
Government of Nepal
Ministry of Education, Science and Technology
Curriculum Development Centre

Sanothimi, Bhaktapur
Phone : 5639122/6634373/6635046/6630088

Website : www.moecdc.gov.np

Computer Engineering

Object Oriented Programming

10

Technical and Vocational Stream
Learning Resource Material

Object Oriented Programming
(Grade 10)

Secondary Level
Computer Engineering

Government of Nepal

Ministry of Education, Science and Technology

Curriculum Development Centre
Sanothimi, Bhaktapur

Feedback Copy

Publisher : Government of Nepal

 Ministry of Education, Science and Technology

 Curriculum Development Centre
 Sanothimi, Bhaktapur

© Publisher

Layout by Khados Sunuwar

All rights reserved. No part of this publication may be reproduced, stored in a

retrieval system or transmitted, in any other form or by any means for commercial

purpose without the prior permission in writing of Curriculum Development

Centre.

Preface

The curriculum and curricular materials have been developed and revised on a regular basis

with the aim of making education objective-oriented, practical, relevant and job oriented. It

is necessary to instill the feelings of nationalism, national integrity and democratic spirit in

students and equip them with morality, discipline and self-reliance, creativity and

thoughtfulness. It is essential to develop in them the linguistic and mathematical skills,

knowledge of science, information and communication technology, environment, health and

population and life skills. it is also necessary to bring in them the feeling of preserving and

promoting arts and aesthetics, humanistic norms, values and ideals. It has become the need

of the present time to make them aware of respect for ethnicity, gender, disabilities,

languages, religions, cultures, regional diversity, human rights and social values so as to

make them capable of playing the role of responsible citizens with applied technical and

vocational knowledge and skills. This Learning Resource Material for Computer

Engineering has been developed in line with the Secondary Level Computer Engineering

Curriculum with an aim to facilitate the students in their study and learning on the subject

by incorporating the recommendations and feedback obtained from various schools,

workshops and seminars, interaction programs attended by teachers, students and parents.

In bringing out the learning resource material in this form, the contribution of the
Director General of CDC Dr. Lekhnath Poudel, Pro, Dr. Subarna Shakya, Bibha
Sthapit, Anil Barma, Bhuwan Panta, Yogesh Parajuli, Satyaram Suwal, Asharam
Suwal, Shankar Yadav is highly acknowledged. The book is written by Bimal Thapa
and the subject matter of the book was edited by Badrinath Timalsina and Khilanath
Dhamala. CDC extends sincere thanks to all those who have contributed in
developing this book in this form.

This book is a supplimentary learning resource material for students and teachrs. In

addition they have to make use of other relevnt materials to ensure all the learning

outcomes set in the curriculum. The teachers, students and all other stakeholders are

expected to make constructive comments and suggestions to make it a more useful

learning resource material.

2076 BS Ministry of Education, Science and Technology
 Curriculum Development Centre

Table of Contents
Unit-1

Overview .. 1
Learning Outcomes .. 1
1.1 Procedural programming ... 1
1.2 Benefits of OOP: ... 2
1.3 The object-oriented approach: ... 3
1.5. Difference between C and C++. .. 7

Unit-2 ... 9
C++ Basic Input/output .. 9

Learning Outcomes .. 9
2.1 I/O Library Header Files:... 9
2.2. The Standard Output Stream (cout) ... 10
2.3. The Standard Input Stream (cin).. 10

Unit-3 ... 15
Objects and Classes .. 15

Learning Outcomes .. 15
3.1. Class –Object Concept ... 15
3.2. Difference between structures and classes .. 16
3.3. Accessing members of structures: ... 17
3.4. Simple class construction/ Declaration of Class 18
3.5. Class Definitions ... 19
3.6. Class Variables and methods: ... 19
3.7. Accessing data members and member functions of class: 20
3.8. Access Specifiers ... 24
3.9. Public, private and protected ... 26
3.10. Initializing class objects .. 32
3.11. Constructors and Destructor: .. 35
3.12. Default copy constructor ... 41
3.14 Static data member in class ... 45
3.14 Static Function Members of Class: ... 47
3.15. Inline Function .. 49
3.16. Data encapsulation and its example .. 51
3.17 Passing parameters to a constructor function .. 54
3.18Difference between constructors and member
function: ... 57

Unit 4 ... 64
Polymorphism .. 64

Learning Outcomes:-.. 64
4.1 Introduction to Polymorphism ... 64
4.2 Function Overriding .. 67

4.3. Virtual Function ... 69
4.4. Runtime polymorphism... 70
4.5 Static Binding and Dynamic Binding .. 70
4.6 Abstract class and pure virtual function .. 74

Unit-5 ... 78
Operator Overloading .. 78

Learning Outcomes .. 78
5.1 Overloading unary operators: .. 82
5.2. Overloading binary operators: .. 86

Unit 6 ... 93
Inheritance .. 93

Learning Outcomes .. 93
6.1. Introduction to inheritance .. 93
6.2. Basic Concepts: ... 94
6.3. Base class and Derived class:.. 95
6.4 Accessing base class members: ... 97
6.5 Public, Private and Protected Inheritance in C++: 98
6.6 Abstract Base Class: .. 99
6.7 Forms/Types of inheritance: .. 100

Object Oriented Programming : Grade 10 1

UNIT-1
Overview

Learning Outcomes
After completion of this unit you will be able to

 To explain/describe the formalism of object oriented programming.

 To explain/describe benefits of OOP.

 To explain/describe object, class, data abstraction and encapsulation,

inheritance, polymorphism etc.

 To describe about difference between C and C++.

1.1 Procedural programming
A computer programming language that executes a set of commands in order is

called procedural Language. It is written as a list of instructions, telling the computer,

step-by-step, what to do. For Eg. Open a file, read a number, multiply by 4, display

something. Program units include the main or program block, subroutines, functions,

procedures; file scoping; includes/modules; libraries.

Procedural programming is fine for small projects. It is the most natural way to tell

a computer what to do, and the computer processor’s own language, machine code,

is procedural, so the translation of the procedural high-level language into machine

code is straightforward and efficient.

Examples of computer procedural languages are BASIC, C, FORTRAN, and Pascal.

Advantages of Procedural Programming:
 Its relative simplicity, and ease of implementation of compilers and

interpreters

 The ability to re-use the same code at different places in the program without

copying it.

 An easier way to keep track of program flow.

 The ability to be strongly modular or structured.

 Needs only less memory.

2 Object Oriented Programming : Grade 10

Disadvantages of Procedural Programming:
 Data is exposed to whole program, so no security for data.

 Difficult to relate with real world objects.

 Difficult to create new data types reduces extensibility.

 Importance is given to the operation on data rather than the data.

Comparison of Procedural with Object-Oriented Programming:
The focus of procedural programming is to break down a programming task into a

collection of data structures and subroutines, whereas in object oriented

programming it is to break down a programming task into objects. Both method can

be applicable for complete a specific programming task.

The most popular programming languages usually have both OOP and procedural

feature.

Some differences between object-oriented and Procedural languages:

Pure Object

Oriented
Pure Procedural

Methods Functions

Objects Modules

Message Call

Attribute Variable

1.2 Benefits of OOP:
OOP offers several benefits to both the program designer and the user.

The principle advantages are:

 Through inheritance, we can eliminate redundant code and extend the use of

existing code.

 Classes.

 It is possible to have multiple instances of an object to co-exist without any

interference.

 It is possible to map objects in the problem domain to those in the program.

Object Oriented Programming : Grade 10 3

 It is easy to partition the work in a project based on objects.

 Object oriented systems can be easily upgraded from small to large systems.

 Software complexity can be easily managed.

1.3 The object-oriented approach:

Definition:
Object oriented programming is a programming methodology that associates data

structures with set of operators which act upon it. In OOP, an instance of such an

entity is known as object. In other words, OOP is a method of implementation in

which programs are organized as co-operative collections of objects, each of which

represents and instance of some class are all members of hierarchy of classes united

through the property called inheritance.

The OOP is an approach to program organization and development that attempts to

eliminate some of the pitfalls of conventional programming methods by

incorporating the best of structured programming features with powerful new

concepts. The object oriented approach is:

 The recent concept among programming paradigms.

 Fundamental idea it to combine data and functions those operate on those

data into single unit-called object.

 The data of an object can be accessed only by the function associated with

these objects.

In OO Programming
 Emphasis is on data rather than procedures.

 Programs are divided into objects.

 Data is hidden and can't accessed by external functions.

 Data structures are designed such that, they characterize the objects.

 Functions and data are tied together in the data structures so that data

abstraction is introduced in addition to procedural abstraction.

 Object can communicate with each other through function.

 New data and function can be easily added.

4 Object Oriented Programming : Grade 10

1.4.1 Objects:
Objects are the entities through which we perceive the world around us. We naturally

see our environment as being composed of things which have recognizable identities

and behavior. The entities are then represented as objects in the program.

In OO system, an object is the run time entity i.e. a region of storage with associated

semantics. In OO/C++ "Object" usually means an instance of a class. In object

oriented language the problem be into objects. Where in pop, problem is divided into

functions.

Example of objects:

Physical Objects:

 Automobiles in traffic flow simulation

 Countries in Economic model

 Air craft in traffic – control system.

Computer user environment objects:

 Window, menus, icons etc.

 Data storage constructs:

 Stacks, trees etc.

Human entities:

 Employees, student, teacher etc.

 Geometric objects:

 Point, line, triangle etc.

Object mainly serve the following purposes:

 Understanding the real world and a practical base for designers.

 Decomposition of a problem into objects depends on the nature of problem.

1.4.2. Classes:
A class defines a data type, much like a struct in c. It specifies what data and

functions will be included in objects of that class. Defining class doesn't create an

object but class is the description of object's attributes and behaviors. Thus a class is

a collection of objects of similar type e.g. class vehicle includes objects car, bus, etc.

Object Oriented Programming : Grade 10 5

Person Class: Attributes: Name, Age, Sex, etc.

 Behaviors: Speak(), Listen(), Walk()

Vehicle Class: Attributes: Name, model, color, height etc.

 Behaviors: Start(),stop(), accelerate()

When class is defined, object are created as

 <classname> <objectname>;

Each class describes a possibly infinite set of individual objects, each object is said

to be an instance of its class and each instance of the class has its own value for each

attribute but shares the attribute name and operations with other instances of the

class. The following points gives the idea of class:

 A class is a template that unites data and operations.

 A class is an abstraction of the real world entities with similar propertied.

 Ideally, the class is an implementation of abstract data type.

1.4.3. Data Abstraction and Encapsulation:
The wrapping up of data and operations into a single unit is called encapsulation.

Encapsulation is most striking feature of a class. The data is not accessible from

outside of class. Only member function can access data on that class. The insulation

of data from direct access by the program is called data hiding.

Abstraction is representing essential features of an object without including the

background details or explanation. It focuses the outside view of an object,

separating its essential behavior from its implementation.

The class is a construct in C ++ for creating user –defined data types called

Abstraction Data Types(ADT).

1.4.4. Inheritance:
Inheritance is the process by which objects of one class inherits the characteristics of

another class as part of its definition. It supports the concept of hierarchical

classification. It allows the extension and reuse of existing code without having to

rewrite the code.

6 Object Oriented Programming : Grade 10

Inheritance is appropriate when a class is a kind of other class. E.g. in OOP, the

concept of inheritance provides the idea of reusability. We can use additional features

to an existing class without modifying it. This process of deriving a new class from

the existing base class is called inheritance.

Example of inheritance Class Hierarchichy

Multiple Inheritances: If derived class inherits the features of more than one base

class it is called multiple inheritances.

Multiple Inheritances

1.4.5. Polymorphism:
Polymorphism means "having many forms". The polymorphism allows different

object to respond to the same message in different ways, the response specific to the

type of object. It is important when object oriented programs dynamically creating

Class D (Features of Class A,B,C)

Features of D

Class A Class B Class C Parent Class

A,B,C

Child Class D

Object Oriented Programming : Grade 10 7

and destroying the objects in run time example of polymorphism in OOP is operator

overloading function overloading etc.

E.g. Operator symbol '+' is used for arithmetic operation between two numbers

however by overloading it can be used over complex object like currency (that has

Rs and Paisa as its attributes). By overloading same operator '+' can be used for

different purpose like concatenation of strings.

1.5. Difference between C and C++.
C C++

C is procedural language. C++ is non procedural (object oriented)

language.

Polymorphism is not possible. Polymorphism is the most important

feature of OOP.

Operator overloading is not possible in

C.

 Operator overloading is one of the

greatest feature of c++.

Top down approach is used in program

design.

