displayed with the help of a BCD to decimal decoder. Another application of

decoder circuit is in the generations of Timing and sequencing signals for control

purpose.

Inputs Outputs
W X Y Z D0 D1 D2 D3 D4 D5 D6 D7 D8 D9
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0 0 1 0 0 0
0 1 1 1 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 1 0 0 0 0 0 0 0 0 0 1
1 0 1 0 0 0 1 0 0 0 0 0 1 0
1 0 1 1 0 0 0 1 0 0 0 0 0 1
1 1 0 0 0 0 0 0 1 0 0 0 1 0
1 1 0 1 0 0 0 0 0 1 0 0 0 1
1 1 1 0 0 0 0 0 0 0 1 0 1 0
1 1 1 1 0 0 0 0 0 0 0 1 0 1

Table 8.4 (a) Truth Table BCD to Decimal Decoders

132 Fundamentals of Digital System : Grade 9

Applications of Decoders

1. Decoders are used to route input data to a specified output line in addressing

core memory where input data is to be stored in a specific memory location.

2. Decoders are used in the code conversions.

3. Decoders may also be used for data distribution i.e. demultiplexing.

4. It is very useful for generations of timing and sequencing signals for control

purpose.

Fundamentals of Digital System : Grade 9 133

Encoders

An encoder is a combinational circuit which is designed to perform the inverse

operation of the decoder. It has 2n input lines and n output lines. The output lines

generate the binary code corresponding to the input value. Encoder circuits are very

useful for binary code formation when the discrete elements of information are each

available from a single line. The encoders are very useful in digital electronics that

translate the decimal values into the binary a value in order to perform the binary

functions such as addition, subtraction, multiplication, etc. The figure below shows

the block diagram of encoder which consists of 2n input lines and n output lines.

There are varieties of encoder circuit. They are as follows.

 Octal to Binary Encoder

 Priority Encoder

 Decimal to BCD Encoder

 Hexadecimal to Binary Encoder

Octal to binary encoder:

In case of octal number system, the base or radix is 8 i.e. r=8 which means it has eight

distinct digits and they are from (0 to 7). It consists of eight input lines and three

output lines. Each input line corresponds to each octal digit and three outputs generate

134 Fundamentals of Digital System : Grade 9

corresponding binary code. It is constructed with OR gates. It is assumed that only

one input line can be equal to 1 at any time, otherwise the circuit has no meaning. Its

truth table is shown in fig.(9.2)..

Table 9.2 (a) Truth Table of Octal to Binary Encoder

From the truth table, we can see that output B2 is high for the last four cases and it is

low for the first four cases. So

 B2=D4+D5+D6+D7.

Now for the B1: D2, D3, D6 and D7 inputs are in high and all the remaining inputs

are at logic 0. So we can write

 B2=D2+D3+D6+D7

Similarly, for B0: all the even numbers of inputs are high and all other remaining

inputs are in low state. So we can write the Boolean expression as follows.

B0=D1+D3+D5+D7

Inputs Outputs

D0 D1 D2 D3 D4 D5 D6 D7 B2 B1 B0

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1 1 1

Fundamentals of Digital System : Grade 9 135

Decimal to BCD Encoder

The decimal is a number system in which the base or radix is 10, i.e. r =10. So the

total number of digit is from (0 to 9). This encoder consists of 10 input lines and four

output lines. Each input line corresponds to each decimal digit and four output lines

correspond to the BCD code. It takes the decoded decimal data as an input and encodes

it to BCD output to the output lines. The figure below shows the truth table of Decimal

to BCD encoder. The truth table shows the BCD code for each decimal digit. The

table shows the truth table of Hexadecimal to Binary Encoder.

Inputs Outputs

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D C B A

1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 1

Table 9.3 (a) Truth Table of Decimal to BCD Encoder

136 Fundamentals of Digital System : Grade 9

From the truth table, we can see that A is high for the even numbers of inputs. So
output A=D1+D3+D5+D7+D9 and all the other inputs is low.

Similarly, for B: the inputs D2, D3, D6, and D7 are high and remaining inputs are low
state. Therefore we can write output B as

10. B=D2+D3+D6+D7
Now in case of output C, the inputs D4, D5, D6, and D7 are in high state and all other
inputs are at low state. So we can write a Boolean function as

C=D4+D5+D6+D7

In the last case that is for the D output only last two inputs are high and remaining
inputs are in logic state low. So we can express Boolean function as D=D8+D9

So the required Boolean expressions for the logic diagram of Decimal to BCD are as
follows:

11. A=D1+D3+D5+D7+D9
12. B=D2+D3+D6+D7
13. C=D4+D5+D6+D7
14. D=D8+D9

Now we can easily draw the logic diagram of Decimal to BCD encoder using the
above Boolean expression.

Fig. 9.3 (b): Logic circuit of decimal to BCD Encoder

Fundamentals of Digital System : Grade 9 137

Priority Encoder
A priority encoder is an encoder circuit that includes the priority function. It operates

in a manner that if two or more inputs are equal to 1 at the same time, then the input

line with highest priority will be considered. The truth table for the priority encoder

is given in table. The X's are the don't-care conditions that designate the fact that the

binary value may be equal to either 0 or 1. Input D3 has the highest priority; so

regardless of the value of the other inputs, when this input is 1, the output for x y is

11. D2 has the next priority level. The output is 1 0 if D2=1, provided that D3=0,

regardless of the value of the other two lower priority inputs. The output D1 is

generated only if the highest-priority inputs are 0, and so on down the priority level.

A valid indicator v is set to 1 only when one or more of the inputs are equal to 1.If all

inputs are 0, v is equal to 0, and the other two outputs of the circuit are not used. The

priority encoder is implemented in figure. 9.4(c) using the following boolean

functions.

X=D2+D3 Y=D3+D1. 2D V=D0+D1+D2+D3

Table 9.4 (a) Truth Table of Priority Encoder

Inputs Outputs

D0 D1 D2 D3 X Y V

0 0 0 0 X X 0

1 0 0 0 0 0 1

X 1 0 0 0 1 1

X X 1 0 1 0 1

X X X 1 1 1 1

138 Fundamentals of Digital System : Grade 9

(b) K Maps of Priority Encoder

Hexadecimal to Binary Encoder
In Case of hexadecimal number system the base or radix is 16, i.e. r=16, which means

there are sixteen distinct digits in total. They are ranging from 0 to F. For example 15

is written F in hexadecimal number system. Similarly, 10 are written as A. It is very

clear that 16 is the number of inputs for our decoder. So n=16. To find the number of

output lines we have n=2m. Taking logs on both side we will get the values of output

lines m=4. So we require a 4 bit to represent a single Hexadecimal number.

In-
put

Outputs
B
3

B
2

B
1

B
0

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
A 1 0 1 0
B 1 0 1 1
C 1 1 0 0
D 1 1 0 1
E 1 1 1 0
F 1 1 1 1

Table: 9.5: (a) Logic circuit of HEX to Binary Encoder

Fundamentals of Digital System : Grade 9 139

From the truth table of 9.5(a), we can clearly mention the outputs B0, B1, B2 and B3.

B0 is high for all the odd numbers of inputs. That is it is high for inputs 1, 3, 5, 7, 9,

B, D and F.

B1 is high for 2, 3, 6, and 7, A, B, E, and F.

similarly, B2 is high for 4,5,6,7,C,D,E,F. and the last output B3 is high for second

half of the inputs and low for the first half of the inputs.

We can design a logic circuit of HEX to Binary encoder using the following Boolean

expressions shows in the figure 9.5 (b).

B0=1+3+5+7+9+B+D+F

B1=2+3+6+7+A+B+E+F

B2=4+5+6+7+c+D+E+F

B3=8+9+A+B+C+D+E+F

Seven -Segment Display Decoder
Introduction
The seven-segment decoder consists of seven LED's arranged in the rectangular

fashion. Each of the seven LED is called segment because when illuminated the

segment forms part of the numerical digits both decimal and Hex to be displayed. A

LED or Light Emitting Diode is a solid state optical PN junction diode which emits

light energy in the forms of Photons when the diode is in the forward biased mode.

The basic idea to drive a seven-segment LEDs display is combinational logic circuit.

The circuit is designed with four inputs and seven outputs, each representing an input

to the seven-segment IC. Using K-Map, we can design a logic circuit for each of the

input of the IC. The figure 10.1 below shows the seven-segment display device

images taken from the website http://www.electronicshub.org/seven-segment-

displays/

Applications of Seven –Segment Display

 The applications of seven segments are mostly in digital calculators, electronic

meters, digital clocks, odometers, digital clocks, clock radios, etc.

 Today most of the 7 segment applications are using LCDs, because of low current

consumption.