Bottom up approach adopted in

program design.

No namespace feature is present in C. Namespace feature is present in C++ for

avoiding name collision.

In C

Scanf() function used for input

Printf() function used for output

In C++

 Cin>> function used for input

Cout << function used for output

No inheritance is possible in C. Inheritance is possible in C++.

Class Shape draw ()

Circle

Object draw

(circle)

Box Object

draw (box)

Triangle Object

draw (triangle)

8 Object Oriented Programming : Grade 10

SUMMARY

 Procedural Language: A computer programming language that executes a set
of commands in order is called procedural Language

 Object oriented programming is a programming methodology that associates
data structures with set of operators which act upon it

 A class defines a data type, much like a struct in c. It specifies what data and
functions will be included in objects of that class. Defining class doesn't create
an object but class is the description of object's attributes and behaviors. Thus
a class is a collection of objects of similar type.

 Objects are the entities through which we perceive the world around us.
 The wrapping up of data and operations into a single unit is called

encapsulation.
 Abstraction is representing essential features of an object without including the

background details or explanation.
 Inheritance is the process by which objects of one class inherits the

characteristics of another class as part of its definition.
 Polymorphism means "having many forms". The polymorphism allows

different object to respond to the same message in different ways, the response
specific to the type of object.

Self Evaluation

1. Write very short answer of the following question.
a) What is the full form of OOP?
b) What is a class?
c) What is an object?
d) What is encapsulation?
e) What is abstraction?
2. Write short answer of the following question.
a) What is inheritance? Write its types.
b) What is polymorphism? Write its example.
c) Write advantage and disadvantage of procedural programming.
d) What are the comparison of procedural with object oriented programming?
3. Write long answer of the following question.
a) Why C++ is called object-oriented programming language? Explain
b) What are the difference between C and C++?
c) What is procedural programming? Explain its merits and demerits.

Object Oriented Programming : Grade 10 9

UNIT-2
C++ Basic Input/output

Learning Outcomes
After completion of this unit you will be able to

 To explain/describe input output library header files.
 To explain/describe io stream.
 To explain/describe io mainp, Fstream etc.
 To describe the standard input stream(cin) and output stream(cout).

The C++ standard libraries provide an extensive set of input/output capabilities
which we will see in subsequent chapters. This chapter will discuss very basic and
most common I/O operations required for C++ programming.

C++ I/O occurs in streams, which are sequences of bytes. If bytes flow from a device
like a keyboard, a disk drive, or a network connection etc. to main memory, this is
called input operation and if bytes flow from main memory to a device like a display
screen, a printer, a disk drive, or a network connection, etc., this is called output
operation.

2.1 I/O Library Header Files:
There are following header files important to C++ programs −

S.No Header File & Function and Description

1 <iostream>
This file defines the cin, cout, cerr and clog objects, which correspond to the
standard input stream, the standard output stream, the un-buffered standard
error stream and the buffered standard error stream, respectively.

2 <iomanip>
This file declares services useful for performing formatted I/O with so-called
parameterized stream manipulators, such as setw and setprecision.

3 <fstream>
This file declares services for user-controlled file processing. We will discuss
about it in detail in File and Stream related chapter.

10 Object Oriented Programming : Grade 10

2.2. The Standard Output Stream (cout)
The predefined object cout is an instance of ostream class. The cout object is said to

be "connected to" the standard output device, which usually is the display screen.

The cout is used in conjunction with the stream insertion operator, which is written

as << which are two less than signs as shown in the following example.

#include <iostream>
 using namespace std;
 int main() {
 char str[] = "Hello C++";
 cout << "Value of str is : " << str << endl;
}

When the above code is compiled and executed, it produces the following result −

Value of str is : Hello C++

The C++ compiler also determines the data type of variable to be output and selects

the appropriate stream insertion operator to display the value. The << operator is

overloaded to output data items of built-in types integer, float, double, strings and

pointer values.

The insertion operator << may be used more than once in a single statement as shown

above and endl is used to add a new-line at the end of the line.

2.3. The Standard Input Stream (cin)
The predefined object cin is an instance of istream class. The cin object is said to be

attached to the standard input device, which usually is the keyboard. The cin is used

in conjunction with the stream extraction operator, which is written as >> which are

two greater than signs as shown in the following example.

#include <iostream>
 using namespace std;
 int main() {
 char name[50];
 cout << "Please enter your name: ";
 cin >> name;
 cout << "Your name is: " << name << endl;
}

Object Oriented Programming : Grade 10 11

When the above code is compiled and executed, it will prompt you to enter a name.

You enter a value and then hit enter to see the following result −

Please enter your name: cplusplus
Your name is: cplusplus

The C++ compiler also determines the data type of the entered value and selects the
appropriate stream extraction operator to extract the value and store it in the given
variables.

The stream extraction operator >> may be used more than once in a single statement.
To request more than one datum you can use the following −

cin >> name >> age;

This will be equivalent to the following two statements −

cin >> name;

cin >> age;

<iosfwd>

forward declarations of all classes in the input/output
library

<ios>

std::ios_base class, std::basic_ios class template and
several typedefs

<istream> std::basic_istream class template and several typedefs

<ostream>

std::basic_ostream, std::basic_iostream class
templates and several typedefs

<iostream> several standard stream objects

<fstream>

std::basic_fstream, std::basic_ifstream, std::basic_ofst
ream class templates and several typedefs

<sstream>

std::basic_stringstream, std::basic_istringstream, std::
basic_ostringstream class templates and several
typedefs

<syncstream> (since
C++20)

std::basic_osyncstream, std::basic_syncbuf, and
typedefs

<strstream>(deprecat
ed) std::strstream, std::istrstream, std::ostrstream

<iomanip>

Helper functions to control the format or input and
output

<streambuf> std::basic_streambuf class template

12 Object Oriented Programming : Grade 10

<cstdio> C-style input-output functions

C++ Error Handling Functions
There are several error handling functions supported by class ios that help you read

and process the status recorded in a file stream.

Following table lists these error handling functions and their meaning:

Function Meaning

int bad()

Returns a non-zero value if an invalid operation is attempted or any

unrecoverable error has occurred. However, if it is zero (false value),

it may be possible to recover from any other error reported and

continue operations.

int eof()
Returns non-zero (true value) if end-of-file is encountered while

reading; otherwise returns zero (false value).

int fail() Returns non-zero (true) when an input or output operation has failed.

int good()

Returns non-zero (true) if no error has occurred. This means, all the

above functions are false. For example, if fin.good() is true,

everything is okay with the stream named as fin and we can proceed

to perform I/O operations. When it returns zero, no further operations

can be carried out.

clear() Resets the error state so that further operations can be attempted.

The above functions can be summarized as eof() returns true if eofbit is set; bad()

returns true if badbit is set. The fail() function returns true if failbit is set; the good()

returns true there are no errors. Otherwise, they return false.

Object Oriented Programming : Grade 10 13

These functions may be used in the appropriate places in a program to locate the
status of a file stream and thereby take the necessary corrective measures. For
example :

:

ifstream fin;

fin.open("master", ios::in);

while(!fin.fail())

{

 : // process the file

}

if(fin.eof())

{

 : // terminate the program

}

else if(fin.bad())

{

 : // report fatal error

}

else

{

 fin.clear(); // clear error-state flags

 :

}

:

SUMMARY
 iostream:This file defines the cin, cout, cerr and clog objects, which

correspond to the standard input stream, the standard output stream, the un-

buffered standard error stream and the buffered standard error stream,

respectively.

 iomanip:This file declares services useful for performing formatted I/O with

so-called parameterized stream manipulators, such as setw and setprecision.

14 Object Oriented Programming : Grade 10

 Fstream:This file declares services for user-controlled file processing.

 Standard Output Stream (cout): The predefined object cout is an instance

of ostream class. The cout object is said to be "connected to" the standard

output device, which usually is the display screen.

 The cin object is said to be attached to the standard input device, which

usually is the keyboard.

Self Evaluation

1. Write very short answer of the following question.
a) What is io stream?

b) What is the use of insertion operator?

2. Write short answer of the following question.
a) What are I/O library header files with their functions?

b) What do you mean by Standard Output Stream (cout)? Explain it.

c) What do you mean by Standard input Stream (cin)? Explain it.

d) Mention four errors that handle the functions during file operation.

e) Write a program to display the following output using single cout statement.

f) DBMS=80

g) Network=90

h) C++=95

i) Write a program to input length and breadth of a room and calculate the area.

Object Oriented Programming : Grade 10 15

UNIT-3
Objects and Classes

Learning Outcomes
After completion of this unit you will be able to

 To explain/describe Class-Object Concept.
 To explain/describe difference between class and structures.
 To explain/describe accessing members of structures.
 To describe simple class construction; defining class, class variables and

methods; accessing data members and member functions of class etc.
 To explain/describe access specifies, public, private and protected.
 To explain/describe initializing class objects, Constructors and Destructor,

Default copy constructor etc.
 To explain/describe Static data member and member function of a class.
 To explain/describe Inline Function and passing parameters to a constructor

function.
 To explain/describe Data encapsulation and its example.
 To explain/describe difference between Constructors and member function.

3.1. Class –Object Concept
There are various objects like book, box, computer, furniture etc. in real world. The

computers in our school lab or our home are similar objects. These different

computers may be manufactured by different companies in different models. They

have common characteristics to identify them. For example: all have memory, hard

disk, monitor, keyboard etc.

The general or common name to describe objects of common or similar

characteristics and behaviors is called class. Thus the name 'computer' may be class

name which represents my personal computer, lab computer and other computers. A

class is blue print or template which describes characteristics of similar objects.

The main purpose of C++ programming is to add object orientation to the C

programming language and classes are the central feature of C++ that supports

object-oriented programming and are often called user-defined types.

16 Object Oriented Programming : Grade 10

A class is used to specify the form of an object and it combines data representation

and methods for manipulating that data into one neat package. The data and functions

within a class are called members of the class.

The data types such as int, float, double may be class which represent similar data

items. For eg. Int represents all integer numbers such as 1, 2, 3,4 and so on. So, int

is general name for representation of any integer values. In OOP, we can define class

name to represent its individual objects. Defining a class in programming language

means creating user defined data type and it behaves like the built-in data types. Once

a class has been defined, we can create any number of objects belonging to that class.

An object is an instance of a class. A class is a description of a group of objects with

common properties (attributes or characteristics or variables), behavior (operations

or methods) and relationships. The possible classes may be book, student, employee,

bus, computer, vehicle, account and so on.

 3.2. Difference between structures and classes

Structure Class

It is a value type. It is a reference type.

Its object is created on the stack memory. Its object is created on the heap
memory.

It does not support inheritance. It supports inheritance.

The member variable of structure cannot
be initialized directly.

The member variable of class can be
initialized directly.

It can have only parameterized
constructor.

It can have all the types of constructor
and destructor.

Syntax
Struct structure_name
{
 Data_member;
};

Syntax
Class class_name
{
 data_member;
 function_members;
};

Object Oriented Programming : Grade 10 17

 3.3. Accessing members of structures:
The members of structure are usually processed individually, as separate entity.

Therefore, we must be able to access the individual structure members. A structure

member can be accessed by using period or dot (i.e. ".") operator. The syntax for

accessing member of a structure variable is as follows:

Structure_variable.member

Here, structure_variable refers to the name of a structure-type variable and member

refers to the name of a member within the structure. Again, dot separates the variable

name from the member name. The dot operator must have a structure variable on its

left and a legal member on its right. In the case of nested structure (if a structure

member is itself a structure), the member within inner structure is accessed as

Structure_variable.member.submember
i.e., structure_variable.member_of_outer_sturucture.member_of_inner_sturcture

Here is an example, demonstrating how to access members of a structure in C++

/* C++ Access Structure Member */

#include<iostream.h>

#include<conio.h>

struct st

{

 int a; // structure member

 int b; // structure member

 int sum; // structure member

}st_var; // structure variable

void main()

{

 clrscr();

 cout<<"Enter any two number:\n";

18 Object Oriented Programming : Grade 10

 // accessing structure member a and b

 cin>>st_var.a>>st_var.b;

 // accessing structure member sum, a, and b

 st_var.sum = st_var.a + st_var.b;

 // accessing structure member sum

 cout<<"\nSum of the two number is "<<st_var.sum;

 getch();

}

//output

Enter any two number:

3

4

Sum of the two number is 7

3.4. Simple class construction/ Declaration of Class
A class is used to specify blue print of similar objects and it combines data and

methods for manipulating that data. The data and functions within a class are called

members of the class.