140 Fundamentals of Digital System : Grade 9

Figure 10.1:

(c) Seven segment display Device diode placement

(b) Seven segment display device structure (a) Seven segment display Device

Fundamentals of Digital System : Grade 9 141

Table 10.1 : Truth table of seven segment Display

Inputs Outputs
A B C D a B c d E f g
0 0 0 0 1 1 1 1 1 1 0
0 0 0 1 0 1 1 0 0 0 0
0 0 1 0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 1 0 0 1
0 1 0 0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 1 0 1 1
1 1 1 0 1 0 1 1 1 1 1
0 1 1 1 1 1 1 0 0 0 0
1 0 0 0 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1 0 1 1

142 Fundamentals of Digital System : Grade 9

(c) K-Map for Seven segment Display

Fundamentals of Digital System : Grade 9 143

Construction of 4x16 with Two 3x8 Decoders
We can construct a large decoder/demultiplexer circuit by combining two 3×8

decoders to form a 4×16 decoder with an enable input as shown in the fig. When w

=0, the top decoder is enabled and the bottom decoder is disabled. The bottom decoder

outputs are all 0’s, and the top eight outputs generate minterms 0000 to 0100. When

144 Fundamentals of Digital System : Grade 9

w=1, the top Decoder outputs are all 0’s and the bottom decoder outputs generate

minterms 1000 to 1111.

Summary
 A combinational circuit consists of logic gates whose output at any time is

determined directly from the present combinations of inputs irrespective of

previous inputs.

 Multiplexing means transmitting a large numbers of information units over a

smaller number of channels or lines.

There are varieties of multiplexers. Some of them are as follows:

 4:1 multiplexer

 8:1 multiplexer

 16:1 multiplexer

 Demultiplexer combinational circuit performs the reverse operations of the

multiplexer. In short it is also called as DMUX. There are different types of

Demultiplexer based on the output configuration such as 1:4, 1:8, and 1:16.

 1-to-2 Demultiplexer consists of one input line, two output lines and one select

line. The outputs of the demultiplexer depend on the signals provided by the select

line to one of the two output lines.

Fundamentals of Digital System : Grade 9 145

 A1-to-4 has single input I, two selection lines S1 and S0 and four outputs Y0 to

Y3. The input data goes to any of the four output lines at a time for particular

combinations of selection lines.

 1:8 demultiplexer consist of single input lineI and three selection lines S0, S1 and

S2, and eight output lines from Y0 to Y7. It sends one input line to one of 8 output

lines depending on the combinations of three selection lines.

 A code converter is a logic circuit that converts the one form of digital code to

another form i.e. it converts BCD code to Binary code, HEX code to binary, etc.

Combinational circuit performs this transformation by means of logic gates.

 Decoder is a combinational circuit that converts binary information from n input

lines to a maximum of 2n unique output lines. If the n-bit decoded information

has unused or don’t care combinations, the decoder output will have fewer than

2noutputs.

 A binary decoder is a combinational circuit that converts binary code of n input

lines to the one of the 2n output lines depending on the combinations of input

lines. It is used when it is necessary to activate exactly one of 2n output lines based

on the n input values. The most common decoders are 2-to-4 line, 3-to-8 line and

4-to -16 lines.

 In 2-to-4 binary Decoder two inputs are decoded into four outputs so it is called

2-to-4 line decoder. Only one output is activated at a time while the other outputs

are maintained at logic level 0 and the output which is high depends on the

combinations of the bit values of two inputs.

 In3-to-8 line Decoder, three inputs are decoded into eight output lines. It has three

inputs as X, Y and Z, and eight outputs through (D0 to D7). Based on the

combinations of the three inputs only one output is selected.

 In BCD to Decimal decoder, the elements of information are 10 decimal digits

represented by the BCD code. The functions of the decoder are to supply one

output for each decimal digit.

 Encoder is a combinational circuit which is designed to perform the inverse

operation of the decoder. An encoder has 2n input lines and n output lines. The

output lines generate the binary code corresponding to the input value.

There are varieties of encoder circuit. They are as follows.

146 Fundamentals of Digital System : Grade 9

 Octal to Binary Encoder

 Decimal to BCD encoder

 Priority Encoder

 Hexadecimal to Binary encoder

 In octal to binary encoder number system, the base or radix is 8 i.e. r=8 which

means it having eight distinct digits and they are from (0 to 7). It consists of eight

input lines and three output lines. Each input line corresponds to each octal digit

and three outputs generate corresponding binary code.

 The decimal is a number system in which the base or radix is 10, i.e. r=10. So the

total number of digit is from (0 to 9). This encoder consists of 10 input lines and

four output lines. Each input line corresponds to the each decimal digit and four

output lines correspond to the BCD code. It takes the decoded decimal data as an

input and encodes it to BCD output to the output lines.

 A priority encoder is an encoder circuit that includes the priority function. It

operates in a manner that if two or more inputs are equal to 1 at the same time,

then the input line with highest priority will be considered.

 In case of hexadecimal number system the base or radix is 16, i.e. r=16, which

means there are in total sixteen distinct digits. They are ranging from 0 to F.

 The seven-segment decoder consists of seven LED's arranged in the rectangular

fashion. Each of the seven LED is called segment because when illuminated the

segment forms part of the numerical digits both decimal and Hex to be displayed.

Self- Evaluation
(Group A)
Short Answer Questions

1. Consider the following statements

2. A multiplexer

3. Selects one of the several inputs and transmit it to a single output.

4. Routes the data from a single input to one of the many outputs.

5. Converts parallel data into serial data.

6. Is a combinational circuit.

Fundamentals of Digital System : Grade 9 147

Which of these statements are correct?

(a) 1, 2 and 4 b) 2, 3, and 4 c) 1,3 and 4 d) 1, 2 and 3

1. Obtain the logic diagram of a decimal to BCD encoder.

2. Explain the working of a demultiplexer with the help of an example.

3. Explain the operation of 8:1 multiplexer.

4. Explain the operation of octal to binary encoder.

5. What is a demultiplexer? Discuss the differences between a demultiplexer and

a decoder.

6. Implement the following Boolean function with an eight-input digital

multiplexer.

7. Y(I,S2,S1,S0)= Σ(2,4,7,10,12,14)

8. What is a decoder? Draw the logic circuit of a 3 line to 8 line decoder and

explain its working.

(Group B)
Long Answer Questions

1. Design a combinational circuit whose input is a four bit number and whose

output is the 2's complement of the input number.

2. Design a combinational circuit with four input lines that represent a decimal

digit in BCD and four output lines that generate the 9's complement of the

input digit.

3. Design a combinational circuit that converts a decimal digit from the 8, 4,-2,-

1 code to BCD.

4. Design a combinational circuit that converts a decimal digit from the 2,4,2,1,

code to the 8, 4,-2,-1.

5. Design a combinational circuit that accepts a three bit number and generate an

output equal to the square of the input number.

6. The circuit shown doesn't represent

a. S(A,B)=Σ(1,2) b. Ex-OR gate with A and B as input

c. S (A, B) =ᴨ (0, 3) d. A . B +AB

148 Fundamentals of Digital System : Grade 9

1. Design a combinational circuit with a decoder and external gates by the

following Boolean functions.

F1= X .Y. Z + XZ

F2=X.Y . Z + X .Y

F3= X .Y . Z + X.Y

1. The circuit below represents function X(A,B,C,D) as :

a. Σ(3,8,9,10)

b. Σ(3,8,10,14)

c. ᴨ(0,1,2,4,5,6,7,11,12,13,15)

d. ᴨ(0,1,2,4,5,6,7,10,12,13,15)

Fundamentals of Digital System : Grade 9 149

1. A combinational circuit has four inputs and one output. The output is equal to 1

when:

1. 1) All the inputs are equal to 1

2. 2) None of the inputs are equal to 1

3. 3) An odd number of inputs are 1

Questions:
a) obtain the truth table

b) find the simplified output function in sum of product

c) find the simplified output function in Product of sum.

d) Draw the logic diagram.

1. What is an encoder? Draw the logic circuit of Decimal to BCD encoder and

explain its working.

2. What is a Decoder? Compare a decoder and a demultiplexer with suitable

block diagrams.

3. What is a digital multiplexer? Illustrate its functional diagram. Write the

scheme of a 4- input multiplexer using basic gates (AND/OR/NOT) and

explain its operation.

4. Implement the following function using 8 to 1 multiplexer Y(,A ,B ,C D) =

∑ (0,1,2,5,9,11,13,15).

5. Implement the following function using 4-to-1 multiplexer. Y (, A, B C) = ∑

(2, 3, 5, 6).

6. A combinational circuit has 3 inputs A, B, C and output F. F is true for

following input combinations

A is False, B is true
A is False, C is true

A, B, C are False

A, B, C are True

(i) Write the Truth table for F. Use the convention True=1 and False = 0.

(ii) Write the simplified expression for F in SOP form.
(iii) Write the simplified expression for F in POS form.
(iv) Draw logic circuit using minimum number of 2-input NAND gates.

150 Fundamentals of Digital System : Grade 9

UNIT:- 7
Sequential Logic

Learning Outcomes

After completion of this unit you will be able to

 to impart to you a formalism of sequential logic.

 to enable you to understand different type of sequential logic.

 to enable you to implement RS or SR, T,D,JK, JK Master Slaves Flip Flop.

 to enable you to understand the latch,level clocking,trigger and its different types

likes low, high level triggering etc.

 Introduction:-
Sequential logic circuit consists of combinational circuit to which memory elements

are connected to form a feedback path.

Fig.7.1.1 Block Diagram

The outputs of sequential circuit depends on present inputs and past or previous state.

Examples:- Flip flop, register, counters.