 For example, using the keyword class as follows –

 Class class_name

 {

 private:

 Variable declaration;

 Function declaration;

 public:

 Variable declaration;

 Function declaration;

 protected:

 Variable declaration;

 Function declaration;

 };

Object Oriented Programming : Grade 10 19

Here, class is a C++ keyword; class _name is name of class defined by user. The

body of class is enclosed within braces and terminated by a semicolon. The class

body contains the declaration of variables and functions. These function and

variables are collectively called as members. They are grouped under two sections,

private and public. By using the keyword "private" we can hide data which can be

accessed by functions defined within the class. The keyword "public" is used so that

public members can be accessed by any function even outside the class. The keyword

private and public are known as visibility labels. By default, the members of class

are private. In OOP, generally date are made private and functions are made public.

3.5. Class Definitions
When you define a class, you define a blueprint for a data type. This doesn't actually

define any data, but it does define what the class name means, that is, what an object

of the class will consist of and what operations can be performed on such an object.

A class definition starts with the keyword class followed by the class name; and the

class body, enclosed by a pair of curly braces. A class definition must be followed

either by a semicolon or a list of declarations. For example, we defined the Box data

type using the keyword class as follows −

class Box {

 public:

double length; // Length of a box

double breadth; // Breadth of a box

double height; // Height of a box

};

The keyword public determines the access attributes of the members of the class that

follows it. A public member can be accessed from outside the class anywhere within

the scope of the class object. You can also specify the members of a class

as private or protected which we will discuss in a sub-section.

3.6. Class Variables and methods:
A variable must be defined before you can use it in a program. When you define a

variable the type is specified and an appropriate amount of memory reserved. This

20 Object Oriented Programming : Grade 10

memory space is addressed by reference to the name of the variable. A simple

definition has the following syntax:

SYNTAX: typ name1 [name2 ...];

This defines the names of the variables in the list name1 [, name2 ...] as variables of

the type type. The parentheses [...] in the syntax description indicate that this part

is optional and can be omitted. Thus, one or more variables can be stated within a

single definition.

EXAMPLES: char c;

int i, counter;

double x, y, size;

In a program, variables can be defined either within the program’s functions or

outside of them. This has the following effect:

 a variable defined outside of each function is global, i.e. it can be used by all

functions

 a variable defined within a function is local, i.e. it can be used only in that

function.

 Local variables are normally defined immediately after the first brace—for

example at the beginning of a function. However, they can be defined

wherever a statement is permitted.

This means that variables can be defined immediately before they are used by the

program.

3.7. Accessing data members and member functions of class:

Accessing Data Members of Class
Accessing a data member depends solely on the access control of that data member.

If its public, then the data member can be easily accessed using the direct member

access (.) operator with the object of that class.

If, the data member is defined as private or protected, then we cannot access the data

variables directly. Then we will have to create special public member functions to

access, use or initialize the private and protected data members. These member

Object Oriented Programming : Grade 10 21

functions are also called Accessors and Mutator methods orgetter and setter

functions.

Accessing Public Data Members
Following is an example to show you how to initialize and use the public data

members using the dot (.) operator and the respective object of class.

class student

{

public:

int rollno;

string name;

};

int main()

{

student A;

student B;

A.rollno=1;

A.name="Sarthak";

B.rollno=2;

B.name="Sweekar"

cout<<"Name and Roll no of A is :"<<A.name<<A.rollno;

cout<<"Name and Roll no of B is :"<<B.name<<B.rollno;

}

Accessing Private Data Members

To access, use and initialize the private data member you need to create getter and

setter functions, to get and set the value of the data member.

The setter function will set the value passed as argument to the private data member,

and the getter function will return the value of the private data member to be used.

Both getter and setter function must be defined public.

22 Object Oriented Programming : Grade 10

Example :

class Student

{

 private: // private data member

 int rollno;

 public: // public accessor and mutator functions

 int getRollno()

 {

 return rollno;

 }

 void setRollno(int i)

 {

 rollno=i;

 }

};

int main()

{

 Student A;

 A.rollono=1; //Compile time error

 cout<< A.rollno; //Compile time error

 A.setRollno(1); //Rollno initialized to 1

 cout<< A.getRollno(); //Output will be 1

}

So this is how we access and use the private data members of any class using the

getter and setter methods. We will discuss this in more details later.

Accessing Protected Data Members

Protected data members, can be accessed directly using dot (.) operator inside the

subclass of the current class, for non-subclass we will have to follow the steps same

as to access private data member.

Object Oriented Programming : Grade 10 23

Member Functions in Classes

Member functions are the functions, which have their declaration inside the class

definition and works on the data members of the class. The definition of member

functions can be inside or outside the definition of class.

If the member function is defined inside the class definition it can be defined directly,

but if its defined outside the class, then we have to use the scope resolution: operator

along with class name along with function name.

Example :

class Cube

{

 public:

 int side;

 int getVolume(); // Declaring function get Volume with no argument and

return type int.

};

If we define the function inside class then we don't not need to declare it first, we can

directly define the function.

class Cube

{

 public:

 int side;

 int getVolume()

 {

 return side*side*side; //returns volume of cube

 }

};

But if we plan to define the member function outside the class definition then we

must declare the function inside class definition and then define it outside.

24 Object Oriented Programming : Grade 10

class Cube

{

 public:

 int side;

 int getVolume();

}

int Cube :: getVolume() // defined outside class definition

{

 return side*side*side;

}

The maine function for both the function definition will be same. Inside main() we

will create object of class, and will call the member function using dot . operator.

int main()

{

 Cube C1;

 C1.side=4; // setting side value

 cout<< "Volume of cube C1 ="<< C1.getVolume();

}

Similarly we can define the getter and setter functions to access private data

members, inside or outside the class definition.

3.8. Access Specifiers
C++ offers possibility to control access to class members and functions by using

access specifiers. Access specifiers are used to protect data from misuse.

In the Person class, we used only public access specifiers for all data members:

Object Oriented Programming : Grade 10 25

Types of access specifiers in C++

1. public

2. private

3. protected

Public Specifier

Public class members and functions can be used from outside of a class by any

function or other classes. You can access public data members or function directly

by using dot operator (.) or (arrow operator-> with pointers).

Protected Specifier

Protected class members and functions can be used inside its class. Protected

members and functions cannot be accessed from other classes directly.

Additionally protected access specifier allows friend functions and classes to access

these data members and functions. Protected data members and functions can be

used by the class derived from this class. More information about access modifiers

and inheritance can be found in C++ Inheritance

Private Specifier

Private class members and functions can be used only inside of class and by friend

functions and classes.

We can modify Person class by adding data members and function with different

access specifiers:

class Person

{

public://access control

 string firstName;//these data members

 string lastName;//can be accessed

 tm dateOfBirth;//from anywhere

protected:

 string phoneNumber;//these members can be accessed inside this class,

 int salary;// by friend functions/classes and derived classes

26 Object Oriented Programming : Grade 10

private:

 string addres;//these members can be accessed inside the class

 long int insuranceNumber;//and by friend classes/functions

};

Access specifier affects all the members and functions until the next access specifier:

For classes, default access specifier is private. The default access specifier for

unions and structs is public.

3.9. Public, private and protected

 Class Access Modifiers:

Data hiding is one of the important features of Object Oriented Programming which

allows preventing the functions of a program to access directly the internal

representation of a class type. The access restriction to the class members is specified

by the labeled public, private, and protected sections within the class body. The

keywords public, private, and protected are called access specifiers.

A class can have multiple public, protected, or private labeled sections. Each section

remains in effect until either another section label or the closing right brace of the

class body is seen. The default access for members and classes is private.

Object Oriented Programming : Grade 10 27

class Base {

public:

// public members go here

protected:

// protected members go here

private:

// private members go here

 };

The public Members
A public member is accessible from anywhere outside the class but within a

program. You can set and get the value of public variables without any member

function as shown in the following example −

#include <iostream>

 using namespace std;

 class Line {

 public:

 double length;

 void setLength(double len);

 double getLength(void);

};

 // Member functions definitions

double Line::getLength(void) {

 return length ;

}

 void Line::setLength(double len) {

 length = len;

}

 // Main function for the program

int main() {

28 Object Oriented Programming : Grade 10

 Line line;

 // set line length

 line.setLength(6.0);

 cout << "Length of line : " << line.getLength() <<endl;

 // set line length without member function

 line.length = 10.0; // OK: because length is public

 cout << "Length of line : " << line.length <<endl;

 return 0;

}

When the above code is compiled and executed, it produces the following

result −

Length of line : 6

Length of line : 10

The private Members
A private member variable or function cannot be accessed, or even viewed from

outside the class. Only the class and friend functions can access private members.

By default all the members of a class would be private, for example in the following

class width is a private member, which means until you label a member, it will be

assumed a private member −

class Box {

double width;

 public:

 double length;

 void setWidth (double wid);

 double getWidth (void);

 };

Object Oriented Programming : Grade 10 29

Practically, we define data in private section and related functions in public section

so that they can be called from outside of the class as shown in the following

program.

#include <iostream>

using namespace std;

class Box {

 public:

 double length;

 void setWidth(double wid);

 double getWidth(void);

 private:

 double width;

 };

 // Member functions definitions

 double Box::getWidth(void) {

 return width ;

 }

void Box::setWidth(double wid) {

 width = wid;

 }

 // Main function for the program

 int main() {

 Box box;

 // set box length without member function

 box.length = 10.0; // OK: because length is public

30 Object Oriented Programming : Grade 10

 cout << "Length of box : " << box.length <<endl;

 // set box width without member function

 // box.width = 10.0; // Error: because width is private

 box.setWidth(10.0); // Use member function to set it.

 cout << "Width of box : " << box.getWidth() <<endl;

 return 0;

 }

When the above code is compiled and executed, it produces the following result −

Length of box : 10

Width of box : 10

The protected Members
A protected member variable or function is very similar to a private member but it

provides one additional benefit that they can be accessed in child classes which are

called derived classes.

You will learn derived classes and inheritance in next chapter. For now you can

check following example where I have derived one child class SmallBox from a

parent class Box.

Following example is similar to above example and here width member will be

accessible by any member function of its derived class SmallBox.

#include <iostream>

using namespace std;

class Box {

 protected:

 double width;

};

Object Oriented Programming : Grade 10 31

class SmallBox:Box { // SmallBox is the derived class.

 public:

 void setSmallWidth(double wid);

 double getSmallWidth(void);

};

// Member functions of child class

double SmallBox::getSmallWidth(void) {

 return width ;

}

void SmallBox::setSmallWidth(double wid) {

 width = wid;

}

// Main function for the program

int main() {

 SmallBox box;

 // set box width using member function

 box.setSmallWidth(5.0);

 cout << "Width of box : "<< box.getSmallWidth() << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Width of box : 5

32 Object Oriented Programming : Grade 10

3.10. Initializing class objects
The main purpose of C++ programming is to add object orientation to the C

programming language and classes are the central feature of C++ that supports

object-oriented programming and are often called user-defined types.

A class is used to specify the form of an object and it combines data representation

and methods for manipulating that data into one neat package. The data and functions

within a class are called members of the class.

A class definition starts with the keyword class followed by the class name; and the

class body, enclosed by a pair of curly braces. A class definition must be followed

either by a semicolon or a list of declarations. For example, we defined the Box data

type using the keyword class as follows −

 class Box {

 public:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

 };

The keyword public determines the access attributes of the members of the class that

follows it. A public member can be accessed from outside the class anywhere within

the scope of the class object. You can also specify the members of a class

as private or protected which we will discuss in a sub-section.

 Objects:
A class provides the blueprints for objects, so basically an object is created from a

class. We declare objects of a class with exactly the same sort of declaration that we

declare variables of basic types. Following statements declare two objects of class

Box −

Box Box1; // Declare Box1 of type Box

Box Box2; // Declare Box2 of type Box

Both of the objects Box1 and Box2 will have their own copy of data members.

Object Oriented Programming : Grade 10 33

Accessing the Data Members
The public data members of objects of a class can be accessed using the direct

member access operator (.). Let us try the following example to make the things clear

−

#include <iostream>

using namespace std;

class Box {

 public:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

int main() {

 Box Box1; // Declare Box1 of type Box

 Box Box2; // Declare Box2 of type Box

 double volume = 0.0; // Store the volume of a box here

 // box 1 specification

 Box1.height = 5.0;

 Box1.length = 6.0;

 Box1.breadth = 7.0;

 // box 2 specification

 Box2.height = 10.0;

 Box2.length = 12.0;

 Box2.breadth = 13.0;

 // volume of box 1

 volume = Box1.height * Box1.length * Box1.breadth;

 cout << "Volume of Box1 : " << volume <<endl;

34 Object Oriented Programming : Grade 10

 // volume of box 2

 volume = Box2.height * Box2.length * Box2.breadth;

 cout << "Volume of Box2 : " << volume <<endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Volume of Box1 : 210

Volume of Box2 : 1560

It is important to note that private and protected members can not be accessed

directly using direct member access operator (.). We will learn how private and

protected members can be accessed.

Classes and Objects in Detail
So far, you have got very basic idea about C++ Classes and Objects. There are further

interesting concepts related to C++ Classes and Objects which we will discuss in

various sub-sections listed below −

Sr.No Concept & Description

1 Class Member Functions
A member function of a class is a function that has its definition or its
prototype within the class definition like any other variable.

2 Class Access Modifiers
A class member can be defined as public, private or protected. By default
members would be assumed as private.

3 Constructor & Destructor
A class constructor is a special function in a class that is called when a
new object of the class is created. A destructor is also a special function
which is called when created object is deleted.

4 Copy Constructor

Object Oriented Programming : Grade 10 35

The copy constructor is a constructor which creates an object by
initializing it with an object of the same class, which has been created
previously.

5 Friend Functions
A friend function is permitted full access to private and protected
members of a class.

6 Inline Functions
With an inline function, the compiler tries to expand the code in the body
of the function in place of a call to the function.

7 this Pointer
Every object has a special pointer this which points to the object itself.

8 Pointer to C++ Classes
A pointer to a class is done exactly the same way a pointer to a structure
is. In fact a class is really just a structure with functions in it.

9 Static Members of a Class
Both data members and function members of a class can be declared as
static.

3.11. Constructors and Destructor:

Class Constructor:

A class constructor is a special member function of a class that is executed

whenever we create new objects of that class.

A constructor will have exact same name as the class and it does not have any return

type at all, not even void. Constructors can be very useful for setting initial values

for certain member variables.

36 Object Oriented Programming : Grade 10

Following example explains the concept of constructor −

#include <iostream>
 using namespace std;
 class Line {
 public:
 void setLength(double len);
 double getLength(void);
 Line(); // This is the constructor
 private:
 double length;
};
 // Member functions definitions including constructor
Line::Line(void) {
 cout << "Object is being created" << endl;
}
void Line::setLength(double len) {
 length = len;
}
double Line::getLength(void) {
 return length;
}
// Main function for the program
int main() {
 Line line;
 // set line length
 line.setLength(6.0);
 cout << "Length of line : " << line.getLength() <<endl;
 return 0;

}

Object Oriented Programming : Grade 10 37

When the above code is compiled and executed, it produces the following result −

Object is being created

Length of line : 6

Parameterized Constructor

A default constructor does not have any parameter, but if you need, a constructor can

have parameters. This helps you to assign initial value to an object at the time of its

creation as shown in the following example −

#include <iostream>

 using namespace std;

class Line {

 public:

 void setLength(double len);

 double getLength(void);

 Line(double len); // This is the constructor

 private:

 double length;

};

 // Member functions definitions including constructor

Line::Line(double len) {

 cout << "Object is being created, length = " << len << endl;

 length = len;

}

void Line::setLength(double len) {

 length = len;

}

double Line::getLength(void) {

 return length;

}

38 Object Oriented Programming : Grade 10

// Main function for the program
int main() {
 Line line(10.0);

 // get initially set length.
 cout << "Length of line : " << line.getLength() <<endl;

 // set line length again
 line.setLength(6.0);
 cout << "Length of line : " << line.getLength() <<endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Object is being created, length = 10

Length of line : 10

Length of line : 6

Using Initialization Lists to Initialize Fields

In case of parameterized constructor, you can use following syntax to initialize the

fields −

Line::Line(double len): length(len) {

 cout << "Object is being created, length = " << len << endl;

}

Above syntax is equal to the following syntax −

Line::Line(double len) {

 cout << "Object is being created, length = " << len << endl;

 length = len;

}

Object Oriented Programming : Grade 10 39

If for a class C, you have multiple fields X, Y, Z, etc., to be initialized, then use can

use same syntax and separate the fields by comma as follows −

C::C(double a, double b, double c): X(a), Y(b), Z(c) {

}

 Class Destructor
A destructor is a special member function of a class that is executed whenever an

object of it's class goes out of scope or whenever the delete expression is applied to

a pointer to the object of that class.

A destructor will have exact same name as the class prefixed with a tilde (~) and it

can neither return a value nor can it take any parameters. Destructor can be very

useful for releasing resources before coming out of the program like closing files,

releasing memories etc.

Following example explains the concept of destructor −

#include <iostream>

 using namespace std;

class Line {

 public:

 void setLength(double len);

 double getLength(void);

 Line(); // This is the constructor declaration

 ~Line(); // This is the destructor: declaration

 private:

 double length;

};

// Member functions definitions including constructor

Line::Line(void) {

40 Object Oriented Programming : Grade 10

 cout << "Object is being created" << endl;

}

Line::~Line(void) {

 cout << "Object is being deleted" << endl;

}

void Line::setLength(double len) {

 length = len;

}

double Line::getLength(void) {

 return length;

}

// Main function for the program

int main() {

 Line line;

 // set line length

 line.setLength(6.0);

 cout << "Length of line : " << line.getLength() <<endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Object is being created

Length of line : 6

Object is being deleted

Object Oriented Programming : Grade 10 41

3.12. Default copy constructor
Copy Constructor:

The copy constructor is a constructor which creates an object by initializing it with

an object of the same class, which has been created previously. The copy constructor

is used to −

 Initialize one object from another of the same type.

 Copy an object to pass it as an argument to a function.

 Copy an object to return it from a function.

If a copy constructor is not defined in a class, the compiler itself defines one.If the

class has pointer variables and has some dynamic memory allocations, then it is a

must to have a copy constructor. The most common form of copy constructor is

shown here −

classname (const classname &obj) {

 // body of constructor

}

Here, obj is a reference to an object that is being used to initialize another object.

#include <iostream>

using namespace std;

class Line {

 public:

 int getLength(void);

 Line(int len); // simple constructor

 Line(const Line &obj); // copy constructor

 ~Line(); // destructor

 private:

 int *ptr;

};

42 Object Oriented Programming : Grade 10

// Member functions definitions including constructor
Line::Line(int len) {
 cout << "Normal constructor allocating ptr" << endl;

 // allocate memory for the pointer;
 ptr = new int;
 *ptr = len;
}

Line::Line(const Line &obj) {
 cout << "Copy constructor allocating ptr." << endl;
 ptr = new int;
 *ptr = *obj.ptr; // copy the value
}

Line::~Line(void) {
 cout << "Freeing memory!" << endl;
 delete ptr;
}

int Line::getLength(void) {
 return *ptr;
}

void display(Line obj) {
 cout << "Length of line : " << obj.getLength() <<endl;
}

// Main function for the program
int main() {
 Line line(10);

 display(line);

 return 0;
}

When the above code is compiled and executed, it produces the following result −

Object Oriented Programming : Grade 10 43

Normal constructor allocating ptr

Copy constructor allocating ptr.

Length of line : 10

Freeing memory!

Freeing memory!

Let us see the same example but with a small change to create another object using

existing object of the same type −

#include <iostream>

using namespace std;

class Line {

 public:

 int getLength(void);

 Line(int len); // simple constructor

 Line(const Line &obj); // copy constructor

 ~Line(); // destructor

 private:

 int *ptr;

};

// Member functions definitions including constructor

Line::Line(int len) {

 cout << "Normal constructor allocating ptr" << endl;

 // allocate memory for the pointer;

 ptr = new int;

 *ptr = len;

}

44 Object Oriented Programming : Grade 10

Line::Line(const Line &obj) {

 cout << "Copy constructor allocating ptr." << endl;

 ptr = new int;

 *ptr = *obj.ptr; // copy the value

}

Line::~Line(void) {

 cout << "Freeing memory!" << endl;

 delete ptr;

}

int Line::getLength(void) {

 return *ptr;

}

void display(Line obj) {

 cout << "Length of line : " << obj.getLength() <<endl;

}

// Main function for the program

int main() {

 Line line1(10);

 Line line2 = line1; // This also calls copy constructor

 display(line1);

 display(line2);

 return 0;

}

Object Oriented Programming : Grade 10 45

When the above code is compiled and executed, it produces the following result −

Normal constructor allocating ptr

Copy constructor allocating ptr.

Copy constructor allocating ptr.

Length of line : 10

Freeing memory!

Copy constructor allocating ptr.

Length of line : 10

Freeing memory!

Freeing memory!

Freeing memory!

3.14 Static data member in class
We can define class member static using static keyword. When we declare a member

of a class as static it means no matter how many objects of the class are created, there

is only one copy of the static member.

A static member is shared by all objects of the class. All static data is initialized to

zero when the first object is created, if no other initialization is present. We can't put

it in the class definition but it can be initialized outside the class as done in the

following example by redeclaring the static variable, using the scope resolution

operator: to identify which class it belongs to.

Let us try the following example to understand the concept of static data members −

#include <iostream>

 using namespace std;

class Box {

 public:

 static int objectCount;

 // Constructor definition

 Box(double l = 2.0, double b = 2.0, double h = 2.0) {

46 Object Oriented Programming : Grade 10

 cout <<"Constructor called." << endl;

 length = l;

 breadth = b;

 height = h;

 // Increase every time object is created

 objectCount++;

 }

 double Volume() {

 return length * breadth * height;

 }

 private:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

// Initialize static member of class Box

int Box::objectCount = 0;

int main(void) {

 Box Box1(3.3, 1.2, 1.5); // Declare box1

 Box Box2(8.5, 6.0, 2.0); // Declare box2

 // Print total number of objects.

 cout << "Total objects: " << Box::objectCount << endl;

 return 0;

}

Object Oriented Programming : Grade 10 47

When the above code is compiled and executed, it produces the following result −

Constructor called.

Constructor called.

Total objects: 2

3.14 Static Function Members of Class:
By declaring a function member as static, you make it independent of any particular

object of the class. A static member function can be called even if no objects of the

class exist and the static functions are accessed using only the class name and the

scope resolution operator :

A static member function can only access static data member, other static member

functions and any other functions from outside the class.

Static member functions have a class scope and they do not have access to

this pointer of the class. You could use a static member function to determine

whether some objects of the class have been created or not.

Let us try the following example to understand the concept of static function

members

#include <iostream>

using namespace std;

class Box {

 public:

 static int objectCount;

 // Constructor definition

 Box(double l = 2.0, double b = 2.0, double h = 2.0) {

 cout <<"Constructor called." << endl;

 length = l;

48 Object Oriented Programming : Grade 10

 breadth = b;

 height = h;

 // Increase every time object is created

 objectCount++;

 }

 double Volume() {

 return length * breadth * height;

 }

 static int getCount() {

 return objectCount;

 }

 private:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

// Initialize static member of class Box

int Box::objectCount = 0;

int main(void) {

 // Print total number of objects before creating object.

 cout << "Inital Stage Count: " << Box::getCount() << endl;

 Box Box1(3.3, 1.2, 1.5); // Declare box1

 Box Box2(8.5, 6.0, 2.0); // Declare box2

 // Print total number of objects after creating object.

 cout << "Final Stage Count: " << Box::getCount() << endl;

 return 0;

Object Oriented Programming : Grade 10 49

}

When the above code is compiled and executed, it produces the following result −

Inital Stage Count: 0

Constructor called.

Constructor called.

Final Stage Count: 2

3.15. Inline Function
Inline functions are actual functions, which are copied everywhere during

compilation, like preprocessor macro, so the overhead of function calling is reduced.

All the functions defined inside class definition are by default inline, but you can

also make any non-class function inline by using keyword inline with them.

For an inline function, declaration and definition must be done together. For

example,

inline void fun(int a)

{

 return a++;

}

Some Important points about Inline Functions

1. We must keep inline functions small, small inline functions have better

efficiency.

2. Inline functions do increase efficiency, but we should not make all the

functions inline. Because if we make large functions inline, it may lead

to code bloat, and might affect the speed too.

3. Hence, it is advised to define large functions outside the class definition using

scope resolution :: operator, because if we define such functions inside class

definition, then they become inline automatically.

50 Object Oriented Programming : Grade 10

4. Inline functions are kept in the Symbol Table by the compiler, and all the call

for such functions is taken care at compile time.

Access Functions
We have already studied this in topic Accessing Private Data variables inside class.

We use access functions, which are inline to do so.

class Auto

{

 int i;

 public:

 int getdata()

 {

 return i;

 }

 void setdata(int x)

 {

 i=x;

 }

};

Here getdata() and setdata() are inline functions, and are made to access the private

data members of the class Auto. getdata(), in this case is called Accessor function

and setdata() is a Mutator function.