Sequential logic is a form of binary circuit design that employs one or more inputs

and one or more outputs, whose states are related by defined rules that depend, in part,

Fundamentals of Digital System : Grade 9 151

on previous states. Each of the inputs and output(s) can attain either of two states:

logic 0 (low) or logic 1 (high).

A common example of a circuit employing sequential logic is the flip-flop, also called

a bistable gate. A simple flip-flop has two stable states. The flip-flop maintains its

states indefinitely until an input pulse called a trigger is received. If a trigger is

received, the flip-flop outputs change their states according to defined rules, and

remain in those states until another trigger is received.

There are different kinds of flip-flop circuits, with designators such as D, T, J-K, and

R-S. Flip-flop circuits are interconnected to form the logic gates that comprise digital

integrated circuits (IC s) such as memory chips and microprocessors.

Sequential logic differs from combinatorial logic (also called combinational logic). In

the latter scheme, the output states depend only on the input states at a specific

moment in time, and not on previous states.

Types of sequential logic
1. Synchronous Sequential Logic
 In this system signals that affect the memory elements only at discrete instants

of time. Synchronous is achieved by a time device called a master clock

generation which generates a periodic train of clock pulses. Synchronous

sequential circuits that use clock pulses in the input of memory elements are

called clocked sequential circuit.

2. Asynchronous Sequential Logic
 The behavior of an asynchronous sequential logic system depends upon the

order in which its input signals change and can be affected at any instant of

time.

3. Latching Effect or Latch-up:
 A latch-up is a type of short circuit which can occur in an integrated circuit

(IC). More specifically it is the inadvertent creation of a low-impedance path

between the power supply rails of a MOSFET circuit, triggering a parasitic

structure which disrupts proper functioning of the part, possibly even leading

152 Fundamentals of Digital System : Grade 9

to its destruction due to over current. A power cycle is required to correct this

situation.

 A single event latch-up is a latch-up caused by a single event upset, typically

heavy ions or protons from cosmic rays or solar flares.

 The parasitic structure is usually equivalent to a thyristor (or SCR), a PNPN

structure which acts as a PNP and an NPN transistor stacked next to each other.

During a latch-up when one of the transistors is conducting, the other one

begins conducting too. They both keep each other in saturation for as long as

the structure is forward-biased and some current flows through it - which

usually means until a power-down. The SCR parasitic structure is formed as a

part of the totem-pole PMOS and NMOS transistor pair on the output drivers

of the gates.

 The latch-up does not have to happen between the power rails - it can happen

at any place where the required parasitic structure exists. A common cause of

latch-up is a positive or negative voltage spike on an input or output pin of a

digital chip that exceeds the rail voltage by more than a diode drop. Another

cause is the supply voltage exceeding the absolute maximum rating, often

from a transient spike in the power supply. It leads to a breakdown of an

internal junction. This frequently happens in circuits which use multiple

supply voltages that do not come up in the required sequence on power-up,

leading to voltages on data lines exceeding the input rating of parts that have

not yet reached a nominal supply voltage. Latch-ups can also be caused by an

electrostatic discharge event.

 Another common cause of latch-ups is ionizing radiation which makes this a

significant issue in electronic products designed for space (or very high-

altitude) applications. High-power microwave interference can also trigger

latch ups.

 Both CMOS integrated circuits and TTL integrated circuits are more

susceptible to latch-up at higher temperatures.

Fundamentals of Digital System : Grade 9 153

 A flip-flop is called latch, if the instance at which output should change has no

well defined instances clock input. A latch is FF without no edge triggered

clocking mechanism for its inputs. A latch may have a gating input (clock

input interval) during which input changes affect changes called latching

effect.

4. Level Clocking
 A clock is a control signal that periodically makes a transition from a 0 to 1

and then back to 0 again we usually denote the clock by the symbol clk or cp.

Clock Pulse Transition
The movement of a trigger pulse is always from a 0 to 1 and then 1 to 0 of a signal.

Thus it takes two transitions in a single signal. When it moves from 0 to 1 it is called

a positive transition and when it moves from 1 to 0 it is called a negative transition.

To understand more take a look at the images below.

Fig.7.1.2 Clock Pulse Transition

The clocked flip-flops already introduced are triggered during the 0 to 1 transition of

the pulse, and the state transition starts as soon as the pulse reaches the HIGH level.

154 Fundamentals of Digital System : Grade 9

If the other inputs change while the clock is still 1, a new output state may occur. If

the flip-flop is made to then the multiple-transition problem can be eliminated.

The multi-transition problem can be stopped is the flip flop is made to respond to the

positive or negative edge transition only, other than responding to the entire pulse

duration.