There can be overlaoded Accessor and Mutator functions too. We will study

overloading functions in next topic.

Limitations of Inline Functions

1. Large Inline functions cause Cache misses and affect performance

negatively.

2. Compilation overhead of copying the function body everywhere in the code

on compilation, which is negligible for small programs, but it makes a

difference in large code bases.

Object Oriented Programming : Grade 10 51

3. Also, if we require address of the function in program, compiler cannot

perform inlining on such functions. Because for providing address to a

function, compiler will have to allocate storage to it. But inline functions

doesn't get storage, they are kept in Symbol table.

3.16. Data encapsulation and its example

All C++ programs are composed of the following two fundamental

elements−

 Program statements (code) − This is the part of a program that performs

actions and they are called functions.

 Program data − The data is the information of the program which gets

affected by the program functions.

Encapsulation is an Object Oriented Programming concept that binds together the

data and functions that manipulate the data, and that keeps both safe from outside

interference and misuse. Data encapsulation led to the important OOP concept

of data hiding.

Data encapsulation is a mechanism of bundling the data, and the functions that use

them and data abstraction is a mechanism of exposing only the interfaces and hiding

the implementation details from the user.

C++ supports the properties of encapsulation and data hiding through the creation of

user-defined types, called classes. We already have studied that a class can

contain private, protected and public members. By default, all items defined in a

class are private. For example −

class Box {

 public:

 double getVolume(void) {

 return length * breadth * height;

 }

 private:

52 Object Oriented Programming : Grade 10

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

The variables length, breadth, and height are private. This means that they can be

accessed only by other members of the Box class, and not by any other part of your

program. This is one way encapsulation is achieved.

To make parts of a class public (i.e., accessible to other parts of your program), you

must declare them after the public keyword. All variables or functions defined after

the public specifier are accessible by all other functions in your program.

Making one class a friend of another exposes the implementation details and reduces

encapsulation. The ideal is to keep as many of the details of each class hidden from

all other classes as possible.

Data Encapsulation Example

Any C++ program where you implement a class with public and private members is

an example of data encapsulation and data abstraction. Consider the following

example −

#include <iostream>

using namespace std;

class Adder {

 public:

 // constructor

 Adder(int i = 0) {

 total = i;

 }

 // interface to outside world

 void addNum(int number) {

 total += number;

Object Oriented Programming : Grade 10 53

 }

 // interface to outside world

 int getTotal() {

 return total;

 };

 private:

 // hidden data from outside world

 int total;

};

int main() {

 Adder a;

 a.addNum(10);

 a.addNum(20);

 a.addNum(30);

 cout << "Total " << a.getTotal() <<endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Total 60

Above class adds numbers together, and returns the sum. The public members

addNum and getTotal are the interfaces to the outside world and a user needs to

know them to use the class. The private member total is something that is hidden

from the outside world, but is needed for the class to operate properly.

54 Object Oriented Programming : Grade 10

3.17 Passing parameters to a constructor function
It is possible to pass arguments to constructor functions. Typically, these arguments

help initialize an object when it is created. To create a parameterized constructor,

simply add parameters to it the way you would to any other function. When you

define the constructor's body, use the parameters to initialize the object. For example,

here is a simple class that includes a parameterized constructor:

#include <iostream>

using namespace std;

class myclass {

int a, b;

public:

myclass(int i, int j) {a=i; b=j;}

void show() {cout << a << " " << b;}

};

int main()

{

myclass ob(3, 5);

ob.show();

return 0;

}

Notice that in the definition of myclass(), the parameters i and j are used to give

initial

values to a and b.

The program illustrates the most common way to specify arguments when you

declare an object that uses a parameterized constructor function. Specifically, this

statement myclass ob(3, 4);

causes an object called ob to be created and passes the arguments 3 and 4 to the i and

j

parameters of myclass(). You may also pass arguments using this type of declaration

statement:

myclass ob = myclass(3, 4);

Object Oriented Programming : Grade 10 55

However, the first method is the one generally used, and this is the approach taken

by most of the examples in this book. Actually, there is a small technical difference

between the two types of declarations that relates to copy constructors.

Here is another example that uses a parameterized constructor function. It creates a

class that stores information about library books.

#include <iostream>
#include <cstring>
using namespace std;
const int IN = 1;
const int CHECKED_OUT = 0;
class book {
char author[40];
char title[40];
int status;
public:
book(char *n, char *t, int s);
int get_status() {return status;}
void set_status(int s) {status = s;}
void show();
};
book::book(char *n, char *t, int s)
{
strcpy(author, n);
strcpy(title, t);
status = s;
}
void book::show()
{
cout << title << " by " << author;
cout << " is ";
if(status==IN) cout << "in.\n";
else cout << "out.\n";
}
int main()
{
book b1("Twain", "Tom Sawyer", IN);

56 Object Oriented Programming : Grade 10

book b2("Melville", "Moby Dick", CHECKED_OUT);

b1.show();

b2.show();

return 0;

}

Parameterized constructor functions are very useful because they allow you to avoid

having to make an additional function call simply to initialize one or more variables

in an object. Each function call you can avoid makes your program more efficient.

Also, notice that the short get_status() and set_status() functions are defined in line,

within the book class. This is a common practice when writing C++ programs.

Constructors with One Parameter:
If a constructor only has one parameter, there is a third way to pass an initial value

to that constructor. For example, consider the following short program.

#include <iostream>

using namespace std;

class X {

int a;

public:

X(int j) { a = j; }

int geta() { return a; }

};

int main()

{

X ob = 99; // passes 99 to j

cout << ob.geta(); // outputs 99

return 0;

}

Here, the constructor for X takes one parameter. Pay special attention to how ob is

declared in main(). In this form of initialization, 99 is automatically passed to the J

parameter in the X() constructor. That is, the declaration statement is handled by the

compiler as if it were written like this:

Object Oriented Programming : Grade 10 57

X ob = X(99);

In general, any time you have a constructor that requires only one argument, you can

use either ob(i) or ob = i to initialize an object. The reason for this is that whenever

you create a constructor that takes one argument, you are also implicitly creating a

conversion from the type of that argument to the type of the class.

Remember that the alternative shown here applies only to constructors that have

exactly one parameter.

3.18 Difference between constructors and member function:
Here is the difference between constructor and member function in C++

programming. Constructor name must be same as class name but functions cannot

have same name as class name.

C++ Code Example :

class Car{

 int count;

public:

 //This constructor has same name as class name

 Car(){

 }

 //function cannot have same name as class

 void CarAvailable(){

 }

};

58 Object Oriented Programming : Grade 10

Constructor does not have return type whereas functions must have.

Example :

class Car{

 int count;

public:

 //Constructor :- No return type

 Car(){

 }

 //@return type int, in C++ function must have return type

 // it can also be void type, means return nothing, but must mention its

type.

 int CarAvailable(){

 return count;

 }

 void CarSold(){}

};

Member function can be virtual, but, there is no concept of virtual-constructor in

C++. (NOTE: virtual destructor to maintain destructor call order in inheritance is

available in C++ language)

Example :

class Car{

 int count;

public:

 //Constructor :- Can never be VIRTUAL,No provision.

 Car(){

 //

Object Oriented Programming : Grade 10 59

 }

 //Function can be virtual, so that it can be overriden in derived classes.

 virtual void CarAvailable(){

 }

};

Constructors are invoked at the time of object creation automatically and

cannot be called explicitly but functions are called explicitly using class

objects.

C++ Code Example :

class Car{

 public:

 Car(){

cout << "Car's Constructor\n";

}

void CarAvailable(){

 cout << "Car's Function\n";

}

};

 int main()

{

 //Constructor will be invoked automatically

 //during object creation.

Car obj;

//Functin can be called using class object, no automatic

obj.CarAvailable();

60 Object Oriented Programming : Grade 10

return 0;

}

SUMMARY
 In OOP, we can define class name to represent its individual objects. Defining

a class in programming language means creating user defined data type and

it behaves like the built-in data types. Once a class has been defined, we can

create any number of objects belonging to that class.

 An object is an instance of a class. A class is a description of a group of

objects with common properties (attributes or characteristics or variables),

behavior (operations or methods) and relationships.

 The members of structure are usually processed individually, as separate

entity. Therefore, we must be able to access the individual structure members.

A structure member can be accessed by using period or dot (i.e. ".") operator.

 In OOP, generally date are made private and functions are made public.

 A variable must be defined before you can use it in a program. When you

define a variable the type is specified and an appropriate amount of memory

reserved.

 Accessing a data member depends solely on the access control of that data

member. If its public, then the data member can be easily accessed using the

direct member access (.) operator with the object of that class.

 Member functions are the functions, which have their declaration inside the

class definition and works on the data members of the class. The definition

of member functions can be inside or outside the definition of class.

 C++ offers possibility to control access to class members and functions by

using access specifiers. Access specifiers are used to protect data from

misuse.

 Public class members and functions can be used from outside of a class by

any function or other classes.

 Protected class members and functions can be used inside its class. Protected

members and functions cannot be accessed from other classes directly.

 Private class members and functions can be used only inside of class and by

friend functions and classes.

Object Oriented Programming : Grade 10 61

 The main purpose of C++ programming is to add object orientation to the C

programming language and classes are the central feature of C++ that

supports object-oriented programming and are often called user-defined

types.

 A class member can be defined as public, private or protected. By default

members would be assumed as private.

 The copy constructor is a constructor which creates an object by initializing

it with an object of the same class, which has been created previously.

 A friend function is permitted full access to private and protected members

of a class.

 With an inline function, the compiler tries to expand the code in the body of

the function in place of a call to the function.

 Every object has a special pointer this which points to the object itself.

 A pointer to a class is done exactly the same way a pointer to a structure is.

In fact a class is really just a structure with functions in it.

 Both data members and function members of a class can be declared as static.

 A class constructor is a special member function of a class that is executed

whenever we create new objects of that class.

 A default constructor does not have any parameter, but if you need, a

constructor can have parameters. This helps you to assign initial value to an

object

 A destructor is a special member function of a class that is executed

whenever an object of it's class goes out of scope or whenever the delete

expression is applied to a pointer to the object of that class.

 The copy constructor is a constructor which creates an object by initializing

it with an object of the same class, which has been created previously.

 We can define class member static using static keyword. When we declare a

member of a class as static it means no matter how many objects of the class

are created, there is only one copy of the static member.

 A static member function can be called even if no objects of the class exist

and the static functions are accessed using only the class name and the scope

resolution operator :

62 Object Oriented Programming : Grade 10

 Inline functions are actual functions, which are copied everywhere during

compilation, like preprocessor macro, so the overhead of function calling is

reduced. All the functions defined inside class definition are by default inline,

but you can also make any non-class function inline by using

keyword inline with them.

 Encapsulation is an Object Oriented Programming concept that binds

together the data and functions that manipulate the data, and that keeps both

safe from outside interference and misuse. Data encapsulation led to the

important OOP concept of data hiding.

Self Evaluation
1. Write very short answer of the following question.
a) What is a class?

b) What is an object?

c) What is a structure member?

d) What is a variable?

e) What is accessing a data member?

f) What are access specifiers?

g) What is a class member?

h) What is class constructor?

i) What is a structure member?

j) What is copy constructor?

k) What is friend function?

l) What is a destructor?

m) What is a default constructor?

n) What is called static member function?

o) What is the inline function?

p) What is a data encapsulation?

2. Write short answer of the following question.
a) What are accessing data members of class?

b) What do you mean by member function in class? Explain with example.

Object Oriented Programming : Grade 10 63

c) Explain class constructors with examples.

d) Explain class destructors with examples.

e) Define copy constructor. Where is it used?

f) Explain static data member with examples.

g) What are the different between constructors and member function?

h) Write a program to add two variables and disply the sum using class and

object.

3. Write long answer of the following question.
a) What are the difference between classes and structures?

b) What are the types of access specifiers ? Explain in detail.

c) What is inline function? Write its importance.

d) Write about data encapsulation with its example.

e) Explain copy constructor with a program.

64 Object Oriented Programming : Grade 10

UNIT 4
Polymorphism

Learning Outcomes:-
After completion of this unit you will be able to

 To explain/describe polymorphism.

 To explain/describe function overriding.

 To explain/describe virtual function.

 To describe run time polymorphism.

 To explain/describe static binding and dynamic binding.

 To explain/describe Abstract class and pure virtual function.

4.1 Introduction to Polymorphism
The word polymorphism means having many forms. Typically, polymorphism

occurs when there is a hierarchy of classes and they are related by inheritance.

C++ polymorphism means that a call to a member function will cause a different

function to be executed depending on the type of object that invokes the function.

Consider the following example where a base class has been derived by other two

classes −

#include <iostream>

using namespace std;

 class Shape {

 protected:

 int width, height;

 public:

 Shape(int a = 0, int b = 0){

 width = a;

 height = b;

 }

Object Oriented Programming : Grade 10 65

 int area() {

 cout << "Parent class area :" <<endl;

 return 0;

 }

};

class Rectangle: public Shape {

 public:

 Rectangle(int a = 0, int b = 0):Shape(a, b) { }

 int area () {

 cout << "Rectangle class area :" <<endl;

 return (width * height);

 }

};

class Triangle: public Shape {

 public:

 Triangle(int a = 0, int b = 0):Shape(a, b) { }

 int area () {

 cout << "Triangle class area :" <<endl;

 return (width * height / 2);

 }

};

// Main function for the program

int main() {

 Shape *shape;

 Rectangle rec(10,7);

 Triangle tri(10,5);

 // store the address of Rectangle

66 Object Oriented Programming : Grade 10

 shape = &rec;

 // call rectangle area.

 shape->area();

 // store the address of Triangle

 shape = &tri;

 // call triangle area.

 shape->area();

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Parent class area :

Parent class area :

The reason for the incorrect output is that the call of the function area() is being set

once by the compiler as the version defined in the base class. This is calledstatic

resolution of the function call, or static linkage - the function call is fixed before the

program is executed. This is also sometimes called early binding because the area()

function is set during the compilation of the program.

But now, let's make a slight modification in our program and precede the declaration

of area() in the Shape class with the keyword virtual so that it looks like this −

class Shape {

 protected:

 int width, height;

 public:

 Shape(int a = 0, int b = 0) {

 width = a;

Object Oriented Programming : Grade 10 67

 height = b;

 }

 virtual int area() {

 cout << "Parent class area :" <<endl;

 return 0;

 }

};

After this slight modification, when the previous example code is compiled and

executed, it produces the following result −

Rectangle class area

Triangle class area

This time, the compiler looks at the contents of the pointer instead of it's type. Hence,

since addresses of objects of tri and rec classes are stored in *shape the respective

area() function is called.

As you can see, each of the child classes has a separate implementation for the

function area(). This is how polymorphism is generally used. You have different

classes with a function of the same name, and even the same parameters, but with

different implementations.

4.2 Function Overriding
If we inherit definition for one of the base class's function again inside the derived

class, then that function is said to be overridden, and this mechanism is called

Function Overriding

Requirements for Overriding
1. Inheritance should be there. Function overriding cannot be done within a

class. For this we require a derived class and a base class.

2. Function that is redefined must have exactly the same declaration in both

base and derived class, that means same name, same return type and same

parameter list.

68 Object Oriented Programming : Grade 10

Function overriding is a feature that allows us to have a same function in child class

which is already present in the parent class. A child class inherits the data members

and member functions of parent class, but when you want to override a functionality

in the child class then you can use function overriding. It is like creating a new

version of an old function, in the child class.

Function Overriding Example
To override a function you must have the same signature in child class. By signature

I mean the data type and sequence of parameters. Here we don’t have any parameter

in the parent function so we didn’t use any parameter in the child function.

#include <iostream>

using namespace std;

class BaseClass {

public:

 void disp(){

 cout<<"Function of Parent Class";

 }

};

class DerivedClass: public BaseClass{

public:

 void disp() {

 cout<<"Function of Child Class";

 }

};

int main() {

 DerivedClass obj = DerivedClass();

 obj.disp();

 return 0;

}

Output: Function of ChildClass

Object Oriented Programming : Grade 10 69

Function of Child Class
Note: In function overriding, the function in parent class is called the overridden

function and function in child class is called overriding function.

4.3. Virtual Function
A virtual function is a function in a base class that is declared using the

keywordvirtual. Defining in a base class a virtual function, with another version in a

derived class, signals to the compiler that we don't want static linkage for this

function.

What we do want is the selection of the function to be called at any given point in

the program to be based on the kind of object for which it is called. This sort of

operation is referred to as dynamic linkage, or late binding.

Pure Virtual Functions
It is possible that you want to include a virtual function in a base class so that it may

be redefined in a derived class to suit the objects of that class, but that there is no

meaningful definition you could give for the function in the base class.

We can change the virtual function area() in the base class to the following −

class Shape {

 protected:

 int width, height;

 public:

 Shape(int a = 0, int b = 0) {

 width = a;

 height = b;

 }

 // pure virtual function

 virtual int area() = 0;

};

70 Object Oriented Programming : Grade 10

The = 0 tells the compiler that the function has no body and above virtual function

will be called pure virtual function.

4.4. Runtime polymorphism
Compile time Polymorphism Run time Polymorphism

In Compile time Polymorphism,

call is resolved by the compiler.

In Run time Polymorphism, call

is not resolved by the compiler.

It is also known as Static

binding, Early binding and

overloading as well.

It is also known as Dynamic binding, Late

binding and overriding as well.

Overloading is compile time

polymorphism where more than

one methods share the same

name with different parameters

or signature and different return

type.

Overriding is run time polymorphism having

same method with same parameters or

signature, but associated in a class & its

subclass.

It is achieved

by function overloading

and operatoroverloading.

It is achieved by virtual

functions and pointers.

It

provides fast execution because

known early at compile time.

It provides slow execution as compare to

early binding because it is known at runtime.

Compile time polymorphism

is less flexible as all things

execute at compile time.

Run time polymorphism is more flexible as

all things execute at run time.

4.5 Static Binding and Dynamic Binding

Definitions of Static Binding
When compiler acknowledges all the information required to call a function or all

the values of the variables during compile time, it is called “static binding”. As all

Object Oriented Programming : Grade 10 71

the required information are known before runtime, it increases the program

efficiency and it also enhances the speed of execution of a program.

Static Binding makes a program very efficient, but it declines the program flexibility,

as ‘values of variable’ and ‘function calling’ are predefined in the program. Static

binding is implemented in a program at the time of coding.

Overloading a function or an operator are the examples of compile time

polymorphism i.e. static binding.

Implementation of static binding in C++ with example of overloading
class overload{
int a, b;
public:
int load(int x){ // first load() function.
a=x;
return a;
}
int load(int x, int y){ //second load() function.
a=x;
b=y;
return a*b;
}
};
int main(){
overload O1;
O1.load(20); //This statement binds the calling of function to 'first' load()
function.
O1.load(20,40); //This statement binds the calling of function 'second' load()
function.
}

Now, here the statement ‘O1.loads(20)’ clearly binds the function calling to first

‘load(int x)’ function as it is the only function which accepts single integer argument.

The statement O1.loads(20,40) binds the function calling to second ‘load(int x, int

y)’ function as it is the only function which accepts two integer arguments. Hence,

72 Object Oriented Programming : Grade 10

no time will be wasted in deciding which function to invoke; this will make program

execution efficient and fast.

Definition of Dynamic Binding
Calling a function or assigning a value to a variable, at run-time is called “Dynamic

Binding”. Dynamic binding can be associated with run time ‘polymorphism’ and

‘inheritance’ in OOP. Dynamic binding makes the execution of program flexible as

it can be decided, what value should be assigned to the variable and which function

should be called, at the time of program execution. But as this information is

provided at run time it makes the execution slower as compared to static binding.

Implementation of dynamic binding using ‘virtual functions’ in C++.
class base{

public:

virtual void funct(){ // Virtual function.

cout<<"This is a base class's funct()";

}

};

class derived1 : public base{

public:

void funct(){ //overridden virtual function.

cout<<"This is a derived1 class's funct()";

}

};

class derived2 : public base{

public:

void funct(){ //overridden virtual function.

cout<<"This is a derived2 class's funct()";

}

};

int main()

{

Object Oriented Programming : Grade 10 73

base *p, b;

derived1 d1;

derived2 d2;

*p=&b;

p->funct(); //The above statement decides which class's function is to be

invoked.

*p=&d1; // Vlaue of the pointer changes.

p->funct(); //The above statement decides which class's function is to be

invoked.

*p=&d2; // Again vlaue of the pointer changes.

p->funct(); //The above statement decides which class's function is to be

invoked.

return 0;

}

Here the value of the pointer changes as the program is in execution and the value of

the pointer decides which class’s function will be invoked. So here, the information

is provided at run time, it takes the time to bind the data which slow downs the

execution.

Key Differences Between Static and Dynamic Binding.
1. Events that occur at compile time like, a function code is associated with a

function call or assignment of value to a variable, are called static/early

binding, and when these tasks are accomplished during runtime they are

called dynamic/late binding.

2. ‘Efficiency’ increases in static binding, as all the data is gathered before the

execution. But in dynamic binding, the data is acquired at runtime so we can

decide what value to assign a variable and which function to invoke at

runtime this make execution ‘flexible’.

3. ‘Static binding’ make execution of a program ‘faster’ as all the data needed

to execute a program is known before execution. In ‘dynamic binding’ data

needed to execute a program is known to the compiler at the time of execution

74 Object Oriented Programming : Grade 10

which takes the time to bind values to identifiers hence, it makes program

execution slower.

4. Static binding is also called early binding because the function code is

associated with function call during compile time, which is earlier than

dynamic binding in which function code is associated with function call

during runtime hence it is also called late binding.

Conclusion:
However, we conclude that when we have the prior knowledge of the values of

variable and function calling, we apply static binding whereas, in dynamic binding,

we provide all the information at the time of execution.

4.6 Abstract class and pure virtual function

Abstract Class
Abstract Class is a class which contains atleast one Pure Virtual function in it.

Abstract classes are used to provide an Interface for its sub classes. Classes inheriting

an Abstract Class must provide definition to the pure virtual function, otherwise they

will also become abstract class.

Characteristics of Abstract Class
1. Abstract class cannot be instantiated, but pointers and refrences of Abstract

class type can be created.

2. Abstract class can have normal functions and variables along with a pure

virtual function.

3. Abstract classes are mainly used for Upcasting, so that its derived classes can

use its interface.

4. Classes inheriting an Abstract Class must implement all pure virtual

functions, or else they will become Abstract too.

Pure Virtual Functions
Pure virtual Functions are virtual functions with no definition. They start

with virtual keyword and ends with = 0. Here is the syntax for a pure virtual function,

virtual void f() = 0;

Example of Abstract Class

Object Oriented Programming : Grade 10 75

class Base //Abstract base class

{

 public:

 virtual void show() = 0; //Pure Virtual Function

};

class Derived:public Base

{

 public:

 void show()

 { cout << "Implementation of Virtual Function in Derived class"; }

};

int main()

{

 Base obj; //Compile Time Error

 Base *b;

 Derived d;

 b = &d;

 b->show();

}

Output :

Implementation of Virtual Function in Derived class

In the above example Base class is abstract, with pure virtual show() function,

hence we cannot create object of base class.

Why can't we create Object of Abstract Class ?
When we create a pure virtual function in Abstract class, we reserve a slot for a

function in the VTABLE (studied in last topic), but doesn't put any address in that

slot. Hence the VTABLE will be incomplete.

76 Object Oriented Programming : Grade 10

As the VTABLE for Abstract class is incomplete, hence the compiler will not let the

creation of object for such class and will display an error message whenever you try

to do so.

Pure Virtual definitions
Pure Virtual functions can be given a small definition in the Abstract class, which

you want all the derived classes to have. Still you cannot create object of Abstract

class.

Also, the Pure Virtual function must be defined outside the class definition. If you

will define it inside the class definition, complier will give an error. Inline pure

virtual definition is Illegal.c

 //Abstract base class

{

 public:

 virtual void show() = 0; //Pure Virtual Function

};

void Base :: show() //Pure Virtual definition

{

 cout << "Pure Virtual definition\n";

}

class Derived:public Base

{

 public:

 void show()

 { cout << "Implementation of Virtual Function in Derived class"; }

};

int main()

{

 Base *b;

Object Oriented Programming : Grade 10 77

 Derived d;

 b = &d;

 b->show();

}

Output :

Implementation of Virtual Function in Derived class

SUMMARY
 The word polymorphism means having many forms. Typically,

polymorphism occurs when there is a hierarchy of classes and they are related
by inheritance.

 If we inherit a class into the derived class and provide a definition for one of
the base class's function again inside the derived class, then that function is
said to be overridden, and this mechanism is called Function Overriding

 A virtual function is a function in a base class that is declared using the
keyword virtual. Defining in a base class a virtual function, with another
version in a derived class, signals to the compiler that we don't want static
linkage for this function.