Trigger
The number of trigger pulses that is applied to the input of the circuit determines the
number in a counter. A single pulse makes the bit move one position, when it is
applied onto a register that stores multi-bit data.

In the case of SR Flip Flops, the change in signal level decides the type of trigger that
is to be given to the input. But the original level must be regained before giving a
second pulse to the circuit.

If a clock pulse is given to the input of the flip flop at the same time when the output
of the flip flop is changing, it may cause instability to the circuit. The reason for this
instability is the feedback that is given from the output combinational circuit to the
memory elements. This problem can be solved to a certain level by making the flip
flop more sensitive to the pulse transition rather than the pulse duration.

Types of Trigger
There are mainly four types of pulse-triggering methods. They differ in the manner in

which the electronic circuits respond to the pulse. They are

1. High Level Triggering
When a flip-flop is required to respond at its HIGH state, a HIGH level triggering

method is used. It is mainly identified from the straight lead from the clock input.

Take a look at the symbolic representation shown below.

Fig.7.1.3.i. High Level Triggering

Fundamentals of Digital System : Grade 9 155

2. Low Level Triggering
When a flip-flop is required to respond at its LOW state, a LOW level triggering

method is used. It is mainly identified from the clock input lead along with a low

state indicator bubble. Take a look at the symbolic representation shown below.

Fig.7.1.3.ii. Low Level Triggering

3. Positive Edge Triggering
When a flip-flop is required to respond at a LOW to HIGH transition

state, POSITIVE edge triggering method is used. It is mainly identified from the

clock input lead along with a triangle. Take a look at the symbolic representation

shown below.

Fig.7.1.3.iii.Positive Edge Triggering

156 Fundamentals of Digital System : Grade 9

4. Negative Edge Triggering
When a flip flop is required to respond during the HIGH to LOW transition state, a

NEGATIVE edge triggering method is used. It is mainly identified from the clock

input lead along with a low-state indicator and a triangle. Take a look at the

symbolic representation shown below.

Fig.7.1.3.iv. Negative Edge Triggering

 Flip Flop
Flip-flops are binary cells capable of storing one bit information. A flip-flop circuit

has two outputs one for the normal value and one for the complement value of the bit

stored in it. Binary information can enter in a flip-flop in a variety of ways, a fact

which give rise to different types of flip flops.

Flip-flop is a sequential circuit which generally samples its inputs and changes its

outputs only at particular instants of time and not continuously. Flip-flop is said to be

edge sensitive or edge triggered rather than being level triggered like latches.

Basic Flip-Flop Circuit
S-R Flip Flop
It is basically S-R latch using NAND gates with an additional enable input. It is also

called as level triggered SR-FF. For this, circuit in output will take place if and only

if the enable input (E) is made active. In short this circuit will operate as an S-R latch

if E = 1 but there is no change in the output if E = 0.

Fundamentals of Digital System : Grade 9 157

Block Diagram

Circuit Diagram

Fig.7.2. SR Flip Flop

Truth Table

158 Fundamentals of Digital System : Grade 9

Operation

S.N. Condition Operation

1 S = R = 0 :
No change

If S = R = 0 then output of NAND gates 3 and 4 are forced
to become 1.
Hence R' and S' both will be equal to 1. Since S' and R' are
the input of the basic S-R latch using NAND gates, there
will be no change in the state of outputs.

2 S = 0, R = 1,
E = 1

Since S = 0, output of NAND-3 i.e. R' = 1 and E = 1 the
output of NAND-4 i.e. S' = 0.
Hence Qn+1 = 0 and Qn+1 bar = 1. This is reset condition.

3 S = 1, R = 0,
E = 1

Output of NAND-3 i.e. R' = 0 and output of NAND-4 i.e.
S' = 1.
Hence output of S-R NAND latch is Qn+1 = 1 and
Qn+1 bar = 0. This is the reset condition.

4 S = 1, R = 1,
E = 1

As S = 1, R = 1 and E = 1, the output of NAND gates 3 and
4 both are 0 i.e. S' = R' = 0.
Hence the Race condition will occur in the basic NAND
latch.

Toggle Flip-Flop / T Flip-Flop

Toggle flip-flop is basically a JK flip flop with J and K terminals permanently

connected together. It has only input denoted by T as shown in the Symbol Diagram.

The symbol for positive edge triggered T flip-flop is shown in the Block Diagram.