 When compiler acknowledges all the information required to call a function
or all the values of the variables during compile time, it is called “static
binding”.

 Calling a function or assigning a value to a variable, at run-time is called
“Dynamic Binding”.

 Abstract Class is a class which contains at least one Pure Virtual function in
it. Abstract classes are used to provide an Interface for its sub classes

Self Evaluation
1. Write very short answer of the following question.
a. What is polymorphism?
b. What is Function Overriding?
c. What is virtual function?
d. What is static binding?
e. What is Dynamic Binding?
f. What is Abstract Class?
2. Write short answer of the following question.

78 Object Oriented Programming : Grade 10

a. What is polymorphism? Explain with example.
b. What are the requirements for overriding?
c. Explain static binding with example.
d. What are the key differences between static binding and dynamic binding?
e. What are the characteristics of abstract class?
3. Write long answer of the following question.
a. What are the different between Compile time Polymorphism and Run time

Polymorphism?
b. Explain polymorphism with a program.
c. What is virtual function? Explain virtual function with a program.

UNIT-5
Operator Overloading

Learning Outcomes
After completion of this unit you will be able to

 To explain/describe unary operators overloading.

 To explain/describe operator argument.

 To explain/describe operator return values.

 To describe postfix notation.

 To explain overloading binary operators

 To explain/describe arithmetic operators and concatenating strings.

You can redefine or overload most of the built-in operators available in C++. Thus,
a programmer can use operators with user-defined types as well.

Overloaded operators are functions with special names the keyword operator
followed by the symbol for the operator being defined. Like any other function, an
overloaded operator has a return type and a parameter list.

Box operator+(const Box&);

declares the addition operator that can be used to add two Box objects and returns
final Box object. Most overloaded operators may be defined as ordinary non-member
functions or as class member functions. In case we define above function as non-
member function of a class then we would have to pass two arguments for each
operand as follows −

Object Oriented Programming : Grade 10 79

Box operator+(const Box&, const Box&);

Following is the example to show the concept of operator over loading using a
member function. Here an object is passed as an argument whose properties will be
accessed using this object, the object which will call this operator can be accessed
using this operator as explained below −

#include <iostream>
using namespace std;
class Box {
 public:
 double getVolume(void) {
 return length * breadth * height;
 }
 void setLength(double len) {
 length = len;
 }
 void setBreadth(double bre) {
 breadth = bre;
 }
 void setHeight(double hei) {
 height = hei;
 }

 // Overload + operator to add two Box objects.
 Box operator+(const Box& b) {
 Box box;
 box.length = this->length + b.length;
 box.breadth = this->breadth + b.breadth;
 box.height = this->height + b.height;
 return box;
 }

 private:
 double length; // Length of a box

 double breadth; // Breadth of a box

80 Object Oriented Programming : Grade 10

 double height; // Height of a box
};

// Main function for the program
int main() {
 Box Box1; // Declare Box1 of type Box
 Box Box2; // Declare Box2 of type Box
 Box Box3; // Declare Box3 of type Box

 double volume = 0.0; // Store the volume of a box here

 // box 1 specification
 Box1.setLength(6.0);
 Box1.setBreadth(7.0);
 Box1.setHeight(5.0);

 // box 2 specification
 Box2.setLength(12.0);
 Box2.setBreadth(13.0);
 Box2.setHeight(10.0);

 // volume of box 1
 volume = Box1.getVolume();
 cout << "Volume of Box1 : " << volume <<endl;

 // volume of box 2
 volume = Box2.getVolume();
 cout << "Volume of Box2 : " << volume <<endl;

 // Add two object as follows:
 Box3 = Box1 + Box2;

 // volume of box 3
 volume = Box3.getVolume();

 cout << "Volume of Box3 : " << volume <<endl;

Object Oriented Programming : Grade 10 81

 return 0;

 }

When the above code is compiled and executed, it produces the following result −

Volume of Box1 : 210

Volume of Box2 : 1560

Volume of Box3 : 5400

Overloadable/Non-overloadable Operators

Following is the list of operators which can be overloaded −

+ - * / % ^

& | ~ ! , =

< > <= >= ++ --

<< >> == != && ||

+= -= /= %= ^= &=

|= *= <<= >>= [] ()

-> ->* New new [] delete delete []

Operator Overloading Examples
Here are various operator overloading examples to help you in understanding the

concept.

Sr.No Operators & Example

1 Unary Operators Overloading

2 Binary Operators Overloading

3 Relational Operators Overloading

82 Object Oriented Programming : Grade 10

4 Input/Output Operators Overloading

5 ++ and -- Operators Overloading

6 Assignment Operators Overloading

7 Function call () Operator Overloading

8 Subscripting [] Operator Overloading

9 Class Member Access Operator -> Overloading

5.1 Overloading unary operators:
The unary operators operate on a single operand and following are the examples of

Unary operators −

 The increment (++) and decrement (--) operators.

 The unary minus (-) operator.

 The logical not (!) operator.

The unary operators operate on the object for which they were called and normally,

this operator appears on the left side of the object, as in !obj, -obj, and ++obj but

sometime they can be used as postfix as well like obj++ or obj--.

Following example explain how minus (-) operator can be overloaded for prefix as

well as postfix usage.

#include <iostream>

using namespace std;

class Distance {

 private:

 int feet; // 0 to infinite

 int inches; // 0 to 12

 public:

Object Oriented Programming : Grade 10 83

 // required constructors

 Distance() {

 feet = 0;

 inches = 0;

 }

 Distance(int f, int i) {

 feet = f;

 inches = i;

 }

 // method to display distance

 void displayDistance() {

 cout << "F: " << feet << " I:" << inches <<endl;

 }

 // overloaded minus (-) operator

 Distance operator- () {

 feet = -feet;

 inches = -inches;

 return Distance(feet, inches);

 }

};

int main() {

 Distance D1(11, 10), D2(-5, 11);

 -D1; // apply negation

 D1.displayDistance(); // display D1

 -D2; // apply negation

 D2.displayDistance(); // display D2

84 Object Oriented Programming : Grade 10

 return 0;

}

When the above code is compiled and executed, it produces the following result −

F: -11 I:-10

F: 5 I:-11

Hope above example makes your concept clear and you can apply similar concept to

overload Logical Not Operators (!).

5.1.1. Operator Argument:
There is restrictions on overloaded operators. We cannot change the precedence,

grouping, or number of operands of the standard C++ operators. An overloaded

operator (except for the function call operator) cannot have default arguments or an

ellipsis in the argument list.

5.1.2. Operator Return Values:
If we have to use overloaded operator function for return a value as:

Obj 2 = obj1 ++; // returned object of obj++ is assigned to obj2.
Example:
#include<iostream.h>
Class sample
{
 private:
 int x;
 public:
 sample () { x=10;} // Constructor
 int getvalue (){ return x;}
 sample operator ++()
 {
 x++;
 sample temp; // temporary object
 temp.x = x;
 return temp;
 }
 };
void main()
{

Object Oriented Programming : Grade 10 85

 sample obj1, obj2;
 cout<<end1<<intial obj1="<<obj1..getvalue();
 cout<<end1<<intial obj2="<<obj2..getvalue();
 obj1++; obj2++;
 obj2 =obj1++;
 cout<<end1<<final obj1="<<obj1.getvalue();
 cout<<end1<<final obj2="<<obj2.getvalue();
}
//output
intial obj1=10
intial obj2=10
final obj1=13
final obj2=13

5.1.3 Postfix Notation:
Postfix notation is also known as Reverse Polish Notation (RPN) in which every

operator follows all of its operands. This notation is parenthesis free.

For e.g, (A + B) is expressed as AB+ in postfix notation.

// postfix operation

Sample operator ++ (int)

{

 Return(val++) // object is created with val++

 // i.e old value and value is returned.

We can give increment role to – operator and decrement role to ++ operator

defining operator function as

sample operator ++()

{

x--;

return sample(x);

}

// decrements

sample operator –()

{

X++;

86 Object Oriented Programming : Grade 10

Return sample(x); //increments

}

5.2. Overloading binary operators:
The binary operators take two arguments and following are the examples of Binary

operators. You use binary operators very frequently like addition (+) operator,

subtraction (-) operator and division (/) operator.

Object Oriented Programming : Grade 10 87

Following example explains how addition (+) operator can be overloaded. Similar

way, you can overload subtraction (-) and division (/) operators.

#include <iostream>

using namespace std;

class Box {

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

 public:

 double getVolume(void) {

 return length * breadth * height;

 }

 void setLength(double len) {

 length = len;

 }

 void setBreadth(double bre) {

 breadth = bre;

 }

 void setHeight(double hei) {

 height = hei;

 }

 // Overload + operator to add two Box objects.

 Box operator+(const Box& b) {

 Box box;

 box.length = this->length + b.length;

 box.breadth = this->breadth + b.breadth;

88 Object Oriented Programming : Grade 10

 box.height = this->height + b.height;

 return box;

 }

 };

 // Main function for the program

 int main() {

 Box Box1; // Declare Box1 of type Box

 Box Box2; // Declare Box2 of type Box

 Box Box3; // Declare Box3 of type Box

 double volume = 0.0; // Store the volume of a box here

 // box 1 specification

 Box1.setLength(6.0);

 Box1.setBreadth(7.0);

 Box1.setHeight(5.0);

 // box 2 specification

 Box2.setLength(12.0);

 Box2.setBreadth(13.0);

 Box2.setHeight(10.0);

 // volume of box 1
 volume = Box1.getVolume();
 cout << "Volume of Box1 : " << volume <<endl;

 // volume of box 2
 volume = Box2.getVolume();
 cout << "Volume of Box2 : " << volume <<endl;

 // Add two object as follows:
 Box3 = Box1 + Box2;

 // volume of box 3

Object Oriented Programming : Grade 10 89

 volume = Box3.getVolume();
 cout << "Volume of Box3 : " << volume <<endl;

 return 0;
}

When the above code is compiled and executed, it produces the following result −

Volume of Box1 : 210

Volume of Box2 : 1560

Volume of Box3 : 5400

5.2.1 Arithmetic operators:
Try the following example to understand all the arithmetic operators available in

C++.

#include <iostream>

using namespace std;

 main() {

 int a = 21;
 int b = 10;
 int c ;

 c = a + b;
 cout << "Line 1 - Value of c is :" << c << endl ;

 c = a - b;
 cout << "Line 2 - Value of c is :" << c << endl
 ;
 c = a * b;
 cout << "Line 3 - Value of c is :" << c << endl ;

 c = a / b;
 cout << "Line 4 - Value of c is :" << c << endl ;

 c = a % b;
 cout << "Line 5 - Value of c is :" << c << endl ;

90 Object Oriented Programming : Grade 10

 c = a++;
 cout << "Line 6 - Value of c is :" << c << endl ;

 c = a--;
 cout << "Line 7 - Value of c is :" << c << endl ;

 return 0;
 }

When the above code is compiled and executed, it produces the following result −

Line 1 - Value of c is :31

Line 2 - Value of c is :11

Line 3 - Value of c is :210

Line 4 - Value of c is :2

Line 5 - Value of c is :1

Line 6 - Value of c is :21

Line 7 - Value of c is :22

5.2.2 Concatenating strings:
In C, + operator cannot concatenate two strings. In C++, it is possible to concatenate

strings using overloaded + operator. Following example shows the concatenation of

strings with operator +.

#include<iostream.h>
#include<string.h>
#include<stdlib.h>
Class string
{
 private:
 char str[100];
 public:
 string() {strcpy(str,"");} // initialization with constructor
 string(char*s)
 {
 strcpy(str,s); //one argument constructor

Object Oriented Programming : Grade 10 91

 void show()
 {
 cout<<str; // puts the string
 string operator+(string ss)
 {
 String temp;
 If ((strlen(str) + strlen(ss.str))<100)
 {
 // copies first string to temp
 strcpy(temp.str,str);
 //adds argument string
 strcat(temp.str,ss.str);
 }
 Return temp;
 }
 }; //end class
 void main()
 {
 string s1("FirstString");
 string s2("SecondString");
 string s3;
 cout<<"FirstString:"; s1.show();
 cout<<"\n SecondString:"; s2.show();
 s3 = s1 +s2; // adds s2 and s1 and assigns to s3
 cout<<"\n String after concatenating two strings:"<<end1;
 s3.show();
 }
 // output
 First string: FirstString
 Second String: SecondString
 String after concatenating two strings:
 First string: FirstStringSecond StringSecondString

92 Object Oriented Programming : Grade 10

SUMMARY
 Overloaded operators are functions with special names the keyword operator

followed by the symbol for the operator being defined.
 The unary operators operate on a single operand and following are the

examples of Unary operators −
 The increment (++) and decrement (--) operators.
 The unary minus (-) operator.
 The logical not (!) operator.