Fundamentals of Digital System : Grade 9 159

Symbol Diagram

Block Diagram

Fig.7.3. T Flip-Flop

Truth Table

Operation

S.N. Condition Operation

1 T = 0, J = K = 0 The output Q and Q bar won't change.

2 T = 1, J = K = 1 Output will toggle corresponding to every leading
edge of clock signal.

160 Fundamentals of Digital System : Grade 9

 Delay Flip Flop / D Flip-Flop

Delay Flip Flop or D Flip Flop is the simple gated S-R latch with a NAND inverter

connected between S and R inputs. It has only one input. The input data is appearing

at the output after some time. Due to this data delay between i/p and o/p, it is called

delay flip flop. S and R will be the complements of each other due to NAND inverter.

Hence S = R = 0 or S = R = 1, these input condition will never appear. This problem

is avoid by SR = 00 and SR = 1 conditions.

Block Diagram

Circuit Diagram

Fig.7.4. D Flip Flop

Truth Table

Fundamentals of Digital System : Grade 9 161

Operation

S.N. Condition Operation

1 E = 0 Latch is disabled. Hence no change in output.

2 E = 1 and D = 0 If E = 1 and D = 0 then S = 0 and R = 1. Hence
irrespective of the present state, the next state is Qn+1 =
0 and Qn+1 bar = 1. This is the reset condition.

3 E = 1 and D = 1 If E = 1 and D = 1, then S = 1 and R = 0. This will set
the latch and Qn+1 = 1 and Qn+1 bar = 0 irrespective
of the present state.

 JK Flip-flop

Fig. 7.5 JK Flip-flop

Both the S and the R inputs of the previous SR bistable have now been replaced by

two inputs called the J and K inputs, respectively after its inventor Jack Kilby. Then

this equates to: J = S and K = R.

The two 2-input AND gates of the gated SR bistable have now been replaced by two

3-input NAND gates with the third input of each gate connected to the outputs

at Q and Q. This cross coupling of the SR flip-flop allows the previously invalid

162 Fundamentals of Digital System : Grade 9

condition of S = “1” and R = “1” state to be used to produce a “toggle action” as the

two inputs are now interlocked.

If the circuit is now “SET” the J input is inhibited by the “0” status of Q through the

lower NAND gate. If the circuit is “RESET” the K input is inhibited by the “0” status

of Q through the upper NAND gate. As Q and Q are always different we can use them

to control the input. When both inputs J and K are equal to logic “1”, the JK flip flop

toggles as shown in the following truth table.

The Truth Table for the JK Function

same as
for the
SR Latch

Input Output
Description

J K Q Q

0 0 0 0
Memory
no change

0 0 0 1

0 1 1 0
Reset Q » 0

0 1 0 1

1 0 0 1
Set Q » 1

1 0 1 0

toggle
action

1 1 0 1

Toggle
1 1 1 0

Then the JK flip-flop is basically an SR flip flop with feedback which enables only

one of its two input terminals, either SET or RESET to be active at any one time

thereby eliminating the invalid condition seen previously in the SR flip flop circuit.

Also when both the J and the K inputs are at logic level “1” at the same time, and the

Fundamentals of Digital System : Grade 9 163

clock input is pulsed either “HIGH”, the circuit will “toggle” from its SET state to a

RESET state, or vice-versa. This results in the JK flip flop acting more like a T-type

toggle flip-flop when both terminals are “HIGH”.

Although this circuit is an improvement on the clocked SR flip-flop it still suffers

from timing problems called “race” if the output Q changes state before the timing

pulse of the clock input has time to go “OFF”. To avoid this the timing pulse period

(T) must be kept as short as possible (high frequency). As this is sometimes not

possible with modern TTL IC’s the much improved Master-Slave JK Flip-flop was

developed.

The master-slave flip-flop eliminates all the timing problems by using two SR flip-

flops connected together in a series configuration. One flip-flop acts as the “Master”

circuit, which triggers on the leading edge of the clock pulse while the other acts as

the “Slave” circuit, which triggers on the falling edge of the clock pulse. This results

in the two sections, the master section and the slave section being enabled during

opposite half-cycles of the clock signal.

Master Slave JK Flip-Flop

Master slave JK FF is a cascade of two S-R FF with feedback from the output of

second to input of first. Master is a positive level triggered. But due to the presence of

the inverter in the clock line, the slave will respond to the negative level. Hence when

the clock = 1 (positive level) the master is active and the slave is inactive. Whereas

when clock = 0 (low level) the slave is active and master is inactive.

Circuit Diagram

Fig.7.6 Master Slave JK Flip Flop

164 Fundamentals of Digital System : Grade 9

Truth Table

Operation

S.N. Condition Operation

1 J = K = 0
(No
change)

When clock = 0, the slave becomes active and master is
inactive. But since the S and R inputs have not changed, the
slave outputs will also remain unchanged. Therefore outputs
will not change if J = K =0.