 Postfix notation is also known as Reverse Polish Notation (RPN) in which
every operator follows all of its operands. This notation is parenthesis free.
For e.g, (A + B) is expressed as AB+ in postfix notation.

 The binary operators take two arguments and following are the examples of
Binary operators. You use binary operators very frequently like addition (+)
operator, subtraction (-) operator and division (/) operator.

 . In C++, it is possible to concatenate strings using overloaded + operator.

Self Evaluation
1. Write very short answer of the following question.

a) What is a operator overloading?

b) What is a postfix notation?

c) What do you mean by function overloading?

d) What is operator function?

2. Write short answer of the following question.
a) What is a unary operator? Explain with examples.

b) What is arithmetic operator? Explain with examples.

c) What are concatenate strings? Explain with examples.

d) In the context to operator overloading, what do you understand by the term

"nameless temporary object"?

e) What is a postfix notation? Explain with example.

3. Write long answer of the following question.
a) Explain overloading binary operators with examples.

b) Write a program to overload “<” operator to compare two objects.

c) What is string concatenation? Write a program to show string concatenation

using overloaded +operator.

Object Oriented Programming : Grade 10 93

UNIT 6
Inheritance

Learning Outcomes
After completion of this unit you will be able to

 To explain/describe inheritance and its basic concepts.

 To explain/describe basic class and derive class.

 To explain/describe accessing base class members.

 To describe public, private and protected inheritance in C++.

 To explain abstract base class.

 To explain/describe forms of inheritance.

Inheritance is like a child inheriting the features of its parents. It is a technique of

organizing information in a hierarchical (tree) form.

One of the most important concepts in object-oriented programming is that of

inheritance. Inheritance allows us to define a class in terms of another class, which

makes it easier to create and maintain an application. This also provides an

opportunity to reuse the code functionality and fast implementation time.

When creating a class, instead of writing completely new data members and member

functions, the programmer can designate that the new class should inherit the

members of an existing class. This existing class is called the baseclass, and the new

class is referred to as the derived class.

The idea of inheritance implements the is a relationship. For example, mammal IS-

A animal, dog IS-A mammal hence dog IS-A animal as well and so on.

6.1. Introduction to inheritance
Inheritance is the capability of one class to acquire properties and characteristics

from another class. The class whose properties are inherited by other class is called

the Parent or Base or Super class. And, the class which inherits properties of other

class is called Child or Derived or Sub class.

94 Object Oriented Programming : Grade 10

Inheritance makes the code reusable. When we inherit an existing class, all its

methods and fields become available in the new class, hence code is reused.

Purpose of Inheritance

1) Code Reusability

2) Method Overriding (Hence, Runtime Polymorphism.)

3) Use of Virtual Keyword

6.2. Basic Concepts:

Basic Syntax of Inheritance
class Subclass_name: access_mode Superclass_name

While defining a subclass like this, the super class must be already defined or at least

declared before the subclass declaration.

Access Mode is used to specify, the mode in which the properties of superclass will

be inherited into subclass, public, private or protected.

Example of Inheritance

Object Oriented Programming : Grade 10 95

class Animal

{ public:

 int legs = 4;

};

class Dog : public Animal

{ public:

 int tail = 1;

};

int main()

{

 Dog d;

 cout << d.legs;

 cout << d.tail;

}

Output :

4 1

6.3. Base class and Derived class:
A class can be derived from more than one classes, which means it can inherit data

and functions from multiple base classes. To define a derived class, we use a class

derivation list to specify the base class(es). A class derivation list names one or more

base classes and has the form −

class derived-class: access-specifier base-class

Where access-specifier is one of public, protected, or private, and base-class is the

name of a previously defined class. If the access-specifier is not used, then it is

private by default.

96 Object Oriented Programming : Grade 10

Consider a base class Shape and its derived class Rectangle as follows −

#include <iostream>

using namespace std;

// Base class

class Shape {

 public:

 void setWidth(int w) {

 width = w;

 }

 void setHeight(int h) {

 height = h;

 }

 protected:

 int width;

 int height;

};

// Derived class

class Rectangle: public Shape {

 public:

 int getArea() {

 return (width * height);

 }

};

int main(void) {

 Rectangle Rect;

 Rect.setWidth(5);

Object Oriented Programming : Grade 10 97

 Rect.setHeight(7);

 // Print the area of the object.

 cout << "Total area: " << Rect.getArea() << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Total area: 35

6.4 Accessing base class members:

Access Control and Inheritance
A derived class can access all the non-private members of its base class. Thus base-

class members that should not be accessible to the member functions of derived

classes should be declared private in the base class.

We can summarize the different access types according to - who can access them in

the following way −

Access public protected private

Same class yes yes Yes

Derived classes yes yes No

Outside classes yes no No

98 Object Oriented Programming : Grade 10

A derived class inherits all base class methods with the following exceptions −

 Constructors, destructors and copy constructors of the base class.

 Overloaded operators of the base class.

 The friend functions of the base class.

6.5 Public, Private and Protected Inheritance in C++:
When deriving a class from a base class, the base class may be inherited

through public, protected or private inheritance. The type of inheritance is specified

by the access-specifier as explained above.

We hardly use protected or private inheritance, but public inheritance is commonly

used. While using different type of inheritance, following rules are applied −

Public Inheritance − When deriving a class from a public base class,public members

of the base class become public members of the derived class

and protected members of the base class becomeprotected members of the derived

class. A base class's privatemembers are never accessible directly from a derived

class, but can be accessed through calls to the public and protected members of the

base class.

Protected Inheritance − When deriving from a protected base class,

public and protected members of the base class become protectedmembers of the

derived class.

Private Inheritance − When deriving from a private base class,

public and protected members of the base class become privatemembers of the

derived class.

Table showing all the Visibility Modes

Derived Class Derived Class Derived Class

Base class Public Mode Private Mode Protected Mode

Private Not Inherited Not Inherited Not Inherited

Object Oriented Programming : Grade 10 99

Derived Class Derived Class Derived Class

Base class Public Mode Private Mode Protected Mode

Protected Protected Private Protected

Public Public Private Protected

6.6 Abstract Base Class:
The objects created are often the instance of a derived class but not the base class.

The base class is just the foundation for building new classes and hence such classes

are called abstract base classes or abstract classes. An abstract class is one that has

no instances and is not designed to create objects. It is only designed to be inherited.

class one

stack2 s;

s.push (11);

s.push (22);

s.push (33);

cout<<"\nNumber Popped"<<s.pop();

cout<<"\nNumber Popped"<<s.pop();

cout<<"\nNumber Popped"<<s.pop();

cout<<"\nNumber Popped"<<s.pop();

getch();

class stack2 is derived from class stack. Object of stack2 behave in exactly the same

way as those of stack, except if attempt is made to push too many items on the stack,

or to pop an item from an empty stack.

100 Object Oriented Programming : Grade 10

6.7 Forms/Types of inheritance:
In C++, we have 5 different types of Inheritance. Namely,

1) Single Inheritance

2) Multiple Inheritance

3) Hierarchical Inheritance

4) Multilevel Inheritance

5) Hybrid Inheritance (also known as Virtual Inheritance)

1. Single Inheritance
In this type of inheritance one derived class inherits from only one base class. It is

the most simplest form of Inheritance.

2. Multiple Inheritance
In this type of inheritance a single derived class may inherit from two or more than

two base classes.

Object Oriented Programming : Grade 10 101

 C++ class can inherit members from more than one class and here is the extended

syntax −

class derived-class: access baseA, access baseB....

Where access is one of public, protected, or private and would be given for every

base class and they will be separated by comma as shown above. Let us try the

following example −

#include <iostream>

using namespace std;

// Base class Shape
class Shape {
 public:
 void setWidth(int w) {
 width = w;
 }
 void setHeight(int h) {
 height = h;
 }

 protected:
 int width;
 int height;
};

// Base class PaintCost
class PaintCost {
 public:
 int getCost(int area) {
 return area * 70;
 }
};

// Derived class
class Rectangle: public Shape, public PaintCost {
 public:
 int getArea() {
 return (width * height);

102 Object Oriented Programming : Grade 10

 }
};

int main(void) {
 Rectangle Rect;
 int area;

 Rect.setWidth(5);
 Rect.setHeight(7);

 area = Rect.getArea();

 // Print the area of the object.
 cout << "Total area: " << Rect.getArea() << endl;

 // Print the total cost of painting
 cout << "Total paint cost: $" << Rect.getCost(area) << endl;

 return 0;
}
When the above code is compiled and executed, it produces the following

result −
Total area: 35
Total paint cost: $2450

3. Hierarchical Inheritance
In this type of inheritance, multiple derived classes inherits from a single base class.

Object Oriented Programming : Grade 10 103

4. Multilevel Inheritance
In this type of inheritance the derived class inherits from a class, which in turn

inherits from some other class. The Super class for one, is sub class for the other.

5. Hybrid (Virtual) Inheritance
Hybrid Inheritance is combination of Hierarchical and Multi level Inheritance.

104 Object Oriented Programming : Grade 10

SUMMARY
 Inheritance is the capability of one class to acquire properties and

characteristics from another class. The class whose properties are inherited

by other class is called the Parent or Base or Super class. And, the class

which inherits properties of other class is

called Child or Derived or Sub class.

 A class can be derived from more than one classes, which means it can inherit

data and functions from multiple base classes. To define a derived class, we

use a class derivation list to specify the base class(es). A class derivation list

names one or more base classes and has the form −

class derived-class: access-specifier base-class

 A derived class can access all the non-private members of its base class. Thus

base-class members that should not be accessible to the member functions of

derived classes should be declared private in the base class.

 When deriving a class from a base class, the base class may be inherited

through public, protected or private inheritance

 When deriving a class from a public base class, public members of the base

class become public members of the derived class and protected members of

the base class become protected members of the derived class.

 When deriving from a protected base class, public and protected members

of the base class become protected members of the derived

 When deriving from a private base class, public and protected members of

the base class become private members of the derived class.

 The objects created are often the instance of a derived class but not the base

class. The base class is just the foundation for building new classes and hence

such classes are called abstract base classes or abstract classes.

 Single Inheritance: In this type of inheritance one derived class inherits from

only one base class. It is the most simplest form of Inheritance.

Object Oriented Programming : Grade 10 105

 Multiple Inheritance: In this type of inheritance a single derived class may

inherit from two or more than two base classes.

 Hierarchical Inheritance: In this type of inheritance, multiple derived classes

inherits from a single base class.

 Multilevel Inheritance: In this type of inheritance the derived class inherits

from a class, which in turn inherits from some other class. The Super class for

one, is sub class for the other

 Hybrid Inheritance is combination of Hierarchical and Mutilevel Inheritance.

Self Evaluation
1. Write very short answer of the following question.
1) What is the basic syntax of inheritance?

2) What is a derived class?

3) What is an abstract base class?

4) What is multilevel inheritance?

2. Write short answer of the following question.
1) What is a single inheritance? Write the syntax of it.

2) What do you mean by base class and derived class.

3) What do you mean by multiple inheritance? Explain with example.

4) What do you mean by multilevel inheritance? Explain with example.

3. Write long answer of the following question.
1) What is inheritance? Explain different types of inheritance.

2) What is ambiguity in multiple inheritances? How do you resolve it? Explain

with examples.

3) Explain about public, private and protected inheritance.

106 Object Oriented Programming : Grade 10

References:
https://chipkidz.wordpress.com/2009/08/07/procedural-programming/

https://www.kullabs.com/classes/subjects/units/lessons/notes/note-

detail/8043

https://www.tutorialspoint.com/cplusplus/cpp_classes_objects.htm

https://cs-fundamentals.com/tech-interview/c/difference-between-c-and-

cpp.php

https://www.tutorialspoint.com/cplusplus/cpp_basic_input_output.htm

https://codescracker.com/cpp/cpp-error-handling.htm

https://www.tutorialspoint.com/cplusplus/cpp_classes_objects.htm

https://www.tutorialspoint.com/cplusplus/cpp_polymorphism.htm

https://www.tutorialspoint.com/cplusplus/cpp_overloading.htm

https://www.studytonight.com/cpp/overview-of-inheritance.php

C++ HANDBOOK by SSI

A Text book of OBJECT ORIENTED PROGRAMMING in C++ by Ram Datta

Bhatt

	6-Object Oriented Programming Grade 10 Cover
	6-Object Oriented Programming Grade 10 final