2 J = 0 and K
= 1 (Reset)

Clock = 1 − Master active, slave inactive. Therefore outputs
of the master become Q1 = 0 and Q1 bar = 1. That means S
= 0 and R =1.
Clock = 0 − Slave active, master inactive. Therefore outputs
of the slave become Q = 0 and Q bar = 1.
Again clock = 1 − Master active, slave inactive. Therefore
even with the changed outputs Q = 0 and Q bar = 1 fed back
to master, its output will be Q1 = 0 and Q1 bar = 1. That
means S = 0 and R = 1.
Hence with clock = 0 and slave becoming active the outputs
of slave will remain Q = 0 and Q bar = 1. Thus we get a
stable output from the Master slave.

3 J = 1 and K
= 0 (Set)

Clock = 1 − Master active, slave inactive. Therefore outputs
of the master become Q1 = 1 and Q1 bar = 0. That means S
= 1 and R =0.

Fundamentals of Digital System : Grade 9 165

Clock = 0 − Slave active, master inactive. Therefore outputs
of the slave become Q = 1 and Q bar = 0.
Again clock = 1 − then it can be shown that the outputs of
the slave are stabilized to Q = 1 and Q bar = 0.

4 J = K = 1
(Toggle)

Clock = 1 − Master active, slave inactive. Outputs of master
will toggle. So S and R will be inverted.
Clock = 0 − Slave active, master inactive. Outputs of slave
will toggle.
These changed outputs are returned back to the master
inputs. But since clock = 0, the master is still inactive. So it
does not respond to these changed outputs. This avoids the
multiple toggling which leads to the race around condition.
The master slave flip flop will avoid the race around
condition.

SUMMARY

 Sequential Logic: Sequential logic is a form of binary circuit design that employs
one or more inputs and one or more outputs, whose states are related by defined
rules that depend, in part, on previous states.

 Synchronous: In this system, signals that affect the memory elements only at
discrete instants of time.

 Asynchronous: In this sequential logic system depends upon the order in which
its input signals change and can be affected at any instant of time.

 Latch: A latch is a class of flip-flop in place of clock-edge instance at which output
changes, a clock interval exists during which that output changes.

 Clock: It is a control signal that periodically makes a transition from a 0 to 1 and
then back to 0 again we usually denote the clock by the symbol clk or cp.

 High Level Triggering: When a flip flop is required to respond at its HIGH state,
a high level triggering method is used.

 Low Level Triggering: When a flip flop is required to respond at its LOW state, a
Low Level Triggering method is used.

 Positive Edge Triggering: When a flip flop is required to respond at a LOW to
HIGH transition state, positive edge triggering method is used.

166 Fundamentals of Digital System : Grade 9

 Negative Edge Triggering: When a flip flop is required to respond during the
HIGH to LOW transition state, a NEGATIVE edge triggering method is used.

 Flip-Flop: A flip flop is a device that can store 1 bit of information. There are three
kinds of flip flops: D, T, and JK.

 SR Flip-Flop: SR Flip-Flop is an arrangement of logic gates that maintains a stable
output even after the inputs are turned off. This simple flip flop circuit has a set
input (S) and a reset input (R). The set input causes the output of 0 (top output)
and 1 (bottom output). The reset input causes the opposite to happen (top = 1,
bottom =0). Once the outputs are established, the wiring of the circuit is
maintained until S or R go high, or power is turned off to the circuit.

 D flip-flop: tracks the input, making transitions with match those of the input D.
The D stands for "data"; this flip-flop stores the value that is on the data line. It
can be thought of as a basic memory cell.

 T Flip-Flop: The T or "toggle" flip-flop changes its output on each clock edge,
giving an output which is half the frequency of the signal to the T input.

 J-K Flip-Flop: J-K flip-flop is the most versatile of the basic flip-flops. It has the
input- following character of the clocked D flip-flop but has two inputs,
traditionally labeled J and K. If J and K are different then the output Q takes the
value of J at the next clock edge.

Self-Evaluation

1. What is meant by sequential logic circuits? Draw a block diagram of sequential
logic circuits.

2. What is clock? Write its different clock levels.
3. What is trigger? Explain its types.
4. What is flip flop? List basic flip flop circuits.
5. What is SR or RS flip flop? Draw a block diagram, circuit diagram and truth table.
6. What is Toggle (T) flip flop? Draw a block diagram and truth table with operation.
7. What is the use of T flip flop?
8. What is Delay (D) flip flop? Draw a block diagram, circuit diagram and truth table

with operation.
9. What is a JK flip flop? Write its symbol diagram and circuit diagram with its

operation.
10. What is master slave flip flop? Draw its circuit diagram and truth table with

operation.

	4-Fundamentals of Digital System Grade 9 Cover
	4-Fundamentals of Digital System Grade 9 final

